Academia.eduAcademia.edu

Outline

COMPUTING GEOMETRIC MINIMUM-DILATION GRAPHS IS NP-HARD

2010, International Journal of Computational Geometry and Applications

https://doi.org/10.1142/S0218195910003244

Abstract

Consider a geometric graph G, drawn with straight lines in the plane. For every pair a, b of vertices of G, we compare the shortestpath distance between a and b in G (with Euclidean edge lengths) to their actual Euclidean distance in the plane. The worst-case ratio of these two values, for all pairs of vertices, is called the vertex-to-vertex dilation of G.

References (13)

  1. B. Aronov, M. de Berg, O. Cheong, J. Gudmundsson, H. Haverkort, and A. Vi- gneron. Sparse Geometric Graphs with Small Dilation. 16th International Sym- posium ISAAC 2005, Sanya. In X. Deng and D. Du (Eds.) Algorithms and Com- putation, Proceedings, pp. 50-59, LNCS 3827, Springer-Verlag, 2005.
  2. U. Brandes and D. Handke. NP-Completeness Results for Minimum Planar Span- ners. Discrete Mathematics and Theoretical Computer Science 3, pp. 1-10, 1998.
  3. L. Cai. NP-Completeness of Minimum Spanner Problems. Discrete Applied Math. 48, pp. 187-194, 1994.
  4. L. Cai and D. Corneil. Tree Spanners. SIAM J. of Discrete Math. 8, pp.359-387, 1995.
  5. P. Callahan and S. Kosaraju. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42(1), pp.67-90, 1995.
  6. O. Cheong, H. Haverkort, and M. Lee. Computing a Minimum-Dilation Spanning Tree is NP-hard, Manuscript, 2006
  7. A. Ebbers-Baumann, A. Grüne, and R. Klein. On the Geometric Dilation of Finite Point Sets. 14th International Symposium ISAAC 2003, Kyoto. In T. Ibaraki, N. Katoh, and H. Ono (Eds.) Algorithms and Computation, Proceedings, pp. 250- 259, LNCS 2906, Springer-Verlag, 2003. Algorithmica 44, pp. 137-149, 2006.
  8. D. Eppstein. Spanning Trees and Spanners. In Handbook of Computational Ge- ometry, J.-R. Sack and J. Urrutia, editors, pp. 425-461. Elsevier, 1999.
  9. D. Eppstein and K. A. Wortman. Minimum Dilation Stars. Proc. 21st ACM Symp. Comp. Geom. (SoCG), Pisa, 2005, pp. 321-326.
  10. S. Fekete and J. Kremer. Tree Spanners in Planar Graphs. Discrete Applied Mathematics 108(1-2), pp. 85-103, 2001.
  11. J. Gudmundsson and M. Smid. On Spanners of Geometric Graphs. 10th Scandi- navian Workshop on Algorithmic Theory (SWAT'06). In L. Arge and R. Freivalds (Eds.), pp. 388-399, LNCS 4059, Springer-Verlag, 2006.
  12. W. Mulzer and G. Rote. Minimum weight triangulation is NP-hard. Proc. 22nd Annual ACM Symp. Comp. Geom. (SoCG), Sedona, 2006 pp. 1-10.
  13. G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press, to appear.