Academia.eduAcademia.edu

Outline

A Survey on Spectra of infinite Graphs

1989, Bulletin of the London Mathematical Society

https://doi.org/10.1112/BLMS/21.3.209

Abstract

Contents 1. Introduction 209 2. Linear operators associated with a graph 210 3. Basic results 211 4. Spectral radius, walk generating functions and spectral measures 214 5. Growth and isoperimetric number of a graph 219 6. Positive eigenfunctions 222 7. Graphs of groups, distance regular graphs and trees 223 8. Some remarks on applications in chemistry and physics 230

FAQs

sparkles

AI

How does adjacency spectrum for infinite graphs differ from finite graphs?add

The study shows that spectra of infinite graphs depend heavily on the choice of space; for instance, the adjacency operator acts differently on l^2 versus l^p spaces for infinite graphs.

What role does the growth function play in understanding graph properties?add

Growth functions, related to the transition operator, categorize graphs as exponential or polynomial growth; for example, a graph with exponential growth indicates that the probability of walks diverges rapidly.

When is the self-adjoint extension of an adjacency operator unique?add

The self-adjoint extension of the adjacency operator is unique if the deficiency index equals zero, which occurs when the degree of the graph is finite.

What implications does the isoperimetric number have on a graph's growth type?add

The research indicates that if the isoperimetric number i(G) is greater than zero, the graph has exponential growth; this relationship highlights critical connections between growth and structural properties.

How are transition operators characterized for locally finite infinite graphs?add

Transition operators for locally finite infinite graphs are self-adjoint with norms less than one, indicating behavior akin to stochastic processes with Markov properties.

References (135)

