Academia.eduAcademia.edu

Outline

Cumulative Learning

2019, Artificial General Intelligence

https://doi.org/10.1007/978-3-030-27005-6_20

Abstract

An important feature of human learning is the ability to continuously accept new information and unify it with existing knowledge, a process that proceeds largely automatically and without catastrophic side-effects. A generally intelligent machine (AGI) should be able to learn a wide range of tasks in a variety of environments. Knowledge acquisition in partially-known and dynamic task-environments cannot happen all-at-once, and AGI-aspiring systems must thus be capable of cumulative learning: efficiently making use of existing knowledge while learning new things, increasing the scope of ability and knowledge incrementally-without catastrophic forgetting or damaging existing skills. Many aspects of such learning have been addressed in artificial intelligence (AI) research, but relatively few examples of cumulative learning have been demonstrated to date and no generally accepted explicit definition exists of this category of learning. Here we provide a general definition of cumulative learning and describe how it relates to other concepts frequently used in the AI literature.

References (30)

  1. Aljundi, R., Kelchtermans, K., Tuytelaars, T.: Task-free continual learning. CoRR (2018)
  2. Baldassare, G., Mirolli, M., Mannella, F., Caligiore, D., Visalberghi, E., Natale, F., Truppa, V., Sabbatini, G., Guglielmelli, E., Keller, F., others: The IM-CLeVeR project: Intrinsically motivated cumulative learning versatile robots. In: 9th International Conference on Epige- netic Robotics: Modeling Cognitive Development in Robotic Systems. pp. 189-190 (2009)
  3. Bieger, J.E., Thórisson, K.R.: Task analysis for teaching cumulative learners. In: Proc. Arti- ficial General Intelligence. pp. 21-31. Springer International Publishing (2018)
  4. Caruana, R.A.: Multitask connectionist learning. In: Proceedings of the 1993 Connectionist Models Summer School. pp. 372-379 (1993)
  5. Chapelle, O., Schlkopf, B., Zien, A.: Semi-supervised learning. Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA (2006)
  6. Chen, Z., Liu, B.: Lifelong Machine Learning. Morgan & Claypool Publishers (2016)
  7. Fei, G., Wang, S., Liu, B.: Learning cumulatively to become more knowledgeable. In: Pro- ceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 1565-1574. KDD '16 (2016)
  8. Fontenla-Romero, Ó., Guijarro-Berdias, B., Martinez-Rego, D., Prez-Snchez, B., Peteiro- Barral, D.: Online machine learning. Efficiency and Scalability Methods for Computational Intellect pp. 27-54 (2013)
  9. Hammer, P., Lofthouse, T.: Goal-directed procedure learning. In: International Conference on Artificial General Intelligence. pp. 77-86. Springer (2018)
  10. Jiang, J.G., Su, Z.P., Qi, M.B., Zhang, G.F.: Multi-task coalition parallel formation strategy based on reinforcement learning. Acta Automatica Sinica 34(3), 349-352 (2008)
  11. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A.: Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences 114(13), 3521-3526 (2017)
  12. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple visual concepts. In: Proceedings of the Annual Meeting of the Cognitive Science Society. vol. 33 (2011)
  13. Mermillod, M., Bugaiska, A., Bonin, P.: The stability-plasticity dilemma: Investigating the continuum from catastrophic forgetting to age-limited learning effects. Front. Psychol. 4 (2013)
  14. Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang, B., Betteridge, J., Carlson, A., Dalvi, B., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N., Platanios, E., Ritter, A., Samadi, M., Settles, B., Wang, R., Wijaya, D., Gupta, A., Chen, X., Saparov, A., Greaves, M., Welling, J.: Never-ending learning. Commun. ACM 61(5), 103-115 (2018)
  15. Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodriguez, M., Her- nandez, C., Ognibene, D., Schmidhuber, J., Sanz, R., Helgason, H.P., Chella, A., Jonsson, G.K.: Bounded Recursive Self-Improvement. Technical RUTR-SCS13006, Reykjavik Uni- versity Department of Computer Science, Reykjavik, Iceland (2013)
  16. Nivel, E., Thórisson, K.R., Dindo, H., Pezzulo, G., Rodriguez, M., Corbato, C., Steune- brink, B., Ognibene, D., Chella, A., Schmidhuber, J., Sanz, R., Helgason, H.P.: Autocat- alytic Endogenous Reflective Architecture. Technical RUTR-SCS13002, Reykjavik Univer- sity School of Computer Science, Reykjavik, Iceland (2013)
  17. Pan, S.J., Yang, Q.: A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 22(10), 1345-1359 (Oct 2010). https://doi.org/10.1109/TKDE.2009.191
  18. Ring, M.B.: CHILD: A first step towards continual learning. Machine Learning 28(1), 77- 104 (1997)
  19. Silver, D.L., Yang, Q., Li, L.: Lifelong Machine Learning Systems: Beyond Learning Algo- rithms. In: AAAI Spring Symposium: Lifelong Machine Learning (2013)
  20. Steunebrink, B.R., Thórisson, K.R., Schmidhuber, J.: Growing recursive self-improvers. In: Proceedings of Artificial General Intelligence. pp. 129-139 (2016)
  21. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: A survey. J. Mach. Learn. Res. 10, 1633-1685 (2009)
  22. Thórisson, K.R., Talbot, A.: Cumulative learning with causal-relational models. In: Artificial General Intelligence. pp. 227-237. Springer International Publishing, Cham (2018)
  23. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial Intelligence Review 18(2), 77-95 (2002)
  24. Wang, P.: Rigid Flexibility: The Logic of Intelligence. Springer, Dordrecht (2006)
  25. Wang, P.: From NARS to a thinking machine. Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms 157, 75-93 (2007)
  26. Wang, P.: Non-Axiomatic Logic: A Model of Intelligent Reasoning. World Scientific Pub- lishing, Singapore (2013)
  27. Wang, P.: Non-Axiomatic Logic: A Model of Intelligent Reasoning. World Scientific, Singa- pore (2013)
  28. Wang, P., Li, X.: Different conceptions of learning: Function approximation vs. self- organization. In: Proceedings of Artificial General Intelligence (2016)
  29. Zhan, Y., Taylor, M.E.: Online Transfer Learning in Reinforcement Learning Domains. arXiv preprint arXiv:1507.00436 (2015)
  30. Zhang, D.: From one-off machine learning to perpetual learning: A step perspective. IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2018)