Academia.eduAcademia.edu

Outline

On Spectra and Spectral Measures of Schreier and Cayley Graphs

International Mathematics Research Notices

https://doi.org/10.1093/IMRN/RNAB234

Abstract

We are interested in various aspects of spectral rigidity of Cayley and Schreier graphs of finitely generated groups. For each pair of integers $d\geq 2$ and $m \ge 1$, we consider an uncountable family of groups of automorphisms of the rooted $d$-regular tree, which provide examples of the following interesting phenomena. For $d=2$ and any $m\geq 2$, we get an uncountable family of non-quasi-isometric Cayley graphs with the same Laplacian spectrum, a union of two intervals, which we compute explicitly. Some of the groups provide examples where the spectrum of the Cayley graph is connected for one generating set and has a gap for another. For each $d\geq 3, m\geq 1$, we exhibit infinite Schreier graphs of these groups with the spectrum a Cantor set of Lebesgue measure zero union a countable set of isolated points accumulating on it. The Kesten spectral measures of the Laplacian on these Schreier graphs are discrete and concentrated on the isolated points. We construct, moreover, a c...

References (33)

  1. L. Bartholdi and R. Grigorchuk. On the spectrum of Hecke type operators related to some fractal groups. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):5-45, 2000.
  2. L. Bartholdi, R. Grigorchuk, and Z. Šunić. Branch groups. In Handbook of algebra, volume 3 of Handbooks of algebra, pages 989-1112. Elsevier/North-Holland, Amsterdam, 2003.
  3. L Bartholdi and F. Pochon. On growth and torsion of groups. Groups Geom. Dyn., 3(4):525-539, 2009.
  4. L. Bartholdi and Z. Šunić. On the word and period growth of some groups of tree automorphisms. Comm. Algebra, 29(11):4923-4964, 2001.
  5. G. Berkolaiko and P. Kuchment. Introduction to quantum graphs, volume 186 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2013.
  6. I. Bondarenko. Growth of Schreier graphs of automaton groups. Math. Ann., 354(2):765-785, 2012.
  7. I. Bondarenko, D. D'Angeli, and T. Nagnibeda. Ends of Schreier graphs and cut-points of limit spaces of self-similar groups. J. Fractal Geom., 4(4):369-424, 2017.
  8. A. Brzoska, C. George, S. Jarvis, L. Rogers, and A. Teplyaev. Spectral properties of graphs associated to the Basilica group. ArXiv http://arxiv.org/abs/1908.10505, 2019.
  9. D. Cartwright and P. M. Soardi. Harmonic analysis on the free product of two cyclic groups. J. Funct. Anal., 65(2):147-171, 1986.
  10. J. Dixmier. Les C * -algèbres et leurs représentations. Cahiers Scientifiques, Fasc. XXIX. Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964.
  11. A. Dudko and R. Grigorchuk. On spectra of Koopman, groupoid and quasi-regular representations. J. Mod. Dyn., 11:99-123, 2017.
  12. A. Dudko and R. Grigorchuk. On the question "Can one hear the shape of a group?" and a Hulanicki type theorem for graphs. Israel J. Math., 237(1):53-74, 2020.
  13. A. Erschler. Boundary behavior for groups of subexponential growth. Ann. of Math. (2), 160(3):1183-1210, 2004.
  14. D. Francoeur. On the subexponential growth of groups acting on rooted trees. Groups Geom. Dyn., 14(1):1-24, 2020.
  15. L. Grabowski and B. Virag. Random walks on lamplighters via random Schrödinger operators. Unpub- lished, 2015.
  16. R. Grigorchuk. Degrees of growth of finitely generated groups and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat., 48(5):939-985, 1984.
  17. R. Grigorchuk. Some topics of the dynamics of group actions on rooted trees. Tr. Mat. Inst. Steklova (Sovremennye Problemy Matematiki), 273:72-191, 2011.
  18. R. Grigorchuk and Y. Krylyuk. The spectral measure of the Markov operator related to 3-generated 2-group of intermediate growth and its Jacobi parameters. Algebra Discrete Math., 13(2):237-272, 2012.
  19. R. Grigorchuk, D. Lenz, and T. Nagnibeda. Schreier graphs of Grigorchuk's group and a subshift associated to a nonprimitive substitution. In Groups, graphs and random walks, volume 436 of London Math. Soc. Lecture Note Ser., pages 250-299. Cambridge Univ. Press, Cambridge, 2017.
  20. R. Grigorchuk, D. Lenz, T. Nagnibeda, and D. Sell. Subshifts with leading sequences, uniformity of cocycles and spectra of Schreier graphs. ArXiv https://arxiv.org/abs/1906.01898, 2019.
  21. R. Grigorchuk and B. Simanek. Spectra of Cayley graphs of the lamplighter group and random Schrödinger operators. ArXiv https://arxiv.org/abs/1902.10129, 2019. To appear in Trans. AMS.
  22. R. Grigorchuk and A. Żuk. The lamplighter group as a group generated by a 2-state automaton, and its spectrum. Geom. Dedicata, 87(1-3):209-244, 2001.
  23. R. Grigorchuk and A. Żuk. The Ihara zeta function of infinite graphs, the KNS spectral measure and integrable maps. In Random walks and geometry, pages 141-180. Walter de Gruyter, Berlin, 2004.
  24. N. Higson and G. Kasparov. E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math., 144(1):23-74, 2001.
  25. K. Juschenko, V. Nekrashevych, and M. de la Salle. Extensions of amenable groups by recurrent groupoids. Invent. Math., 206(3):837-867, 2016.
  26. H. Kesten. Symmetric random walks on groups. Trans. Amer. Math. Soc., 92:336-354, 1959.
  27. G. Kuhn. Anisotropic random walks on free products of cyclic groups, irreducible representations and idempotents of C * reg (G). Nagoya Math. J., 128:95-120, 1992.
  28. F. Lehner, M. Neuhauser, and W. Woess. On the spectrum of lamplighter groups and percolation clusters. Math. Ann., 342(1):69-89, 2008.
  29. L. Malozemov and A. Teplyaev. Self-similarity, operators and dynamics. Math. Phys. Anal. Geom., 6(3):201-218, 2003.
  30. J. F. Quint. Harmonic analysis on the Pascal graph. J. Funct. Anal., 256(10):3409-3460, 2009.
  31. Z. Šunić. Hausdorff dimension in a family of self-similar groups. Geom. Dedicata, 124:213-236, 2007.
  32. A. Valette. Can one hear the shape of a group? Rend. Sem. Mat. Fis. Milano, 64:31-44 (1996), 1994.
  33. W. Woess. Random walks on infinite graphs and groups, volume 138 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2000.