  1. N. I. ACHIESER and I. M. GLASMANN, Theorie der linearen Operatoren im Hilbertschen Raum (Akademie-Verlag, Berlin, 1954). (1)
  2. C. A. AKEMANN and P. A. OSTRAND, 'Computing norms in group C*-algebras\ Amer. J. Math. 98 (1976) 1015-1047. (7)
  3. N. ALON and V. D. MILMAN, 'A 1( isoperimetric inequalities for graphs, and superconcentrators', J. Combin. Theory B 38 (1985) 73-88. (5)
  4. K. AOMOTO, 'Spectral theory on a free group and algebraic curves', J. Fac. Sci. Tokyo, Sect I-A 31 (1984)297-317. (7)
  5. K. AOMOTO, 'A formula of eigen-function expansions I. Case of asymptotic trees', Proc. Japan Acad., Ser. A 61 (1985) 11-14. (7)
  6. K. AOMOTO, 'A formula of eigen-function expansions II. Exterior Dirichlet problem in a lattice', Proc. Japan Acad., Ser. A 61 (1985) 157-160. (7)
  7. K. AOMOTO, 'Algebraic equations for Green kernel and spectrum on a free group', preprint, Nagoya University, 1987. (7)
  8. K. AOMOTO and Y. KATO, 'Green functions and spectra in a free product of cyclic groups', preprint, Nagoya University, 1984. (7)
  9. A. AVEZ, 'Theoreme de Choquet-Deny pour les groupes a croissance non exponentielle', C.R. Acad. Sci. Paris, Ser. A 279 (1974) 25-28. (5)
  10. H. BASS, 'The degree of polynomial growth of finitely generated nilpotent groups', Proc. London Math. Soc. 25 (1972) 603-614. (5)
  11. W. BETORI and M. PAGLIACCI, 'Harmonic analysis for groups acting on trees', Boll. Un. Mat. Ital. B.3 (1984) 333-349. (4, 7)
  12. N. L. BIGGS, Algebraic graph theory (Cambridge University Press, 1974). (1, 2, 3)
  13. N. L. BIGGS, B. MOHAR and J. SHAWE-TAYLOR, 'The spectral radius of infinite graphs', Bull. London Math. Soc. 20(1988) 116-120.
  14. D. A. BOCHVAR and I. V. STANKEVICH, 'Energy levels of certain macromolecules with systems of conjugated double and triple bonds' (Russian), Zhur. Strukt. Khim. 8 (1967) 943-949. (8)
  15. M. BORN, 'Lattice dynamics and X-ray scattering', Proc. Phys. Soc. 54 (1942) 362-376. (8)
  16. M. BRADBURN, C. A. COULSON and G. S. RUSHBROOKE, 'Graphite crystals and crystallites, I. Binding energies in small crystal layers', Proc. Roy. Soc. Edinburgh Ser. A 62 (1948) 336-349. (8)
  17. P. BUSER, 'On the bipartition of graphs', Discrete Appl. Math. 9 (1984) 105-109. (5)
  18. P. CARTIER, 'Harmonic analysis on trees', Proc. Sympos. Pure Math. 9 (Amer. Math. Soc, 1972) 419-424. (4, 7)
  19. D. I. CARTWRIGHT, 'Some examples of random walks on free products of discrete groups', Ann. Mat. Pur. Appl., to appear. (7)
  20. D. I. CARTWRIGHT and P. M. SOARDI, 'Harmonic analysis on the free product of two cyclic groups', J. Fund. Anal. 65 (1986) 147-171. (7)
  21. D. I. CARTWRIGHT and P. M. SOARDI, 'Random walks on free products, quotients and amalgams', Nagoya Math. J. 102 (1986) 163-180. (7)
  22. I. CHAVEL, Eigenvalues in Riemannian geometry (Academic Press, Orlando, 1984). (5)
  23. J. CHEEGER, 'A lower bound for the smallest eigenvalue of the Laplacian', Problems in analysis (ed. R. C. Gunning, Princeton University Press, 1970), pp. 195-199. (5)
  24. F. CHOUCROUN, 'Analyse harmonique sur le groupe des automorphismes d'un arbre homogene et applications aux groupes libres', C.R. Acad. Sci. Paris Se'r. A 296 (1983) 585-588. (7)
  25. J. M. COHEN, 'Operator norms on free groups', Boll. Un. Mat. Ital. B 1 (1982) 1055-1065. (7)
  26. J. M. COHEN, 'Radial functions on free products', J. Fund. Anal. 59 (1984) 167-174. (7)
  27. J. M. COHEN and L. DE MICHELE, 'The radial Fourier-Stieltjes algebra of free groups', Contemp. Math. 10 (1982) 33-40. (7)
