Academia.eduAcademia.edu

Outline

Lightning Mapping With an Array of Fast Antennas

https://doi.org/10.1002/2018GL077628

Abstract

Fast Antenna Lightning Mapping Array (FALMA), a low-frequency lightning mapping system comprising an array of fast antennas, was developed and established in Gifu, Japan, during the summer of 2017. Location results of two hybrid flashes and a cloud-to-ground flash comprising 11 return strokes (RSs) are described in detail in this paper. Results show that concurrent branches of stepped leaders can be readily resolved, and K changes and dart leaders with speeds up to 2.4 × 10 7 m/s are also well imaged. These results demonstrate that FALMA can reconstruct three-dimensional structures of lightning flashes with great details. Location accuracy of FALMA is estimated by comparing the located striking points of successive RSs in cloud-to-ground flashes. Results show that distances between successive RSs are mainly below 25 m, indicating exceptionally high location accuracy of FALMA.

References (16)

  1. Bitzer, P. M., Christian, H. J., Stewart, M., Burchfield, J., Podgorny, S., Corredor, D., et al. (2013). Characterization and applications of VLF/LF source locations from lightning using the Huntsville Alabama Marx Meter Array. Journal of Geophysical Research: Atmospheres, 118, 3120-3138. https://doi.org/10.1002/jgrd.50271
  2. Cummins, K. L., & Murphy, M. J. (2009). An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Transactions on Electromagnetic Compatibility, 51(3), 499-518. https://doi.org/10.1109/TEMC.2009.2023450
  3. Karunarathne, S., Marshall, T. C., Stolzenburg, M., Karunarathna, N., Vickers, L. E., Warner, T. A., & Orville, R. E. (2013). Locating initial breakdown pulses using electric field change network. Journal of Geophysical Research: Atmospheres, 118, 7129-7141. https://doi.org/10.1002/ jgrd.50441
  4. Kitagawa, N., & Brook, M. (1960). A comparison of intracloud and cloud-to-ground lightning discharges. Journal of Geophysical Research, 65, 1189-1201. https://doi.org/10.1029/JZ065i004p01189
  5. Krehbiel, P. R., Riousset, J. A., Pasko, V. P., Thomas, R. J., Rison, W., Stanley, M. A., & Edens, H. E. (2008). Upward electrical discharges from thunderstorms. Nature Geoscience, 1(4), 233-237. https://doi.org/10.1038/ngeo162
  6. Lu, G., Cummer, S. A., Blakeslee, R. J., Weiss, S., & Beasley, W. H. (2012). Lightning morphology and impulse charge moment change of high peak current negative strokes. Journal of Geophysical Research, 117, D04212. https://doi.org/10.1029/2011JD016890
  7. Lyu, F., Cummer, S. A., Lu, G., Zhou, X., & Weinert, J. (2016). Imaging lightning intracloud initial stepped leaders by low-frequency inter- ferometric lightning mapping array. Geophysical Research Letters, 43, 5516-5523. https://doi.org/10.1002/2016GL069267
  8. Lyu, F., Cummer, S. A., Solanki, R., Weinert, J., McTague, L., Katko, A., et al. (2014). A low-frequency near-field interferometric-TOA 3-D Lightning Mapping Array. Geophysical Research Letters, 41, 7777-7784. https://doi.org/10.1002/2014GL061963
  9. Mazur, V., Ruhnke, L. H., Warner, T. A., & Orville, R. E. (2013). Recoil leader formation and development. Journal of Electrostatics, 71(4), 763-768. https://doi.org/10.1016/j.elstat.2013.05.001
  10. Rhodes, C. T., Shao, X. M., Krehbiel, P. R., Thomas, R. J., & Hayenga, C. O. (1994). Observations of lightning phenomena using radio inter- ferometry. Journal of Geophysical Research, 99, 13,059-13,082. https://doi.org/10.1029/94JD00318
  11. Rison, W., Thomas, R. J., Krehbiel, P. R., Hamlin, T., & Harlin, J. (1999). A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophysical Research Letters, 26, 3573-3576. https://doi.org/10.1029/1999GL010856
  12. Rudlosky, S. D., & Shea, D. T. (2013). Evaluating WWLLN performance relative to TRMM/LIS. Geophysical Research Letters, 40, 2344-2348. https://doi.org/10.1002/grl.50428
  13. Stock, M. G., Akita, M., Krehbiel, P. R., Rison, W., Edens, H. E., Kawasaki, Z., & Stanley, M. A. (2014). Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm. Journal of Geophysical Research: Atmospheres, 119, 3134-3165. https://doi. org/10.1002/2013JD020217
  14. Thomas, R. J., Krehbiel, P. R., Rison, W., Hunyady, S. J., Winn, W. P., Hamlin, T., & Harlin, J. (2004). Accuracy of the Lightning Mapping Array. Journal of Geophysical Research, 109, D14207. https://doi.org/10.1029/2004JD004549
  15. Valine, W. C., & Krider, E. P. (2002). Statistics and characteristics of cloud-to-ground lightning with multiple ground contacts. Journal of Geophysical Research, 107(D20), 4441. https://doi.org/10.1029/2001JD001360
  16. Yoshida, S., Wu, T., Ushio, T., Kusunoki, K., & Nakamura, Y. (2014). Initial results of LF sensor network for lightning observation and charac- teristics of lightning emission in LF band. Journal of Geophysical Research: Atmospheres, 119, 12,034-12,051. https://doi.org/10.1002/ 2014JD022065 10.1002/2018GL077628