Academia.eduAcademia.edu

Outline

Lightning Mapping: Techniques, Challenges, and Opportunities

2020, IEEE Access

https://doi.org/10.1109/ACCESS.2020.3031810

Abstract

Despite the significant progress in the understanding of the phenomenon of lightning and the physics behind it, locating and mapping its occurrence remain a challenge. Such localization and mapping of very high frequency (VHF) lightning radiation sources provide a foundation for the subsequent research on predicting lightning, saving lives, and protecting valuable assets. A major technical challenge in attempting to map the sources of lightning is mapping accuracy. The three common electromagnetic radio frequencybased lightning locating techniques are magnetic direction finder, time of arrival, and interferometer (ITF). Understanding these approaches requires critically reviewing previous attempts. The performance and reliability of each method are evaluated on the basis of the mapping accuracy obtained from lightning data from different sources. In this work, we review various methods for lightning mapping. We study the approaches, describe their techniques, analyze their merits and demerits, classify them, and derive few opportunities for further research. We find that the ITF system is the most effective method and that its performance may be improved further. One approach is to improve how lightning signals are preprocessed and how noise is filtered. Signal processing can also be utilized to improve mapping accuracy by introducing methods such as wavelet transform in place of conventional cross-correlation approaches. INDEX TERMS Interferometer, lightning mapping, magnetic direction finder, time of arrival.

References (77)

  1. K. L. Cummins, M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E. Pifer, ''A combined TOA/MDF technology upgrade of the U.S. national lightning detection network,'' J. Geophys. Research: Atmos., vol. 103, no. D8, pp. 9035-9044, Apr. 1998.
  2. X. M. Shao and P. R. Krehbiel, ''The spatial and temporal development of intracloud lightning,'' J. Geophys. Res., Atmos., vol. 101, no. D21, pp. 26641-26668, Nov. 1996.
  3. R. J. Thomas, P. R. Krehbiel, W. Rison, T. Hamlin, J. Harlin, and D. Shown, ''Observations of VHF source powers radiated by lightning,'' Geophys. Res. Lett., vol. 28, no. 1, pp. 143-146, Jan. 2001.
  4. W. Rison, R. J. Thomas, P. R. Krehbiel, T. Hamlin, and J. Harlin, ''A GPS- based three-dimensional lightning mapping system: Initial observations in central new mexico,'' Geophys. Res. Lett., vol. 26, no. 23, pp. 3573-3576, Dec. 1999.
  5. Y. Zhang, Y. Zhang, W. Lu, and D. Zheng, ''An analysis of the initial break- down pulses for positive cloud-to-ground flashes,'' IEEJ Trans. Power Energy, vol. 132, no. 6, pp. 542-547, 2012.
  6. Z. Sun, X. Qie, M. Liu, D. Cao, and D. Wang, ''Lightning VHF radiation location system based on short-baseline TDOA technique-Validation in rocket-triggered lightning,'' Atmos. Res., vols. 129-130, pp. 58-66, Jul. 2013.
  7. D. Petersen, M. Bailey, W. H. Beasley, and J. Hallett, ''A brief review of the problem of lightning initiation and a hypothesis of initial lightning leader formation,'' J. Geophys. Res., vol. 113, no. D17205 pp. 1-14, 2008.
  8. R. Zeng, C. Zhuang, X. Zhou, S. Chen, Z. Wang, Z. Yu, and J. He, ''Survey of recent progress on lightning and lightning protection research,'' High Voltage, vol. 1, no. 1, pp. 2-10, Apr. 2016.
  9. M. Stock and P. Krehbiel, ''Multiple baseline lightning interferometry- improving the detection of low amplitude VHF sources,'' in Proc. Int. Conf. Lightning Protection (ICLP), 2014, pp. 293-300.
  10. M. Akita, M. Stock, Z. Kawasaki, P. Krehbiel, W. Rison, and M. Stanley, ''Data processing procedure using distribution of slopes of phase dif- ferences for broadband VHF interferometer,'' J. Geophys. Res., Atmos., vol. 119, no. 10, pp. 6085-6104, May 2014.