  28. J. M. COHEN and A. R. TRENHOLME, 'Orthogonal polynomials with a constant recursion formula and an application to harmonic analysis', J. Fund. Anal. 59 (1984) 175-184. (7)
  29. L. COLLATZ and U. SINOGOWITZ, 'Spektren endlicher Grafen', Abh. Math. Sem. Univ. Hamburg 21 (1957) 63-77. (8)
  30. R. G. COOKE, Infinite matrices and sequence spaces (Macmillan and Co., London, 1950). (1)
  31. C. A. COULSON and G. S. RUSHBROOKE, 'Graphite crystals and crystallites, II. Energies of mobile electrons in crystallites infinite in one direction', Proc. Roy. Soc. Edinburgh Ser. A 62 (1948) 350-359. (8)
  32. D. M. CVETKOVIC and M. DOOB, 'Developments in the theory of graph spectra", Linear and Multilinear Algebra 18(1985) 153-181.(1, 2)
  33. D. M. CVETKOVIC, M. DOOB, I. GUTMAN AND A. TORGASEV, Recent results in the theory of graph spectra (North-Holland, Amsterdam, 1988). (1,2)
  34. D. M. CVETKOVIC, M. DOOB and H.SACHS, Spectra of graphs-theory and application (Deutscher Verlag der Wissenschaften, Berlin, and Academic Press, New York, 1979). (1, 2, 3, 4, 8)
  35. J. DODZIUK, 'Difference equations, isoperimetric inequality and transience of certain random walks', Trans. Amer. Math. Soc. 284 (1984) 787-794. (3, 5)
  36. J. DODZIUK and L. KARP, 'Spectral and function theory for combinatorial Laplacians', preprint, City University of New York, 1988. (4)
  37. J. DODZIUK and W. S. KENDALL, 'Combinatorial Laplacians and isoperimetric inequality', From local times to global geometry, control and physics (ed. K. D. Elworthy, Pitman Res. Notes Math. Ser. 150, 1986), pp. 68-74. (3, 5)
  38. J. L. DOOB, J. L. SNELL and R. E. WILLIAMSON, 'Application of boundary theory to sums of independent random variables', Contributions to probability and statistics (Stanford University Press, 1960) 182-197. (6)
  39. P. G. DOYLE and J. L. SNELL, Random walks and electric networks, Carus Math. Monographs 22 (Math. Assoc. of America, 1984). (2, 4)
  40. J. DUNCAN and J. H. WILLIAMSON, 'Spectra of elements in the measure algebra of a free group', Proc. Royal Irish Acad. 82 (1982) 109-120. (7)
  41. N. DUNFORD and J. T. SCHWARZ, Linear operators, Parts I and II (Interscience, New York, 1963). (1, 3,4)
  42. E. B. DYNKIN and M. B. MALYUTOV, 'Random walks on groups with a finite number of generators', Soviet Math. Dokl. 2 (1961) 399-402. (7)
  43. J. FARAUT and M. A. PICARDELLO, 'The Plancherel measure for symmetric graphs', Ann. Mat. Pura Appl. 138(1984) 151-155. (7)
  44. A. FIGA-TALAMANCA and M. A. PICARDELLO, 'Spherical functions and harmonic analysis on free groups', J. Fund. Anal. 47 (1982) 281-304. (7)
  45. A. FIGA-TALAMANCA and M. A. PICARDELLO, Harmonic analysis on free groups, Lecture Notes Pure Appl. Math. 87 (Marcel Dekker, New York, 1983). (1, 4, 7)
  46. A. FIGA-TALAMANCA and T. STEGER, 'Harmonic analysis on trees', Sympos. Math. 29 (1987) 163-182.
  47. M. FISHER, 'On hearing the shape of a drum', J. Combin. Theory 1 (1966) 105-125. (8)
  48. P. GERL, 'Uber die Anzahl der Darstellungen von Worten', Monatsh. Math. 75 (1971) 205-214. (7)
  49. P. GERL, 'A local central limit theorem on some groups', Lecture Notes in Statistics 8 (Springer, Berlin, 1981) pp. 73-82. (7)
  50. P. GERL, 'Continued fraction methods for random walks on N and on trees', Lecture Notes in Math. 1064 (Springer, Berlin, 1984), pp. 131-146. (4, 7)
  51. P. GERL, 'Random walks on graphs', Lecture Notes in Math. 1210 (Springer, Berlin, 1986), pp. 285-303. (4, 5)
  52. P. GERL, 'Natural spanning trees of Z d are recurrent', Discrete Math. 61 (1986) 333-336. (7)
