Academia.eduAcademia.edu

Outline

Error-Correction for AI Safety

2020, Artificial General Intelligence

https://doi.org/10.1007/978-3-030-52152-3_2

Abstract

The complex socio-technological debate underlying safetycritical and ethically relevant issues pertaining to AI development and deployment extends across heterogeneous research subfields and involves in part conflicting positions. In this context, it seems expedient to generate a minimalistic joint transdisciplinary basis disambiguating the references to specific subtypes of AI properties and risks for an error-correction in the transmission of ideas. In this paper, we introduce a high-level transdisciplinary system clustering of ethical distinction between antithetical clusters of Type I and Type II systems which extends a cybersecurityoriented AI safety taxonomy with considerations from psychology. Moreover, we review relevant Type I AI risks, reflect upon possible epistemological origins of hypothetical Type II AI from a cognitive sciences perspective and discuss the related human moral perception. Strikingly, our nuanced transdisciplinary analysis yields the figurative formulation of the so-called AI safety paradox identifying AI control and value alignment as conjugate requirements in AI safety. Against this backdrop, we craft versatile multidisciplinary recommendations with ethical dimensions tailored to Type II AI safety. Overall, we suggest proactive and importantly corrective instead of prohibitive methods as common basis for both Type I and Type II AI safety.

References (37)

  1. Aliman, N.M., Kester, L., Werkhoven, P., Yampolskiy, R.: Orthogonality-Based Disentanglement of Responsibilities for Ethical Intelligent Systems. In: Interna- tional Conference on Artificial General Intelligence. pp. 22-31. Springer (2019)
  2. Aliman, N.M., Kester, L., Werkhoven, P., Ziesche, S.: Sustainable AI Safety? Delphi -Interdisciplinary review of emerging technologies p. to appear (2020)
  3. Atzil, S., Gao, W., Fradkin, I., Barrett, L.F.: Growing a social brain. Nature human behaviour 2(9), 624-636 (2018)
  4. Barrett, L.F.: The theory of constructed emotion: an active inference account of interoception and categorization. Social cognitive and affective neuroscience 12(1), 1-23 (2017)
  5. Barrett, L.F., Simmons, W.K.: Interoceptive predictions in the brain. Nature Re- views Neuroscience 16(7), 419 (2015)
  6. Baum, S.D.: Reconciliation between factions focused on near-term and long-term artificial intelligence. AI & SOCIETY 33(4), 565-572 (2018)
  7. Benedek, M.: The neuroscience of creative idea generation. In: Exploring Trans- disciplinarity in Art and Sciences, pp. 31-48. Springer (2018)
  8. Bieger, J., Thórisson, K.R., Wang, P.: Safe baby AGI. In: International Conference on Artificial General Intelligence. pp. 46-49. Springer (2015)
  9. Bigman, Y.E., Waytz, A., Alterovitz, R., Gray, K.: Holding robots responsible: The elements of machine morality. Trends in cognitive sciences 23(5), 365-368 (2019)
  10. Bostrom, N.: The superintelligent will: Motivation and instrumental rationality in advanced artificial agents. Minds and Machines 22(2), 71-85 (2012)
  11. Brockman, J.: Possible Minds: Twenty-five Ways of Looking at AI. Penguin Press (2019)
  12. Bruineberg, J., Kiverstein, J., Rietveld, E.: The anticipating brain is not a scientist: the free-energy principle from an ecological-enactive perspective. Synthese 195(6), 2417-2444 (2018)
  13. Clark, A., Friston, K., Wilkinson, S.: Bayesing qualia: consciousness as inference, not raw datum. Journal of Consciousness Studies 26(9-10), 19-33 (2019)
  14. Cleeremans, A., Achoui, D., Beauny, A., Keuninckx, L., Martin, J.R., Muñoz- Moldes, S., Vuillaume, L., de Heering, A.: Learning to be conscious. Trends in Cognitive Sciences (2019)
  15. De Rooij, A., Valtulina, J.: The predictive creative mind: A first look at sponta- neous predictions and evaluations during idea generation. Frontiers in psychology 10, 2465 (2019)
  16. Deutsch, D.: Creative blocks. https://aeon.co/essays/ how-close-are-we-to-creating-artificial-intelligence, accessed: 2019-11
  17. Deutsch, D.: The beginning of infinity: Explanations that transform the world. Penguin UK (2011)
  18. Deutsch, D.: Constructor theory. Synthese 190(18), 4331-4359 (2013)
  19. Dietrich, A.: How creativity happens in the brain. Springer (2015)
  20. Friston, K.: Am I self-conscious?(Or does self-organization entail self- consciousness?). Frontiers in psychology 9, 579 (2018)
  21. Friston, K.: A free energy principle for a particular physics. arXiv preprint arXiv:1906.10184 (2019)
  22. Goertzel, B.: The real reasons we don' t have AGI yet. https://www.kurzweilai. net/the-real-reasons-we-dont-have-agi-yet, accessed: 2019-11-21
  23. Goertzel, B.: Infusing advanced AGIs with human-like value systems: Two theses. Journal of Evolution and Technology 26(1), 50-72 (2016)
  24. Gray, K., Schein, C., Ward, A.F.: The myth of harmless wrongs in moral cogni- tion: Automatic dyadic completion from sin to suffering. Journal of Experimental Psychology: General 143(4), 1600 (2014)
  25. Gray, K., Wegner, D.M.: Feeling robots and human zombies: Mind perception and the uncanny valley. Cognition 125(1), 125-130 (2012)
  26. Greenland, S.: Induction versus Popper: substance versus semantics. International Journal of Epidemiology 27(4), 543-548 (1998)
  27. Kleckner, I.R., Zhang, J., Touroutoglou, A., Chanes, L., Xia, C., Simmons, W.K., Quigley, K.S., Dickerson, B.C., Barrett, L.F.: Evidence for a large-scale brain sys- tem supporting allostasis and interoception in humans. Nature human behaviour 1(5), 0069 (2017)
  28. Parr, T., Da Costa, L., Friston, K.: Markov blankets, information geometry and stochastic thermodynamics. Philosophical Transactions of the Royal Society A 378(2164), 20190159 (2019)
  29. Popper, K.: In: Schilpp, P.A. (ed.) The Philosophy of Karl Popper. vol. 2, p. 1015. Open Court Press (1974)
  30. Popper, K.R.: The poverty of historicism. Routledge & Kegan Paul (1966)
  31. Russell, S.: How to Stop Superhuman A.I. Before It Stops Us. https: //www.nytimes.com/2019/10/08/opinion/artificial-intelligence.html? module=inline, accessed: 2019-11-21
  32. Schein, C., Gray, K.: The theory of dyadic morality: Reinventing moral judgment by redefining harm. Personality and Social Psychology Review 22(1), 32-70 (2018)
  33. Schulkin, J., Sterling, P.: Allostasis: A brain-centered, predictive mode of physio- logical regulation. Trends in neurosciences (2019)
  34. Thórisson, K.R., Bieger, J., Li, X., Wang, P.: Cumulative learning. In: International Conference on Artificial General Intelligence. pp. 198-208. Springer (2019)
  35. Wang, P.: Motivation management in AGI systems. In: International Conference on Artificial General Intelligence. pp. 352-361. Springer (2012)
  36. Wiese, W.: Perceptual Presence in the Kuhnian-Popperian Bayesian Brain: A Com- mentary on Anil K. Seth. Johannes Gutenberg-Universität Mainz (2016)
  37. Yampolskiy, R.V.: Taxonomy of pathways to dangerous artificial intelligence. In: Workshops at the Thirtieth AAAI Conference on Artificial Intelligence (2016)