  11. T. Ushio, Z.-I. Kawasaki, M. Akita, S. Yoshida, T. Morimoto, and Y. Nakamura, ''A VHF broadband interferometer for lightning observa- tion,'' in Proc. 30th URSI Gen. Assem. Sci. Symp., vol. 2011, no. 3, Aug. 2011, pp. 1-4.
  12. R. Abbasi, ''Cosmic ray detectors and observational breakthroughs in atmospheric electricity,'' PoS, vol. 18, p. 19, Dec. 2019.
  13. T. Tantisattayakul, K. Masugata, I. Kitamura, and K. Kontani, ''Broadband VHF sources locating system using arrival-time differences for mapping of lightning discharge process,'' J. Atmos. Solar-Terrestrial Phys., vol. 67, no. 11, pp. 1031-1039, Jul. 2005.
  14. D. E. Proctor, ''A hyperbolic system for obtaining VHF radio pictures of lightning,'' J. Geophys. Res., vol. 76, no. 6, pp. 1478-1489, Feb. 1971.
  15. D. E. Proctor, ''VHF radio pictures of lightning.,'' J. Geophys. Res., vol. 86, no. 80, pp. 398-400, 1984.
  16. C. Lennon, and L. Maier, ''Lightning mapping system,'' in Proc. Int. Aerosp. Ground Conf. Lightning Static Elect., vol. 2. Washington, DC, USA: NASA Conf. Pub., Apr. 1991, pp. 89-91.
  17. C. Rhodes and P. R. Krehbiel, ''Interferometric observations of a sin- gle stroke cloud-to-ground flash,'' Geophys. Res. Lett., vol. 16, no. 10, pp. 1169-1172, Oct. 1989.
  18. C. O. Hayenga and J. W. Warwick, ''Two-dimensional interferometric positions of VHF lightning sources,'' J. Geophys. Res., vol. 86, no. C8, p. 7451, 1981.
  19. S. Qiu, B.-H. Zhou, L.-H. Shi, W.-S. Dong, Y.-J. Zhang, and T.-C. Gao, ''An improved method for broadband interferometric lightning location using wavelet transforms,'' J. Geophys. Res., vol. 114, no. D18, pp. 1-9, 2009.
  20. C. T. Rhodes, X. M. Shao, P. Krehbiel, R. J. Thomas, and C. O. Hayenga, ''Observations of lightning phenomena using radio interferometry,''' J. Geophys. Res., vol. 99, no. D6, pp. 13059-13082, 1994.
  21. J. W. Warwick, C. O. Hayenga, and J. W. Brosnahan, ''Interferometric directions of lightning sources at 34 MHz,'' J. Geophys. Res., vol. 84, no. C5, pp. 2457-2468, 1979.
  22. K. L. Cummins and M. J. Murphy, ''Overview of lightning detection in the VLF, LF, and VHF frequency ranges,'' in Proc. Int. Lightning Detection Conf., Tucson, AZ, USA, 2000, pp. 1-10.
  23. E. P. Krider, R. C. Noggle, and M. A. Uman, ''A gated, wideband magnetic direction finder for lightning return strokes,'' J. Appl. Meteorol., vol. 15, no. 3, pp. 301-306, Mar. 1976.
  24. W. Dong, X. Liu, Y. Zhang, and G. Zhang, ''Observations on the leader- return stroke of cloud-to-ground lightning with the broadband interferom- eter,'' Sci. China, Ser. D Earth Sci., vol. 45, no. 3, pp. 259-269, 2002.
  25. X. M. Shao, P. R. Krehbiel, N. J. Thomas, and W. Rison, ''Radio interfero- metric observations of cloud-to-ground lightning phenomena in Florida,'' J. Geophys. Res., Atmos., vol. 100, no. D2, pp. 2749-2783, Feb. 1995.
  26. G. Zhang, Y. Zhao, X. Qie, T. Zhang, Y. Wang, and C. Chen, ''Observa- tion and study on the whole process of cloud-to-ground lightning using narrowband radio interferometer,'' Sci. China Ser. D, Earth Sci., vol. 51, no. 5, pp. 694-708, May 2008.
  27. Z. Kawasaki, ''Review of the location of VHF pulses associated with lightning discharge,'' J. Aerosp. Lab, no. 5, pp. 1-7, 2012.
