Academia.eduAcademia.edu

Outline

Minimum-dilation tour (and path) is NP-hard

2007

Abstract

We prove that computing a minimum-dilation (Euclidean) Hamilton circuit or path on a given set of points in the plane is NP-hard.

References (11)

  1. U. Brandes and D. Handke. NP-completeness results for minimum planar spanners. Discrete Mathematics and Theoretical Computer Science, 3:1-10, 1998.
  2. L. Cai. NP-completeness of minimum spanner problems. Discrete Applied Math., 48:187- 194, 1994.
  3. L. Cai and D. Corneil. Tree spanners. SIAM J. of Discrete Math., 8:359-387, 1995.
  4. P.B. Callahan and S.R. Kosaraju. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42:67-90, 1995.
  5. O. Cheong, H. Haverkort, and M. Lee. Computing a minimum-dilation spanning tree is NP-hard. In Proc. of Computing: the Australasian Theory Symposium (CATS), 2006. to appear.
  6. D. Eppstein. Spanning trees and spanners. In J.R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 425-461. Elsevier Science Publishers B.V. North- Holland, Amsterdam, 2000.
  7. D. Eppstein and K.A. Wortman. Minimum dilation stars. In Proc. of the 21st ACM Symp. Comput. Geometry, pages 321-326, 2005.
  8. A. Itai, C.H. Papadimitriou, and J.L. Szwarcfiter. Hamilton paths in grid graphs. SIAM J. Computing, 11(4):676-686, 1982.
  9. R. Klein and M. Kutz. Computing geometric minimum-dilation graphs is NP-hard. In Proc. of the 14th Internat. Symp. on Graph Drawing, 2006. to appear.
  10. G. Narasimhan and M. Smid. Geometric Networks. Cambridge University Press, to appear.
  11. M. Smid. Closest point problems in computational geometry. In J.R. Sack and J. Ur- rutia, editors, Handbook of Computational Geometry, pages 877-935. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.