Learning to learn: From smart machines to intelligent machines
2008
https://doi.org/10.1016/J.PATREC.2007.09.003Abstract
Since its birth, more than five decades ago, one of the biggest challenges of artificial intelligence remained the building of intelligent machines. Despite amazing advancements, we are still far from having machines that reach human intelligence level. The current paper tries to offer a possible explanation of this situation. For this purpose, we make a review of different learning strategies and context types that are involved in the learning process.
References (24)
- AIBO robot. http://www.sony.net/Products/aibo/index.html.
- Atkinson, R.C., Shiffrin, R.M., 1968. Human memory: A proposed system and its control processes. In: Spence, K.W. et al. (Eds.), The Psychology of Learning and Motivation, vol. 8. Academic Press, London.
- Biederman, I., Mezzanotte, R.J., Rabinowitz, J.C., 1982. Scene percep- tion: Detecting and judging objects undergoing relational violations. Cognit. Psychol. 14, 143-177.
- Bre ´zillon, P., 1999. Context in problem solving: A survey. Knowledge Eng. Rev. 14, 1-34.
- Brooks, R.A., 1991. Intelligence without reason. In: Proc. Internat. Joint Conf. on Artificial Intelligence (IJCAI), Sydney, Australia, pp. 569- 595.
- Brooks, R.A, Stein, L.A., 1993. Building brains for bodies, AI Memo No. 1439, MIT.
- de Gelder, B., Rouw, R., 2001. Beyond localisation: A dynamical dual route account of face recognition. Acta Psychol. 107, 183207.
- Fodor, J.A., 1983. The Modularity of Mind. MIT Press, Cambridge, Massachusetts.
- Fukunaga, K., 1990. Introduction to Statistical Pattern Recognition, second ed. Academic Press, Boston, USA.
- Goren, C.C., Sarty, M., Wu, R.W.K., 1975. Visual following and pattern discrimination of face-like stimuly by newborn infants. Pediatrics 54, 544-549.
- Johnson, M., Dziurawiec, S., Ellis, H., Morton, J., 1991. Newborns' preferential tracking of face-like stimuli and its subsequent decline. Cognition 40, 1-19.
- Newell, A., 1973. You Cannot Play 20 Questions With Nature and Win. Visual Information Processing. In: Chase, W.G. (Ed.). Academic Press, New York.
- Newell, A., Simon, H.A., 1961. Gps, A Program That Simulates Thought. Lernende Automaten. In: Billing, H. (Ed.). R. Oldenbourg, Munich, Germany, p. 109124.
- Omrod, J.E., 1999. Human Learning, third ed. Merrill Prentice Hall, Upper Sadle River, NJ.
- Palmer, S., 1999. Vision Science. MIT Press.
- Pang, S., Ozawa, S., Kasabov, N., 2005. Chunk Incremental LDA Computing on Data Streams. In: Wang, J., Liao, X., Yi, Z. (Eds.), International Symposium on Neural Networks, LNCS 3497, Chong- qing, China, pp. 51-56.
- Shortliffe, E.H., 1976. MYCIN: Computer-based Medical Consultations. Elsevier, New York.
- Torralba, A., Sinha, P., 2001. Statistical Context Priming for Object Detection. In: Proc. Internat. Conf. on Computer Vision, Vancouver, Canada, pp. 763-770.
- Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A., 2003. Context-based Vision System for Place and Object Recognition. In: Proc. Internat. Conf. on Computer Vision Nice, France, pp. 273-280.
- Viola, P., Jones, M.J., 2004. Robust real-time face detection. Int. J. Comput. Vis. 57, 137-154.
- Wada, K., Shibata, T., Saito, T., Sakamoto, K., Tanie, K. 2005. Psychological and social effects of one year robot assisted activity on elderly people at a health service facility for the aged. In: Proc. Internat. Conf. on Robotics and Automation (ICRA), Barcelona, Spain, pp. 2796-2801.
- Weiser, M., 1991. The computer for the twenty-first century. Scientific American 265, 94-104.
- Winograd, T., 2001. Architectures for context. Hum. Comput. Interact. 16, 401-419.
- Yokoyama, A., 2002. The Possibility of the psychiatric treatment with a robot as an intervention -from the viewpoint of animal therapy. In: Proc. 1st Internat. Joint Conf. on Soft. Comput. and Intellig. Syst and 3rd Internat. Symp. on Adv. Intellig. Syst. Paper number 23Q1-1.