Abstract
AI
AI
This work explores the trends in philosophical methodologies that unify various logical systems through the lens of games. It highlights the significance of games as a metaphor for argument and cooperation in logical inquiry, tracing the historical influence from early philosophers to contemporary applications in computation and language. The discussion delves into operationalization of concepts in philosophy, noting the game-theoretical foundations that underlie some key philosophical movements.
Key takeaways
AI
AI
- Games unify methodologies in philosophy, logic, and language, challenging traditional logical pluralism.
- The book comprises 12 chapters exploring logical games, semantics, dialogues, and applications in computation.
- Game-Theoretical Semantics provides a game-theoretic interpretation of truth across various logical systems.
- Dialogical logic offers a game-theoretic approach to validity and satisfiability, linking it to proof theory.
- Historical figures like Hintikka and Peirce influenced the integration of game theory into logical frameworks.
References (65)
- Beth, E. W. (1959). The Foundations of Mathematics. Amsterdam: North-Holland.
- Bradfield, J. (2004). On independence-friendly fixpoint logics. Philosophia Scientiae, 8:125- 144.
- Bradfield, J. (2006). Independence: logics and concurrency. In Aho, T. and Pietarinen, A.-V. (eds.), Truth and Games: Essays in Honour of Gabriel Sandu, Acta Philosophica Fennica 79, Helsinki: Societas Philosophica Fennica, 47-70.
- Bradfield, J. and Fröschle, S. (2002). Independence-friendly modal logic and true concurrency. Nordic Journal of Computing, 9:102-117.
- Bridgman, P. W. (1927). The Logic of Modern Physics. New York: MacMillan.
- Dummett, M. (1978). Truth and Other Enigmas. London: Duckworth.
- Dummett, M. (2004). Truth and the Past. New York: Columbia University Press.
- Dummett, M. (2006). Thought and Reality. Oxford: Oxford University Press.
- Fitting, M. (1969). Intuitionistic Logic-Model Theory and Forcing. Amsterdam/London: North- Holland.
- Gale, D. and Stewart, F. M. (1953). Infinite games with perfect information. In Kuhn, H. W. and Tucker, A. W. (eds.), Contributions to the Theory of Games II, Annals of Mathematics Studies 28, pages 245-266. Princeton, NJ: Princeton University Press.
- Hand, M. (1989). Who plays semantical games? Philosophical Studies, 56:251-271.
- Henkin, L. (1950). Completeness in the theory of types. Journal of Symbolic Logic, 15(2):81- 91.
- Henkin, L. (1961). Some remarks on infinitely long formulas. In Infinitistic Methods, pages 167-183. Oxford: Pergamon.
- Hilpinen, R. (1982). On C. S. Peirce's theory of the proposition: Peirce as a precursor of game- theoretical semantics. The Monist, 65:182-188.
- Hintikka, J. (1955). Form and content in quantification theory. Acta Philosophica Fennica, 8:7- 55.
- Hintikka, J. (1968). Language-games for quantifiers. In American Philosophical Quarterly Monograph Series 2: Studies in Logical Theory, pages 46-72. Oxford: Blackwell.
- Hintikka, J. (1973). Logic, Language-Games and Information: Kantian Themes in the Philoso- phy of Logic. Oxford: Clarendon.
- Hintikka, J. (1995). What is elementary logic? Independence-friendly logic as the true core area of logic. In Gavroglu, K., Stachel, J., and Wartofsky, M. W. (eds.), Physics, Philosophy and the Scientific Community, pages 301-326. New York: Kluwer.
- Hintikka, J. (1996). The Principles of Mathematics Revisited. New York: Cambridge University Press.
- Hintikka, J. and Kulas, J. (1985). Anaphora and Definite Descriptions. Dordrecht: Reidel.
- Hintikka, J. and Sandu, G. (1989). Informational independence as a semantical phenomenon. In Fenstad, J. E., et al. (eds.), Logic, Methodology and Philosophy of Science vol. 8, pages 571-589. Amsterdam: Elsevier.
- Hintikka, J. and Sandu, G. (1997). Game-theoretical semantics. In van Benthem, J. and ter Meulen, A. (eds.), Handbook of Logic and Language, pages 361-410. Amsterdam: Elsevier.