  53. P. GERL, 'Eine isoperimetrische Eigenschaft von Baumen', Sitzungsber. Ost. Akad. Wiss., Math.- Naturw. Kl. 195 (1986) 49-52. (7)
  54. P. GERL, 'Random walks on graphs with a strong isoperimetric inequality', J. Theoret. Prohuh. I (1988) 171-188. (3, 5)
  55. P. GERL and W. WOESS, 'Simple random walks on trees', European J. Comhin. 7 (1986) 321 331. (2, 4, 5)
  56. P. GERL and W. WOESS, 'Local limit theorems and harmonic functions for nonisotropic random walks on free groups', Probab. Theory Related Fields 71 (1986) 341-355. (7)
  57. C. D. GODSIL and B. MOHAR, 'Walk-generating functions and spectral measures of infinite graphs', Linear Algebra Appl. 107 (1988) 191-206. (4, 7)
  58. R. I. GRIGORCHUK, 'The growth degrees of finitely generated groups and the theory of invariant means', Math. USSR Izv. 25 (1985) 259-300. (5)
  59. M. GROMOV, 'Groups of polynomial growth and expanding maps', Inst. Hautes Etudes Sci. Publ. Math. 53 (1981) 53-78. (5)
  60. B. D. HUGHES and S. PRAGER, 'Random processes and random systems: an introduction (Part A: discrete models)', The mathematics and physics of disordered media, Lecture Notes in Math. 1035 (ed. B. D. Hughes and B. W. Ninham, Springer, Berlin, 1983), pp. 1-86. (8)
  61. B . D . H U G H E S and M. SAHIMI, 'Random walks on the Bethe lattice', J. Statist. Phys. 29 (1982) 781-794. (7, 8)
  62. B. D. HUGHES, M. SAHIMI and H. T. DAVIS, 'Random walks on pseudo-lattices', Physica 120A (1983) 515-536. (7, 8)
  63. A. Iozzi, 'Harmonic analysis on the free product of two cyclic groups', Boll. Un. Mat. Itul. B4 (1985) 167-177. (7)
  64. A. Iozzi and M. A. PICARDELLO, 'Graphs and convolution operators', Topics in modern harmonic analysis (INDAM, Roma, 1982), pp. 187-208. (7)
  65. A. Iozzi and M. A. PICARDELLO, 'Spherical functions on symmetric graphs', Lecture Notes in Math. 992 (Springer, Berlin, 1983), pp. 344-387. (7)
  66. S. ISHIOKA and M. KOIWA, 'Random walks on diamond and hexagonal close packed lattices', Phil. Mag. A 37 (1978) 517-533. (8)
  67. S. ISHIOKA and M. KOIWA, 'Random walks on three-dimensional lattices with the coordination number four', Phil. Mag. A 40 (1979) 625-635. (8)
  68. A. A. IVANOV, 'Bounding the diameter of a distance-regular graph', Soviet Math. Doklady 28 (1983) 149-152. (7)
  69. G. S. JOYCE, ' Exact results for a body centered cubic lattice Green's function with application in lattice statistics I', J. Math. Phys. 12 (1971) 1390-1414. (7, 8)
  70. G. S. JOYCE. 'On the simple cubic lattice Green function", Philos. Trans. Row Soc. London Ser. A 273 (1973) 583-610. (7, 8)
  71. S. KARLIN and J. MCGREGOR, 'Random walks', Illinois J. Math. 3 (1959) 66-81. (7)
  72. P. W. KASTELEYN, 'Some aspects of random walks on groups', Group theoretical methods in physics. Lecture Notes in Physics 180 (ed. M. Serdaroglu and E. Inonii, Springer, Berlin, 1983), pp. 499-512. (8)
  73. Y. KATO, 'On the spectral density of periodic Jacobi matrices', Proc. RIMS Sympos. on Non-Linear Integrable Systems-Classical Theory and Quantum Theory, Kyoto (ed. M. Jimbo and T. Miwa, World Science Publ. Co., Singapore, 1981), pp. 153-181. (7)
  74. Y. KATO, 'Mixed periodic Jacobi continued fractions', Nagoya Math. J. 104 (1986) 129-148. (7)
  75. G. GERSTING, 'Strong ratio limit property and /^-recurrence of reversible Markov chains', Z. IVahrsch. Verw. Gebiete 30 (1974) 343-356. (2, 4)
  76. H. KESTEN, 'Symmetric random walks on groups', Trans. Amer. Math. Soc. 92 (1959) 336-354. (7)
  77. J. F. C. KINGMAN, 'The ergodic decay of Markov transition probabilities', Proc. London Math. Soc. 13 (1963) 337-358. (4)
