Academia.eduAcademia.edu

Outline

PSPACE-completeness of majority automata networks

2016, Theoretical Computer Science

Abstract

We study the dynamics of majority automata networks when the vertices are updated according to a block sequential updating scheme. In particular, we show that the complexity of the problem of predicting an eventual state change in some vertex, given an initial configuration, is PSPACE-complete.

References (11)

  1. Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge University Press, New York, NY, USA, 1st edition, 2009.
  2. Stefan Bornholdt. Boolean network models of cellular regulation: prospects and limitations. Journal of The Royal Society Interface, 5(Suppl 1):S85-S94, 2008.
  3. Claudio Castellano, Santo Fortunato, and Vittorio Loreto. Statistical physics of social dynamics. Rev. Mod. Phys., 81:591-646, May 2009.
  4. Maria I. Davidich and Stefan Bornholdt. Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE, 3(2), 02 2008.
  5. Eric Goles and Pedro Montealegre. Computational complexity of threshold automata networks under different updating schemes. Theoretical Computer Science, 559(0):3-19, 2014.
  6. E. Goles-Chacc. Comportement oscillatoire d'une famille d'automates cellulaires non uniformes. Université scientifique et médicale de Grenoble, Institut national polytechnique de Grenoble, 1980.
  7. E Goles-Chacc, F Fogelman-Soulie, and D Pellegrin. Decreasing energy functions as a tool for studying threshold networks. Discrete Applied Mathematics, 12(3):261-277, 1985.
  8. Nicolás Goles Domic, Eric Goles, and Sergio Rica. Dynamics and complexity of the schelling segregation model. Phys. Rev. E, 83:056111, May 2011.
  9. R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to parallel computation: P-completeness theory. Oxford University Press, 1995.
  10. J J Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8):2554-2558, 1982.
  11. Henning S. Mortveit and Christian M. Reidys. An Introduction to Sequential Dynamical Systems. Universitext. Springer, 2008.