On the Geometric Dilation of Closed Curves, Graphs and Point Sets
2005
Abstract
Let G be an embedded planar graph whose edges are curves. The detour between two points p and q (on edges or vertices) of G is the ratio between the length of a shortest path connecting p and q in G and their Euclidean distance |pq|. The maximum detour over all pairs of points is called the geometric dilation δ(G). Ebbers-Baumann, Grüne and Klein have shown that every finite point set is contained in a planar graph whose geometric dilation is at most 1.678, and some point sets require graphs with dilation δ ≥ π/2 ≈ 1.57. They conjectured that the lower bound is not tight. We use new ideas like the halving pair transformation, a disk packing result and arguments from convex geometry, to prove this conjecture. The lower bound is improved to (1 + 10 −11)π/2. The proof relies on halving pairs, pairs of points dividing a given closed curve C in two parts of equal length, and their minimum and maximum distances h and H. Additionally, we analyze curves of constant halving distance (h = H),...
References (22)
- A. Abrams, J. Cantarella, J. Fu, M. Ghomi, and R. Howard. Circles minimize most knot energies. Topology, 42(2):381-394, 2002.
- P. K. Agarwal, R. Klein, C. Knauer, and M. Sharir. Computing the detour of polyg- onal curves. Technical report, Freie Universität Berlin, Fachbereich Mathematik und Informatik, 2002.
- H. Auerbach. Sur un problème de M. Ulam concernant l'équilibre des corps flottants. Studia Math., 7:121-142, 1938.
- G. D. Chakerian and H. Groemer. Convex bodies of constant width. In P. M. Gruber and J. M. Wills, editors, Convexity and its Applications, pp. 49-96. Birkhäuser, Boston, 1983.
- H. P. Croft, K. J. Falconer, and R. K. Guy. Unsolved Problems in Geometry. Springer- Verlag, 1991.
- A. Dumitrescu, A. Ebbers-Baumann, A. Grüne, R. Klein, and G. Rote. On geometric dilation and halving chords. In Proc. 9th Worksh. Algorithms and Data Structures (WADS 2005), volume 3608 of Lecture Notes Comput. Sci. Springer, August 2005, pp. 244-255.
- A. Dumitrescu, A. Grüne, and G. Rote. Improved lower bound on the geometric dila- tion of point sets. In Abstracts 21st European Workshop Comput. Geom., pp. 37-40. Technische Universiteit Eindhoven, 2005.
- A. Ebbers-Baumann, A. Grüne, and R. Klein. On the geometric dilation of finite point sets. In 14th Annual International Symposium on Algorithms and Computation, volume 2906 of LNCS, pp. 250-259. Springer, 2003. Journal version to appear in Algorithmica.
- A. Ebbers-Baumann, A. Grüne, and R. Klein. Geometric dilation of closed planar curves: New lower bounds. to appear in special issue of Computational Geometry: Theory and Applications dedicated to Euro-CG '04, 2004.
- A. Ebbers-Baumann, R. Klein, E. Langetepe, and A. Lingas. A fast algorithm for approximating the detour of a polygonal chain. Computational Geometry: Theory and Applications, 27(2):123-134, 2004.
- D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pp. 425-461. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.
- H. Groemer. Stability of geometric inequalities. In P. M. Gruber and J. M. Wills, editors, Handbook of Convex Geometry, volume A, pp. 125-150. North-Holland, Ams- terdam, Netherlands, 1993.
- M. Gromov, J. Lafontaine, and P. Pansu. Structures Métriques pour les Variétés Rie- manniennes, volume 1 of Textes math. CEDIC / Fernand Nathan, Paris, 1981.
- T. Kubota. Einige Ungleichheitsbeziehungen über Eilinien und Eiflächen. Sci. Rep. Tǒhoku Univ., 12:45-65, 1923.
- K. Kuperberg, W. Kuperberg, J. Matousek, and P. Valtr. Almost-tiling the plane by ellipses. Discrete & Computational Geometry, 22(3):367-375, 1999.
- R. B. Kusner and J. M. Sullivan. On distortion and thickness of knots. In S. G. Whit- tington, D. W. Sumners, and T. Lodge, editors, Topology and Geometry in Polymer Science, volume 103 of IMA Volumes in Math. and its Applications, pp. 67-78. Springer, 1998.
- S. Langerman, P. Morin, and M. A. Soss. Computing the maximum detour and spanning ratio of planar paths, trees, and cycles. In H. Alt and A. Ferreira, editors, Proc. 19th Symp. Theoret. Aspects. Comput. Sci., volume 2285 of Lecture Notes Comput. Sci., pp. 250-261. Springer, March 2002.
- R. D. Mauldin (ed.) The Scottish Book: Mathematics from the Scottish Café. Birkhäuser, Boston 1982.
- P. R. Scott and P. W. Awyong. Inequalities for convex sets. Journal of Inequalities in Pure and Applied Mathematics, 1(1), Art. 6, 6 pp., 2000. http://jipam.vu.edu.au/article.php?sid=99.
- H. Steinhaus. Mathematical Snapshots, 3rd ed. Cambridge University Press, New York 1969.
- I. M. Yaglom and V. G. Boltyanski. Convex Figures. English Translation, Holt, Rinehart and Winston, New York, NY, 1961.
- K. Zindler. Über konvexe Gebilde, II. Monatsh. Math. Phys., 31:25-56, 1921.