  78. G. KUHN and P. M. SOARDI, 'The Plancherel measure for polygonal graphs', Ann. Mat. Pura Appl. 134(1983)393-401. (7)
  79. W. LEDERMAN, 'Asymptotic formulae relating to the physical theory of crystals', Proc. Roy. Soc. Ser. A 182 (1944) 362-377. (8)
  80. L. H. LIYANGE, C. M. GULATI and J. M. HILL, 'A bibliography of applications of random walks in theoretical chemistry and physics', Adv. Molec. Relaxation and Interaction Proc. 22 (1982) 53-72.
  81. A. LUBOTZKY, R. PHILLIPS and P. SARNAK, 'Ramanujan graphs', Combinatorica 8 (1988) 261 277. (4,7)
  82. T. LYONS, 'A simple criterion for transience of a reversible Markov chain', Ann. Probab. 11 (1983) 393-402.(4)
  83. B. D. MCKAY, 'The expected eigenvalue distribution of a large regular graph', Linear Algebra Appl. 40 (1981) 203-216. (4, 7)
  84. J. C. MCLAUGHLIN, 'Random walks and convolution operators on free products', Thesis, New York University, 1986. (7)
  85. D. A. MCQUARRIE, Statistical thermodynamics (Harper and Row, New York, 1973). (8)
  86. R. MCWEENY and B. T. SUTCLIFFE, Methods of molecular quantum mechanics (Academic Press, New York, 1969). (8)
  87. J. MILNOR, 'A note on curvature and fundamental group', J. Differential Geom. 2 (1968) 1-7. (5)
  88. J. MILNOR, 'Growth of finitely generated solvable groups', J. Differential Geom. 2 (1968) 447-449.
  89. B. MOHAR, 'The spectrum of an infinite graph', Linear Algebra Appl. 48 (1982) 245-256. (1, 2, 3, 4)
  90. B. MOHAR, 'Isoperimetric numbers and spectral radius of some infinite planar graphs', preprint, Simon Fraser University, 1986. (5)
  91. B. MOHAR, 'Isoperimetric inequalities, growth and the spectrum of graphs'. Linear Algebra Appl. 103(1988) 119-131. (3, 5)
  92. B. MOHAR, 'Isoperimetric numbers of graphs', J. Combin. Theory Ser. B, to appear. (5)
  93. B. MOHAR and M. OMLADIC, 'The spectrum of infinite graphs with bounded vertex degrees', Graphs, hypergraphs and applications, Teubner Texte 73 (Teubner, Leipzig, 1985), pp. 122-125. (3)
  94. B. MOHAR and M. OMLADIC, 'Divisors and the spectrum of infinite graphs', Linear Algebra Appl. 91 (1987) 99-106. (7)
  95. B. MOHAR and M. OMLADIC, 'The spectrum of products of infinite graphs'. Graph Theory (University of Novi Sad, 1986), pp. 135-142. (3)
  96. E. W. MONTROLL, 'Random walks in multidimensional spaces, especially on periodic lattices', J. 5//JM 4 (1956) 241-260. (7, 8)
  97. E. W. MONTROLL, 'Random walks on lattices', Proc. Sympos. Appl. Math. 16 (1964) 193-220. (7,8)
  98. E. W. MONTROLL and G. H. WEISS, 'Random walks on lattices II', J. Math. Phys. 6 (1965) 167-181. (7,8)
  99. S. C. MOY, ' Ergodic properties of expectation matrices of a branching process with countably many types', J. Math. Mech. 16 (1967) 1207-1225. (6)
  100. V. MULLER, 'On the spectrum of an infinite graph', Linear Algebra Appl. 93 (1987) 187-189. (3)
  101. C. ST. J. A. NASH-WILLIAMS, 'Random walks and electric currents in networks', Proc. Cambridge Philos. Soc. 55 (1959) 181-194. (4)
  102. F. PAPANGELOU, 'Strong ratio limits, /?-recurrence and mixing properties of discrete parameter Markov processes', Z. Wahrsch. Verw. Gebiete 8 (1967) 259-297. (2, 4)
  103. J. K. PERCUS, Combinatorial methods, Applied Math. Sciences 4 (Springer, New York, 1971). (7)
  104. M. A. PICARDELLO and T. PYTLIK, 'Norms of free operators', Proc. Amer. Math. Soc. 104 (1988) 257-261. (7)
  105. M. A. PICARDELLO and W. WOESS, 'Random walks on amalgams', Monatsh. Math. 100(1985)21-33.
