PSPACE-completeness of majority automata networks
2016, Theoretical Computer Science
Abstract
We study the dynamics of majority automata networks when the vertices are updated according to a block sequential updating scheme. In particular, we show that the complexity of the problem of predicting an eventual state change in some vertex, given an initial configuration, is PSPACE-complete.
References (11)
- Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge University Press, New York, NY, USA, 1st edition, 2009.
- Stefan Bornholdt. Boolean network models of cellular regulation: prospects and limitations. Journal of The Royal Society Interface, 5(Suppl 1):S85-S94, 2008.
- Claudio Castellano, Santo Fortunato, and Vittorio Loreto. Statistical physics of social dynamics. Rev. Mod. Phys., 81:591-646, May 2009.
- Maria I. Davidich and Stefan Bornholdt. Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE, 3(2), 02 2008.
- Eric Goles and Pedro Montealegre. Computational complexity of threshold automata networks under different updating schemes. Theoretical Computer Science, 559(0):3-19, 2014.
- E. Goles-Chacc. Comportement oscillatoire d'une famille d'automates cellulaires non uniformes. Université scientifique et médicale de Grenoble, Institut national polytechnique de Grenoble, 1980.
- E Goles-Chacc, F Fogelman-Soulie, and D Pellegrin. Decreasing energy functions as a tool for studying threshold networks. Discrete Applied Mathematics, 12(3):261-277, 1985.
- Nicolás Goles Domic, Eric Goles, and Sergio Rica. Dynamics and complexity of the schelling segregation model. Phys. Rev. E, 83:056111, May 2011.
- R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to parallel computation: P-completeness theory. Oxford University Press, 1995.
- J J Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8):2554-2558, 1982.
- Henning S. Mortveit and Christian M. Reidys. An Introduction to Sequential Dynamical Systems. Universitext. Springer, 2008.