- Hintikka, J. and Rantala, V. (1976). A new approach to infinitary languages. Annals of Mathe- matical Logic, 10:95-115.
- Hodges, W. (1983). Elementary predicate logic. In Gabbay, D. and Guenthner, F. (eds.) Hand- book of Philosophical Logic, vol. I. pages 1-131. Dordrecht: Reidel.
- Hodges, W. (1997a). Compositional semantics for a language of imperfect information. Logic Journal of the IGPL, 5:539-563.
- Hodges, W. (1997b) Some strange quantifiers. In Mycielski, J., Rozenberg, G., and Salomaa, A. (eds.) Structures in Logic and Computer Science, Lecture Notes in Computer Science, Vol. 1261, pages 51-65. London: Springer.
- Hodges, W. (2006a). Logic and games. In E. N. Zalta (ed.), The Stanford Encyclopedia of Phi- losophy. (Summer 2006 Edition). http://plato.stanford.edu/entries/logic-games.
- Hodges, W. (2006b). The logic of quantifiers. In R. E. Auxier and L. E. Hahn (eds.), The Philos- ophy of Jaakko Hintikka, Library of Living Philosophers, vol. 30, pages 521-534. Chicago, IL: Open Court.
- Hoges, W. and Krabbe, E. C. W. (2001). Dialogue foundations. Part I (Nilfrid Hodges): "A scep- tical look" (17-32);
- Part II (Krabbe, E. C. W.): "Dialogue logic restituted" (33-49). In Pro- ceedings of the Aristotelian Society, Supplementary Volume 75, pages 17-49.
- Hyttinen, T. (1990). Model theory for infinite quantifier logics. Fundamenta Mathematicae, 134:125-142.
- Hyttinen, T. and Tulenheimo, T. (2005). Decidability of IF modal logic of perfect recall. In Schmidt, R., Pratt-Hartmann, I., Reynolds, M., and Wansing, H. (eds.), Advances in Modal Logic vol. 5, pages 111-131. London: King's College London Publications.
- Karttunen, M. (1984). Model Theory for Infinitely Deep Languages. Annales Academiae Scien- tiarum Fennicae, Series A, Mathematica, Dissertationes, vol. 50. University of Helsinki.
- Krynicki, M. and Mostowski, M. (1995). Henkin quantifiers. In Krynicki, M., Mostowski, M., and Szczerba, L. (eds.), Quantifiers: Logics, Models and Computation, vol. 1, pages 193-262. Dordrecht: Kluwer.
- Lorenz, K. (1968). Dialogspiele als semantische Grundlagen von Logikkalkülen. Archiv für mathematische Logik und Grundlagenforschung, 11:32-55 & 73-100.
- Lorenzen, P. (1961). Ein dialogisches Konstruktivitätskriterium. In Infinitistic Methods, pages 193-200. Oxford: Pergamon.
- Margolis, J. Z. (1987). Science without Unity: Reconciling the Human and Natural Sciences. Oxford: Blackwell.
- Makkai, M. (1977). Admissible sets and infinitary logic. In Barwise, J. (ed.), Handbook of Mathematical Logic, pages 233-281. Amsterdam: North-Holland.
- Pietarinen, A.-V. (2001a). Propositional logic of imperfect information: foundations and appli- cations. Notre Dame Journal of Formal Logic, 42:193-210.
- Pietarinen, A.-V. (2001b). Intentional identity revisited, Nordic Journal of Philosophical Logic, 6:144-188.
- Pietarinen, A.-V. (2003a). Games as formal tools versus games as explanations in logic and science. Foundations of Science, 8:317-364.
- Pietarinen, A.-V. (2003b). Logic, language games and ludics. Acta Analytica, 18:89-123.
- Pietarinen, A.-V. (2003c). What do epistemic logic and cognitive science have to do with each other? Cognitive Systems Research, 4:169-190.
- Pietarinen, A.-V. (2004). Peirce's diagrammatic logic in IF perspective. In Blackwell, A., Marriott, K., and Shimojima, A. (eds.), Diagrammatic Representation and Inference, Lecture Notes in Artificial Intelligence 2980, pages 97-111. Berlin: Springer.