  106. M. A. PICARDELLO and W. WOESS, ' Harmonic functions and ends of graphs', Proc. Edinburgh Math. Soc, to appear. (6)
  107. M. A. PICARDELLO and W. WOESS, 'Ends of infinite graphs, potential theory and electrical networks', Cycles and rays: basic structures infinite and infinite graphs, Proceedings, Montreal, 1987, to appear. (6)
  108. J. P. PIER, Amenable locally compact groups (J. Wiley, New York, 1984). (5)
  109. W. E. PRUITT, 'Eigenvalues of nonnegative matrices', Ann. Math. Statistics 35 (1964) 1797-1800.
  110. T. PYTLIK, ' Radical functions on free groups and a decomposition of the regular representation into irreducible components', J. Reine Angew. Math. 326 (1981) 124-135. (7)
  111. J. M. ROSENBLATT, 'Invariant measures and growth conditions', Trans. Amer. Math. Soc. 193 (1974) 33-53. (5)
  112. S. SAWYER, 'Isotropic random walks in a tree', Z. Wahrsch. Verw. Gebiete 42 (1978) 279-292. (7,8)
  113. E. SENETA, Non-negative matrices and Markov chains (2nd edition, Springer, Berlin, 1981). ( I , 4, 6)
  114. J. P. SERRE, Trees (Springer, New York, 1980). (7)
  115. P. M. SOARDI, 'The resolvent for simple random walks on the free product of two discrete groups', Math. Z. 192 (1986) 109-116. (7)
  116. F. SPITZER, Principles of random walk (Van Nostrand, Princeton, 1964). (2, 7)
  117. T. STEGER, 'Harmonic analysis for an anisotropic random walk on a homogeneous tree', Thesis, Washington University, St. Louis, 1985. (7)
  118. M. H. STONE, Linear transformations in Hilbert space and their applications to analysis, Colloq. Publ. 15 (Amer. Math. S o c , New York, 1932). (1,4)
  119. A. TORGASEV, ' O n spectra of infinite graphs', Publ. Inst. Math. Beograd 29 (1981) 269-282. ( 1 , 2 )
  120. A. TORGASEV, 'Infinite graphs with the least limiting eigenvalue greater than -2', Linear Algebra Appl. 82(1986) 133-141. (4)
  121. V. I. TROFIMOV, 'Graphs with polynomial growth', Math. USSR Sbornik 51 (1985) 405-417. (5)
  122. N. TH. VAROPOULOS, 'Isoperimetric inequalities and Markov chains', J. Fund. Anal. 63 (1985) 215-239. (3, 4, 5)
  123. N. TH. VAROPOULOS, 'Theorie du potentiel sur des groupes et des varietes', C. R. Acad. Sci. Paris Se'r. / 302 (1986) 203-205. (5)
  124. D. VERE-JONES, 'Geometric ergodicity in denumerable Markov chains', Quart. J. Math. Oxford (2) 13(1962)7-28.(4)
  125. D. VERE-JONES, 'Ergodic properties of non-negative matrices I', Pacific J. Math. 22 (1967) 361-386. (4,6)
  126. D. VERE-JONES, 'Ergodic properties of non-negative matrices II', Pacific J. Math. 26 (1968) 601-620.
  127. H. S. WALL, Analytic theory of continued fractions (Van Nostrand, Toronto, 1948). (4. 7)
  128. G. H. WEISS and R. J. RUBIN, 'Random walks: theory and selected applications', Adv. Chem. Phys. 52 (1983) 363-505.
  129. A. WINTNER, Spektraltheorie der unendlichen Matrizen (Hirzel, Leipzig, 1929). (1)
  130. J. A. WOLF, 'Growth of finitely generated solvable groups and curvature of Riemannian manifolds', J. Differential Geom. 2 (1968) 421-446. (5)
  131. W. WOESS, 'Local limit theorems for random walks on certain discrete groups', Lecture Notes in Math. 928 (Springer, Berlin, 1982), pp. 467-477. (7)
  132. W. WOESS, 'Random walks and periodic continued fractions', Adv. Probab. 17 (1985) 67-84. (7)
  133. W. WOESS, 'A short computation of the norms of free convolution operators', Proc. Amer. Math. Soc. 96(1986) 167-170. (7)
  134. W. WOESS, 'Transience and volumes of trees', Arch. Math. 46 (1986) 184-192. (4)
  135. W. WOESS, 'Nearest neighbour random walks on free products of discrete groups', Boll. Un. Mat. Ital. B 5 (1986) 961-982. (7)