  28. K. L. Cummins and M. J. Murphy, ''An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN,'' IEEE Trans. Electromagn. Compat., vol. 51, no. 3, pp. 499-518, Aug. 2009.
  29. M. Bonnet, ''Status of lightning detection performance and limitations of existing system,'' in Proc. Int. Colloq. Lightning Power Syst. (CIGRE), 2014, pp. 1-22.
  30. A. Nag, M. J. Murphy, W. Schulz, and K. L. Cummins, ''Lightning locating systems: Insights on characteristics and validation techniques,'' Earth Space Sci., vol. 2, no. 4, pp. 65-93, Apr. 2015.
  31. V. A. Rakov, Fundamentals of Lightning. Cambridge, U.K.: Cambridge Univ. Press, 2016.
  32. R. C. Murty and W. D. MacClement, ''VHF direction finder for lightning location,'' J. Appl. Meteorol., vol. 12, no. 8, pp. 1401-1405, Dec. 1973.
  33. Z. Lu, S. Qiu, R. Wang, L. Shi, and P. Zhang, ''Orientation of initial break- down pulses and leader discharges by magnetic direction finder,'' J. Geo- phys. Res., Atmos., vol. 125, no. 6, Mar. 2020, Art. no. e2019JD031407.
  34. J. Y. Lojou, M. J. Murphy, R. L. Holle, and N. W. S. Demetriades, ''Nowcasting of thunderstorms using VHF measurements,'' in Lightning: Principles, Instruments and Applications. Dordrecht, The Netherlands: Springer, 2009, pp. 253-270.
  35. M. A. Uman, Y. T. Lin, and E. P. Krider, ''Errors in magnetic direction finding due to nonvertical lightning channels,'' Radio Sci., vol. 15, no. 1, pp. 35-39, Jan. 1980.
  36. R. E. Orville, ''Calibration of a magnetic direction finding network using measured triggered lightning return stroke peak currents,'' J. Geophys. Res., vol. 96, no. D9, pp. 17135-17142, 1991.
  37. D. Sonnadara, A. Weerasekera, I. Fernando, R. Lelwala, K. Jayaratne, T. Ariyaratne, S. Namasivayam, and K. Bandara, ''Locating cloud-to- ground lightning flashes with simultaneous two-station measurements,'' Sri Lankan J. Phys., vol. 1, p. 11, Dec. 2000.
  38. W. Tao, Q. Shi, and S. Lihua, ''Lightning localization using two MDF stations,'' in Proc. IEEE 5th Int. Symp. Electromagn. Compat. (EMC- Beijing), Oct. 2017, pp. 1-4.
  39. J. Yang, X. Qie, G. Zhang, Q. Zhang, G. Feng, Y. Zhao, and R. Jiang, ''Characteristics of channel base currents and close magnetic fields in triggered flashes in SHATLE,'' J. Geophys. Res., vol. 115, no. D23102, pp. 1-12, 2010, doi: 10.1029/2010JD014420.
  40. K. Mehranzamir, H. N. Afrouzi, Z. Abdul-Malek, Z. Nawawi, M. A. B. Sidik, and M. I. Jambak, ''Hardware and software implementation of magnetic direction finding sensors,'' in Proc. Int. Conf. Electr. Eng. Comput. Sci. (ICECOS), Oct. 2019, pp. 23-28.
  41. L. Cai, J. Li, J. Wang, M. Zhou, F. Xu, Q. Li, and Y. Fan, ''Measurement of return stroke current with magnetic sensor in triggered lightning,'' IEEE Trans. Electromagn. Compat., early access, May 6, 2020, doi: 10.1109/TEMC.2020.2986100.
  42. N. Cianos, G. N. Oetzel, and E. T. Pierce, ''A technique for accurately locating lightning at close ranges,'' J. Appl. Meteorol., vol. 11, no. 7, pp. 1120-1127, Oct. 1972.
  43. W. L. Taylor, ''VHF technique for space-time mapping of lightning dis- charge processes.,'' J. Geophys. Res., vol. 83, no. C7, pp. 3575-3583, 1978.
  44. E. A. Lewis, R. B. Harvey, and J. E. Rasmussen, ''Hyperbolic direction finding with sferics of transatlantic origin,'' J. Geophys. Res., vol. 65, no. 7, pp. 1879-1905, Jul. 1960.
