Lightning Mapping With an Array of Fast Antennas
https://doi.org/10.1002/2018GL077628Abstract
Fast Antenna Lightning Mapping Array (FALMA), a low-frequency lightning mapping system comprising an array of fast antennas, was developed and established in Gifu, Japan, during the summer of 2017. Location results of two hybrid flashes and a cloud-to-ground flash comprising 11 return strokes (RSs) are described in detail in this paper. Results show that concurrent branches of stepped leaders can be readily resolved, and K changes and dart leaders with speeds up to 2.4 × 10 7 m/s are also well imaged. These results demonstrate that FALMA can reconstruct three-dimensional structures of lightning flashes with great details. Location accuracy of FALMA is estimated by comparing the located striking points of successive RSs in cloud-to-ground flashes. Results show that distances between successive RSs are mainly below 25 m, indicating exceptionally high location accuracy of FALMA.
References (16)
- Bitzer, P. M., Christian, H. J., Stewart, M., Burchfield, J., Podgorny, S., Corredor, D., et al. (2013). Characterization and applications of VLF/LF source locations from lightning using the Huntsville Alabama Marx Meter Array. Journal of Geophysical Research: Atmospheres, 118, 3120-3138. https://doi.org/10.1002/jgrd.50271
- Cummins, K. L., & Murphy, M. J. (2009). An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Transactions on Electromagnetic Compatibility, 51(3), 499-518. https://doi.org/10.1109/TEMC.2009.2023450
- Karunarathne, S., Marshall, T. C., Stolzenburg, M., Karunarathna, N., Vickers, L. E., Warner, T. A., & Orville, R. E. (2013). Locating initial breakdown pulses using electric field change network. Journal of Geophysical Research: Atmospheres, 118, 7129-7141. https://doi.org/10.1002/ jgrd.50441
- Kitagawa, N., & Brook, M. (1960). A comparison of intracloud and cloud-to-ground lightning discharges. Journal of Geophysical Research, 65, 1189-1201. https://doi.org/10.1029/JZ065i004p01189
- Krehbiel, P. R., Riousset, J. A., Pasko, V. P., Thomas, R. J., Rison, W., Stanley, M. A., & Edens, H. E. (2008). Upward electrical discharges from thunderstorms. Nature Geoscience, 1(4), 233-237. https://doi.org/10.1038/ngeo162
- Lu, G., Cummer, S. A., Blakeslee, R. J., Weiss, S., & Beasley, W. H. (2012). Lightning morphology and impulse charge moment change of high peak current negative strokes. Journal of Geophysical Research, 117, D04212. https://doi.org/10.1029/2011JD016890
- Lyu, F., Cummer, S. A., Lu, G., Zhou, X., & Weinert, J. (2016). Imaging lightning intracloud initial stepped leaders by low-frequency inter- ferometric lightning mapping array. Geophysical Research Letters, 43, 5516-5523. https://doi.org/10.1002/2016GL069267
- Lyu, F., Cummer, S. A., Solanki, R., Weinert, J., McTague, L., Katko, A., et al. (2014). A low-frequency near-field interferometric-TOA 3-D Lightning Mapping Array. Geophysical Research Letters, 41, 7777-7784. https://doi.org/10.1002/2014GL061963
- Mazur, V., Ruhnke, L. H., Warner, T. A., & Orville, R. E. (2013). Recoil leader formation and development. Journal of Electrostatics, 71(4), 763-768. https://doi.org/10.1016/j.elstat.2013.05.001
- Rhodes, C. T., Shao, X. M., Krehbiel, P. R., Thomas, R. J., & Hayenga, C. O. (1994). Observations of lightning phenomena using radio inter- ferometry. Journal of Geophysical Research, 99, 13,059-13,082. https://doi.org/10.1029/94JD00318
- Rison, W., Thomas, R. J., Krehbiel, P. R., Hamlin, T., & Harlin, J. (1999). A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophysical Research Letters, 26, 3573-3576. https://doi.org/10.1029/1999GL010856
- Rudlosky, S. D., & Shea, D. T. (2013). Evaluating WWLLN performance relative to TRMM/LIS. Geophysical Research Letters, 40, 2344-2348. https://doi.org/10.1002/grl.50428
- Stock, M. G., Akita, M., Krehbiel, P. R., Rison, W., Edens, H. E., Kawasaki, Z., & Stanley, M. A. (2014). Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm. Journal of Geophysical Research: Atmospheres, 119, 3134-3165. https://doi. org/10.1002/2013JD020217
- Thomas, R. J., Krehbiel, P. R., Rison, W., Hunyady, S. J., Winn, W. P., Hamlin, T., & Harlin, J. (2004). Accuracy of the Lightning Mapping Array. Journal of Geophysical Research, 109, D14207. https://doi.org/10.1029/2004JD004549
- Valine, W. C., & Krider, E. P. (2002). Statistics and characteristics of cloud-to-ground lightning with multiple ground contacts. Journal of Geophysical Research, 107(D20), 4441. https://doi.org/10.1029/2001JD001360
- Yoshida, S., Wu, T., Ushio, T., Kusunoki, K., & Nakamura, Y. (2014). Initial results of LF sensor network for lightning observation and charac- teristics of lightning emission in LF band. Journal of Geophysical Research: Atmospheres, 119, 12,034-12,051. https://doi.org/10.1002/ 2014JD022065 10.1002/2018GL077628