Introduction to Games: Unifying Logic, Language, and Philosophy
Abstract
Recent years have witnessed a growing interest in the unifying methodologies over what have been perceived as pretty disparate logical ‘systems’, or else merely an assortment of formal and mathematical ‘approaches’ to philosophical inquiry. This development has largely been fueled by an increasing dissatisfaction to what has earlier been taken to be a straightforward outcome of ‘logical pluralism’ or ‘methodological diversity’. ...
References (68)
- Beth, E. W. (1959). The Foundations of Mathematics. Amsterdam: North Holland.
- Bradfield, J. (2004). On independence-friendly fixpoint logics. Philosophia Scientiae, 125-44.
- Bradfield, J. (2006). Independence: Logics and concurrency. In Tuomo Aho & Ahti-Veikko Pietarinen (eds), Truth and Games: Essays in Honour of Gabriel Sandu, Acta Philosophica Fennica 79, Helsinki: Societas Philosophica Fennica, 47-70.
- Bradfield, J. and S. Fröschle (2002). Independence-friendly modal logic and true concurrency. Nordic Journal of Computing, 9:102-17.
- Bridgman, P. W., (1927). The Logic of Modern Physics, New York: MacMillan.
- Dummett, M. (1978). Truth and Other Enigmas. London: Duckworth.
- Dummett, M. (2004). Truth and the Past. New York: Columbia University Press.
- Dummett, M. (2006). Thought and Reality. Oxford: Oxford University Press.
- Fitting, M. (1969). Intuitionistic Logic-Model Theory and Forcing. Amsterdam-London: North-Holland.
- Gale, D. and Stewart, F. M. (1953). Infinite games with perfect information. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games II, Annals of Mathematics Studies 28, pages 245-266. New Jersey: Princeton University Press.
- Hand, M. (1989). Who plays semantical games? Philosophical Studies 56, 251-271.
- Henkin, L. (1950). Completeness in the theory of types. Journal of Symbolic Logic, 15(2):81- 91.
- Henkin, L. (1961). Some remarks on infinitely long formulas. In Infinitistic Methods, pages 167-83. Oxford: Pergamon Press.
- Hilpinen, R. (1982). On C. S. Peirce's theory of the proposition: Peirce as a precursor of game- theoretical semantics, The Monist 65, 182-188.
- Hintikka, J. (1955). Form and content in quantification theory. Acta Philosophica Fennica 8:7- 55.
- Hintikka, J. (1968). Language-games for quantifiers. In American Philosophical Quarterly Monograph Series 2: Studies in Logical Theory, pages 46-72. Oxford: Blackwell.
- Hintikka, J. (1973). Logic, Language-Games and Information: Kantian Themes in the Philoso- phy of Logic. Oxford: Clarendon Press.
- Hintikka, J. (1995). What is elementary logic? Independence-friendly logic as the true core area of logic. In K. Gavroglu, J. Stachel, and M. W. Wartofsky, editors, Physics, philosophy and the scientific community, pages 301-26. New York: Kluwer.
- Hintikka, J. (1996). Principles of Mathematics Revisited. New York: Cambridge University Press.
- Hintikka, J. and V. Rantala (1976). A new approach to infinitary languages. Annals of Mathe- matical Logic, 10:95-115.
- Hintikka, J. and J. Kulas (1985). Anaphora and Definite Descriptions. Dordrecht: Reidel O. Majer, A.-V. Pietarinen and T. Tulenheimo
- Hintikka, J. and G. Sandu (1989). Informational independence as a semantical phenomenon. In J. E. Fenstad et al., editor, Logic, Methodology and Philosophy of Science vol. 8, pages 571-89. North-Holland.
- Hintikka, J. and G. Sandu (1997). Game-theoretical semantics. In J. van Benthem and A. ter Meulen, editors, Handbook of Logic and Language, number 361-410, pages 361-410. Am- sterdam: Elsevier.
- Hodges, W. (1983). Elementary predicate logic. In D. Gabbay and F. Guenthner, editors, Hand- book of Philosophical Logic, vol. I:1-131, Dordrecht: Reidel.