  45. D. E. Proctor, ''VHF radio pictures of cloud flashes,'' J. Geophys. Res., vol. 86, no. 80, pp. 4041-4071, 1981.
  46. K. L. Cummins, M. J. Murphy, and J. V. Tuel, ''Lightning detection meth- ods and meteorological applications,'' in Proc. Int. Symp. Mil. Meteorol., vol. 4, 2000, pp. 26-28.
  47. R. J. Thomas, ''Accuracy of the lightning mapping array,'' J. Geophys. Res., vol. 109, no. D14, pp. 1-34, 2004.
  48. A. Amir and W. Ibrahim, ''Multi-station short baseline lightning moni- toring system,'' in Proc. 16th Asian Conf. Elect. Discharge, Johor Bahru, Malaysia, 2012, pp. 1-5.
  49. B. Liu, L. Shi, S. Qiu, H. Liu, W. Dong, Y. Li, and Z. Sun, ''Fine three-dimensional VHF lightning mapping using waveform cross- correlation TOA method,'' Earth Space Sci., vol. 7, no. 1, Jan. 2020, Art. no. e2019EA000832.
  50. Z. Chen, Y. Zhang, D. Zheng, Y. Zhang, X. Fan, Y. Fan, L. Xu, and W. Lyu, ''A method of three-dimensional location for LFEDA combining the time of arrival method and the time reversal technique,'' J. Geophys. Res., Atmos., vol. 124, no. 12, pp. 6484-6500, Jun. 2019.
  51. T. Wang, S. Qiu, L.-H. Shi, and Y. Li, ''Broadband VHF localization of lightning radiation sources by EMTR,'' IEEE Trans. Electromagn. Com- pat., vol. 59, no. 6, pp. 1949-1957, Dec. 2017.
  52. Z. Quan, Q. I. E. Xiu-Shu, and Z. Guang-Shu, ''Short-baseline time-of- arrival lighting radiation detection system and preliminary location result,'' Plateau Meteorol., vol. 22, no. 3, pp. 226-234, 2003.
  53. H. E. Edens, K. B. Eack, E. M. Eastvedt, J. J. Trueblood, W. P. Winn, P. R. Krehbiel, G. D. Aulich, S. J. Hunyady, W. C. Murray, W. Rison, and S. A. Behnke, ''VHF lightning mapping observations of a triggered light- ning flash,'' Geophys. Res. Lett., vol. 39, no. 19, pp. 1-5, 2012.
  54. V. A. Rakov, ''Electromagnetic methods of lightning detection,'' Surv. Geophys., vol. 34, no. 6, pp. 731-753, Nov. 2013.
  55. G. N. Oetzel and E. T. Pierce, ''VHF technique for locating lightning,'' Radio Sci., vol. 4, no. 3, pp. 199-202, Mar. 1969.
  56. H. Liu, S. Qiu, and W. Dong, ''The three-dimensional locating of VHF broadband lightning interferometers,'' Atmosphere, vol. 9, no. 8, p. 317, Aug. 2018.
  57. T.-O. Ushio, Z.-I. Kawasaki, Y. Ohta, and K. Matsuura, ''Broad band inter- ferometric measurement of rocket triggered lightning in japan,'' Geophys. Res. Lett., vol. 24, no. 22, pp. 2769-2772, Nov. 1997.
  58. R. Mardiana, Z. Kawasaki, and T. Ushio, ''Interferometer observations of an intracloud lightning discharge,'' in Proc. IEEE 8th Int. Conf. Properties Appl. Dielectr. Mater., Jun. 2006, pp. 490-493.
  59. T. Morimoto, Z. Kawasaki, and T. Ushio, ''Lightning observations and consideration of positive charge distribution inside thunderclouds using VHF broadband digital interferometry,'' Atmos. Res., vol. 76, nos. 1-4, pp. 445-454, Jul. 2005.
  60. S. Yoshida, M. Akita, T. Morimoto, T. Ushio, and Z. Kawasaki, ''Prop- agation characteristics of lightning stepped leaders developing in charge regions and descending out of charge regions,'' Atmos. Res., vol. 106, pp. 86-92, Mar. 2012.