- Pietarinen, A.-V. (2006a). Independence-friendly logic and incomplete information. In van Ben- them, J., Heinzmann, G., Rebuschi, M., and Visser, H. (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today, pages 243-259. Dordrecht: Springer.
- Pietarinen, A.-V. (2006b). Signs of Logic: Peircean Themes on the Philosophy of Language, Games, and Communication (Synthese Library 329). Dordrecht: Springer.
- Pietarinen, A.-V. (2008). Who plays games in philosophy? In Hale, B. (ed.), Philosophy Looks at Chess, pages 119-136. Chicago IL: Open Court.
- Pietarinen, A-V. and Snellman, L. (2006). On Peirce's late proof of pragmaticism. In Aho, T. and Pietarinen, A.-V. (eds.), Truth and Games: Essays in Honour of Gabriel Sandu, Acta Philosophica Fennica 79, Helsinki: Societas Philosophica Fennica, 275-288.
- Rahman, S. and Keiff, L. (2005). On how to be a dialogician. In Vanderveken, D. (eds.), Logic, Thought and Action, Logic, Epistemology and the Unity of Science, vol. 2, pages 359-408. Dordrecht: Springer.
- Rahman, S., and Rückert, H. (2001). Dialogical connexive logic. Synthese, 127(1-2):105-139.
- Rahman, S., Rückert, H., and Fischmann, M. (1997). On dialogues and ontology. The dialogical approach to free logic. Logique et Analyse, 160:357-374.
- Sandu, G. (1993). On the logic of informational independence and its applications. Journal of Philosophical Logic, 22:29-60.
- Sandu, G. and Pietarinen, A.-V. (2001). Partiality and games: propositional logic. Logic Journal of the IGPL, 9:101-121.
- Sandu, G. and Pietarinen, A.-V. (2003). Informationally independent connectives. In Mints, G. and Muskens, R. (eds.), Logic, Language and Computation vol. 9, pages 23-41. Stanford: CSLI.
- Sevenster, M. (2006a). On the computational consequences of independence in propositional logic. Synthese, 149:257-283.
- Sevenster, M. (2006b). Branches of imperfect information: games, logic, and computation. PhD thesis, ILLC, Universiteit van Amsterdam.
- Skolem, Th. (1920). Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Be- weisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen. In Skrifter ut- git av Videnskabsselskapet i Kristiania, I, pages 1-36. Matematisk-naturvidenskabelig klasse no. 4.
- Smullyan, R. (1968). First-Order Logic. New York: Dover Publications, 1995 (Originally ap- peared 1968).
- Tulenheimo, T. (2003). On IF modal logic and its expressive power. In Balbiani, Ph., Suzuki, N.-Y., Wolter, F., and Zakharyaschev, M. (eds.), Advances in Modal Logic vol. 4, pages 475- 498. King's College London Publications. Milton Keynes, UK.
- Tulenheimo, T. and Sevenster, M. (2006). On modal logic, IF logic and IF modal logic. In Governatori, G., Hodkinson, I., and Venema, Y. (eds.), Advances in Modal Logic vol. 6, pages 481-501. King's College London Publications. Milton Keynes, UK.
- Ulam, Stanislaw M. (1960). A Collection of Mathematical Problems. Groningen: Interscience.
- Väänänen, J. (2006). A remark on nondeterminacy in IF logic. In Aho, T., and Pietarinen, A.-V. (eds.), Truth and Games: Essays in Honour of Gabriel Sandu, Acta Philosophica Fennica 79, Helsinki: Societas Philosophica Fennica, 71-78.
- Väänänen, J. (2007). Dependence Logic: A New Approach to Independence Friendly Logic. New York: Cambridge University Press.
- van Benthem, J. F. A. K. (2001). Logic and games (lecture notes). Amsterdam: ILLC and Stan- ford: CSLI (printed version 2001), unpublished.
- Vaught, R. L. (1973). Descriptive set theory in L ω 1 ω . In Mathias, A. and Rogers, H. (eds.), Cam- bridge Summer School in Mathematical Logic, Lecture Notes in Mathematics vol. 337, pages 574-598. Berlin: Springer.