- Hodges, W. (1997a). Compositional semantics for a langauge of imperfect information. Logic Journal of the IGPL, 5:539-63.
- Hodges, W. (1997b) Some strange quantifiers. In J. Mycielski, G. Rozenberg, and A. Salo- maa, editors, Structures in Logic and Computer Science, Lecture Notes in Computer Science 1261, pages 51-65. London: Springer.
- Hodges, W. (2006a). Logic and games. In Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. (Summer 2006 Edition).
- Hodges, W. (2006b) The logic of quantifiers. In R. E. Auxier and L. E. Hahn, editors, The Phi- losophy of Jaakko Hintikka, Library of Living Philosophers, vol. 30, pages 521-34. Chicago: Open Court.
- Hoges, W. and E. C. W. Krabbe, (2001). Dialogue foundations. Part I (Nilfrid Hodges): "A scep- tical look" (17-32);
- Part II (Erik C. W. Krabbe): "Dialogue logic restituted" (33-49). In Proceedings of the Aristotelian Society, Supplementary Volume 75, pages 17-49.
- Hyttinen, T. (1990). Model theory for infinite quantifier logics. Fundamenta Mathematicae, 134:125-42.
- Hyttinen, T. and T. Tulenheimo (2005). Decidability of IF modal logic of perfect recall. In R. Schmidt, I. Pratt-Hartmann, M. Reynolds, and H. Wansing, editors, Advances in Modal Logic vol. 5, pages 111-31. King's College London Publications.
- Karttunen, M. (1984). Model Theory for Infinitely Deep Languages. Annales Academiae Scien- tiarum Fennicae, Series A, Mathematica, Dissertationes, vol. 50. University of Helsinki.
- Krynicki, M. and M. Mostowski (1995). Henkin quantifiers. In M. Krynicki, M. Mostowski, and L. Szczerba, editors, Quantifiers: Logics, Models and Computation, Vol. 1, pages 193-262.
- Kluwer.
- Lorenz, K. (1968). Dialogspiele als semantische Grundlagen von Logikkalkülen. Archiv für mathematische Logik und Grundlagenforschung 11, 32-55 & 73-100.
- Lorenzen, P. (1961). Ein dialogisches Konstruktivitätskriterium. In Infinitistic Methods, pages 193-200. Pergamon Press.
- Pietarinen, A.-V. (2001a). Propositional logic of imperfect information: foundations and appli- cations, Notre Dame Journal of Formal Logic 42, 193-210.
- Pietarinen, A.-V. (2001b). Intentional identity revisited, Nordic Journal of Philosophical Logic 6, 144-188.
- Pietarinen, A.-V. (2002). Knowledge constructions for artificial intelligence. In M.-S. Hacid, Z. W. Ras, D. A. Zighed and Y. Kodratoff (eds), Foundations of Intelligent Systems, Lecture Notes in Artificial Intelligence 2366, Springer, 303-311.
- Pietarinen, A.-V. (2003a). Games as formal tools versus games as explanations in logic and science, Foundations of Science 8, 317-364.
- Pietarinen, A.-V. (2003b). Logic, language games and ludics, Acta Analytica 18, 89-123.
- Pietarinen, A.-V. (2003c). What do epistemic logic and cognitive science have to do with each other?, Cognitive Systems Research 4, 169-190.
- Pietarinen, A.-V. (2004). Peirce's diagrammatic logic in IF perspective. In A. Blackwell, K. Mar- riott and A. Shimojima (eds), Diagrammatic Representation and Inference, Lecture Notes in Artificial Intelligence 2980, Berlin: Springer-Verlag, 97-111.
- Pietarinen, A.-V. (2006a). Independence-friendly logic and incomplete information. In J. van Benthem, G. Heinzmann, M. Rebuschi and H. Visser (eds), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today, Dordrecht: Springer, 243-259.
- Pietarinen, A.-V. (2006b). Signs of Logic: Peircean Themes on the Philosophy of Language, Games, and Communication (Synthese Library 329), Dordrecht: Springer.
- Pietarinen, A.-V. (2008). Who plays in philosophy? In B. Hale (ed.), Philosophy Looks at Chess, Chicago: Open Court, 119-136.