  61. V. Mazur, E. Williams, R. Boldi, L. Maier, and D. E. Proctor, ''Initial comparison of lightning mapping with operational time-of-arrival and interferometric systems,'' J. Geophys. Res., Atmos., vol. 102, no. D10, pp. 11071-11085, May 1997.
  62. R. Mardiana and Z. Kawasaki, ''Broadband radio interferometer utilizing a sequential triggering technique for locating fast-moving electromagnetic sources emitted from lightning,'' IEEE Trans. Instrum. Meas., vol. 49, no. 2, pp. 376-381, Apr. 2000.
  63. W. Dong, X. Liu, Y. Yu, and Y. Zhang, ''Broadband interferometer observations of a triggered lightning,'' Chin. Sci. Bull., vol. 46, no. 18, pp. 1561-1565, Sep. 2001.
  64. Z. Kawasaki, T. Morimoto, R. Kawabe, and T. Ushio, ''VHF broadband digital interferometer and mapping of lightning discharges,'' in Proc. Asia- Pacific Radio Sci. Conf., 2004, pp. 631-634.
  65. D. Cao, X. Qie, S. Duan, J. Yang, and Y. Xuan, ''Observations of VHF source radiated by lightning using short baseline technology,'' in Proc. Asia-Pacific Int. Symp. Electromagn. Compat., 2010, pp. 1162-1165.
  66. M. Akita, Y. Nakamura, S. Yoshida, T. Morimoto, T. Ushio, Z. Kawasaki, and D. Wang, ''What occurs in k process of cloud flashes?'' J. Geophys. Res., vol. 115, no. D7, pp. 1-7, 2010.
  67. M. G. Stock, M. Akita, P. R. Krehbiel, W. Rison, H. E. Edens, Z. Kawasaki, and M. A. Stanley, ''Continuous broadband digital interferometry of light- ning using a generalized cross-correlation algorithm,'' J. Geophys. Res., Atmos., vol. 119, no. 6, pp. 3134-3165, Mar. 2014.
  68. Y. Nakamura, L. S. M. Elbaghdady, T. Wu, T. Ushio, and Z. Kawasaki, ''Development and initial observations of a long-period VHF broadband digital interferometer,'' in Proc. Int. Conf. Lightning Protection (ICLP), Oct. 2014, pp. 1583-1586.
  69. R. Abeywardhana, U. Sonnadara, S. Abegunawardana, M. Fernando, and V. Cooray, ''Lightning localization based on VHF broadband interferome- ter developed in Sri Lanka,'' in Proc. 34th Int. Conf. Lightning Protection (ICLP), Sep. 2018, pp. 1-5.
  70. H. Zhang, S. Gu, J. Chen, C. Zhao, M. Wu, B. Yan, and Y. Wang, ''Single-station-based lightning mapping system with electromagnetic and thunder signals,'' IEEE Trans. Plasma Sci., vol. 47, no. 2, pp. 1421-1428, Feb. 2019.
  71. P. Puricer, P. Kovac, and J. Mikes, ''New accuracy testing of the lightning VHF interferometer by an artificial intercloud pulse generator,'' IEEE Trans. Electromagn. Compat., vol. 62, no. 5, pp. 2128-2136, Oct. 2020.
  72. T. Wang, L. Shi, S. Qiu, Z. Sun, and Y. Duan, ''Continuous broadband lightning VHF mapping array using MUSIC algorithm,'' Atmos. Res., vol. 231, Jan. 2020, Art. no. 104647.
  73. J. Yan, L. Xu, C. Li, W. Tie, and X. Sun, ''Ultrawideband discharge source DOA estimation method using multiple baseline wideband time-domain interferometry with Hilbert transform,'' Math. Problems Eng., vol. 2020, pp. 1-13, Mar. 2020.
  74. A. Alammari, A. A. Alkahtani, M. R. Ahmad, F. Noman, M. R. Mohd Esa, M. H. M. Sabri, S. A. Mohammad, A. S. Al-Khaleefa, Z. Kawasaki, and V. Agelidis, ''Kalman filter and wavelet cross-correlation for VHF broad- band interferometer lightning mapping,'' Appl. Sci., vol. 10, no. 12, p. 4238, Jun. 2020.
  75. J. Högbom, ''Aperture synthesis with a non-regular distribution of inter- ferometer baselines,'' Astron. Astrophys. Suppl. Ser., vol. 15, p. 417, Jun. 1974.
  76. V. Mazur, P. R. Krehbiel, and X.-M. Shao, ''Correlated high-speed video and radio interferometric observations of a cloud-to-ground lightning flash,'' J. Geophys. Res., vol. 100, no. D12, p. 25731, 1995. AMMAR ALAMMARI received the Eng. degree (Hons.) in electronics majoring in telecommu- nications from Multimedia University (MMU), in 2012. He is currently pursuing the Ph.D. degree in electrical and electronics engineering with Uni- versiti Teknikal Malaysia Melaka (UTeM). His research interest includes signal processing for lightning signal mapping.
  77. AMMAR AHMED ALKAHTANI (Member, IEEE) received the bachelor's degree (Hons.) in electronics majoring in telecommunications from Multimedia University (MMU), the master's degree in electronics engineering (telecommuni- cation system) from Universiti Teknikal Malaysia Melaka, in 2011, and the Ph.D. degree from the College of Engineering (COE), Universiti Tenaga Nasional (UNITEN), Malaysia, in 2015. He is currently a Senior Lecturer with the Energy Uni- versity (UNITEN). He is also the Head of the Wind Energy Unit. His research interests include signal processing, renewable energy, failure analysis, and applied machine learning. MOHD RIDUAN AHMAD (Member, IEEE) received the degree (Hons.) in computer system and communication engineering from Universiti Putra Malaysia, in 2003, the M.Eng. degree with a specialization in cross layer design of MAC protocols for multi-in multi-out-based wireless sensor network from the University of Wollon- gong, Australia, in 2008, and the Ph.D. degree with a specialization in atmospheric discharges from Uppsala University, Sweden, in 2014. From 2015 to 2016, he was with MIT, USA, where he focused on the understanding and characterization of microwave radiation emitted by lightning flashes. He is currently a Senior Lecturer with the Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka. FUAD M. NOMAN (Member, IEEE) received the B.S. degree in electronics from the University of Sudan for Science and Technology, the M.S. degree in electronics engineering (telecommuni- cation system) from Universiti Teknikal Malaysia Melaka, in 2011, and the Ph.D. degree in biomedical engineering from Universiti Teknologi Malaysia, Johor Bahru, in 2019. He is currently a Postdoctoral Fellow with the Institute of Sus- tainable Energy (ISE), University Tenaga National (UNITEN). His research interests include signals and biosignals processing, machine learning applications, and biometrics. MONA RIZA MOHD ESA received the degree with a specialization in telecommunication engi- neering and the master's degree with a special- ization in signal processing and lightning physics from Universiti Teknologi Malaysia (UTM), Johor Bahru, in 2003 and 2005, respectively, and the Ph.D. degree with a specialization in atmospheric discharges from Uppsala University, Sweden, in 2014. She is currently a Senior Lecturer with the Faculty of Electrical Engineering, UTM. ZEN KAWASAKI received the Ph.D. degree in communications engineering from Osaka Univer- sity, in 1978. Since 1979, he has been working with Nagoya University and Osaka University, espe- cially lightning physics from the aspect of field observations. He was promoted to be a Profes- sor in 2000 at Osaka University, and produced 23 Ph.D. mainly on lightning physics. During his career, he has developed the VHF broadband Inter- ferometry, and this is almost an ultimate light imager. In 2013, he retired from Osaka University. He is currently a Professor Emeritus with Osaka University. SIEH KIONG TIONG (Member, IEEE) received the B.Eng. (Hons.), M.Sc., and Ph.D. degrees in electrical, electronic and system engineering from The National University of Malaysia (UKM), in 1997, 2000, and 2006, respectively. He is cur- rently a Professor with the College of Engineering. He is also the Director of the Institute of Sus- tainable Energy (ISE), Universiti Tenaga Nasional. His research interests include renewable energy, artificial intelligence, data analytics, microcon- troller systems, and communication systems. He is also a Professional Engi- neer registered with the Board of Engineers Malaysia (BEM).