- Pietarinen, A-V. and L. Snellman (2006). On Peirce's late proof of pragmaticism. In Tuomo Aho & Ahti-Veikko Pietarinen (eds), Truth and Games: Essays in Honour of Gabriel Sandu, Acta Philosophica Fennica 79, Helsinki: Societas Philosophica Fennica, 275-288.
- Margolis, Joseph Zalman (1987). Science without Unity: Reconciling the Human and Natural Sciences, Oxford: Blackwell.
- Makkai, M. (1977). Admissible sets and infinitary logic. In J. Barwise, editor, Handbook of Mathematical Logic, pages 233-81. North-Holland.
- Rahman, S. and C. Dégremont (2006). The beetle in the box: exploring IF-dialogues. In Tuomo Aho & Ahti-Veikko Pietarinen (eds), Truth and Games: Essays in Honour of Gabriel Sandu, Acta Philosophica Fennica 79, Helsinki: Societas Philosophica Fennica, 91-122.
- Rahman, S. and L. Keiff (2005). On how to be a dialogician. In D. Vanderveken, editor, Logic, Thought and Action, Logic, Epistemology and the Unity of Science, vol. 2, pages 359-408. Springer.
- Rahman, S., H. Rückert and M. Fischmann (1997). On dialogues and ontology. The dialogical approach to free logic. Logique et Analyse, 160:357-374.
- Rahman, S., H. Rückert (2001). Dialogical connexive logic. Synthese, 127(1-2):105-139.
- Sandu, G. (1993). On the logic of informational independence and its applications. Journal of Philosophical Logic, 22:29-60.
- Sandu, G. and A.-V. Pietarinen (2001). Partiality and games: propositional logic. Logic journal of the IGPL, 9:101-21.
- Sandu, G. and A.-V. Pietarinen (2003). Informationally independent connectives. In G. Mints and R. Muskens, editors, Logic, Language and Computation vol. 9, pages 23-41. CSLI pub- lications.
- Sevenster, M. (2006b). Branches of imperfect information: games, logic, and computation. PhD thesis, ILLC, Universiteit van Amsterdam.
- Sevenster, M. (2006a). On the computational consequences of independence in propositional logic. Synthese, 149:257-83.
- Skolem, Th. (1920). Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Be- weisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen. In Skrifter ut- git av Videnskabsselskapet i Kristiania, I, pages 1-36. Matematisk-naturvidenskabelig klasse no.4.
- Smullyan, R. (1968). First-Order Logic. Dover Publications, 1995 (Originally appeared 1968).
- Tulenheimo, T. (2003). On IF modal logic and its expressive power. In Ph. Balbiani, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev, editors, Advances in Modal Logic vol. 4, pages 475-98. King's College Publications.
- Tulenheimo, T. and M. Sevenster (2006). On modal logic, IF logic and IF modal logic. In G. Governatori, I. Hodkinson, and Y. Venema, editors, Advances in Modal Logic vol. 6, pages 481-501. College Publications.
- O. Majer, A.-V. Pietarinen and T. Tulenheimo xxi Ulam, Stanislaw M. (1960). A Collection of Mathematical Problems, Groningen: Interscience Publishers.
- Väänänen, J. (2006). A remark on nondeterminacy in IF logic. In Tuomo Aho & Ahti-Veikko Pietarinen (eds), Truth and Games: Essays in Honour of Gabriel Sandu, Acta Philosophica Fennica 79, Helsinki: Societas Philosophica Fennica, 71-78.
- Väänänen, J. (2007). Dependence Logic: A New Approach to Independence Friendly Logic. New York: Cambridge University Press.
- van Benthem, J. F. A. K. (2001). Logic and games (lecture notes). ILLC Amsterdam & CSLI Stanford (printed version 2001), unpublished.
- Vaught, R. L. (1973). Descriptive set theory in L ω 1 ω . In A. Mathias and H. Rogers, editors, Cam- bridge Summer School in Mathematical Logic, Lecture Notes in Mathematics 337, pages 574-98. Springer.