On Spectra and Spectral Measures of Schreier and Cayley Graphs
International Mathematics Research Notices
https://doi.org/10.1093/IMRN/RNAB234Abstract
We are interested in various aspects of spectral rigidity of Cayley and Schreier graphs of finitely generated groups. For each pair of integers $d\geq 2$ and $m \ge 1$, we consider an uncountable family of groups of automorphisms of the rooted $d$-regular tree, which provide examples of the following interesting phenomena. For $d=2$ and any $m\geq 2$, we get an uncountable family of non-quasi-isometric Cayley graphs with the same Laplacian spectrum, a union of two intervals, which we compute explicitly. Some of the groups provide examples where the spectrum of the Cayley graph is connected for one generating set and has a gap for another. For each $d\geq 3, m\geq 1$, we exhibit infinite Schreier graphs of these groups with the spectrum a Cantor set of Lebesgue measure zero union a countable set of isolated points accumulating on it. The Kesten spectral measures of the Laplacian on these Schreier graphs are discrete and concentrated on the isolated points. We construct, moreover, a c...
References (33)
- L. Bartholdi and R. Grigorchuk. On the spectrum of Hecke type operators related to some fractal groups. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i Beskon. Gruppy):5-45, 2000.
- L. Bartholdi, R. Grigorchuk, and Z. Šunić. Branch groups. In Handbook of algebra, volume 3 of Handbooks of algebra, pages 989-1112. Elsevier/North-Holland, Amsterdam, 2003.
- L Bartholdi and F. Pochon. On growth and torsion of groups. Groups Geom. Dyn., 3(4):525-539, 2009.
- L. Bartholdi and Z. Šunić. On the word and period growth of some groups of tree automorphisms. Comm. Algebra, 29(11):4923-4964, 2001.
- G. Berkolaiko and P. Kuchment. Introduction to quantum graphs, volume 186 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2013.
- I. Bondarenko. Growth of Schreier graphs of automaton groups. Math. Ann., 354(2):765-785, 2012.
- I. Bondarenko, D. D'Angeli, and T. Nagnibeda. Ends of Schreier graphs and cut-points of limit spaces of self-similar groups. J. Fractal Geom., 4(4):369-424, 2017.
- A. Brzoska, C. George, S. Jarvis, L. Rogers, and A. Teplyaev. Spectral properties of graphs associated to the Basilica group. ArXiv http://arxiv.org/abs/1908.10505, 2019.
- D. Cartwright and P. M. Soardi. Harmonic analysis on the free product of two cyclic groups. J. Funct. Anal., 65(2):147-171, 1986.
- J. Dixmier. Les C * -algèbres et leurs représentations. Cahiers Scientifiques, Fasc. XXIX. Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964.
- A. Dudko and R. Grigorchuk. On spectra of Koopman, groupoid and quasi-regular representations. J. Mod. Dyn., 11:99-123, 2017.
- A. Dudko and R. Grigorchuk. On the question "Can one hear the shape of a group?" and a Hulanicki type theorem for graphs. Israel J. Math., 237(1):53-74, 2020.
- A. Erschler. Boundary behavior for groups of subexponential growth. Ann. of Math. (2), 160(3):1183-1210, 2004.
- D. Francoeur. On the subexponential growth of groups acting on rooted trees. Groups Geom. Dyn., 14(1):1-24, 2020.
- L. Grabowski and B. Virag. Random walks on lamplighters via random Schrödinger operators. Unpub- lished, 2015.
- R. Grigorchuk. Degrees of growth of finitely generated groups and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat., 48(5):939-985, 1984.
- R. Grigorchuk. Some topics of the dynamics of group actions on rooted trees. Tr. Mat. Inst. Steklova (Sovremennye Problemy Matematiki), 273:72-191, 2011.
- R. Grigorchuk and Y. Krylyuk. The spectral measure of the Markov operator related to 3-generated 2-group of intermediate growth and its Jacobi parameters. Algebra Discrete Math., 13(2):237-272, 2012.
- R. Grigorchuk, D. Lenz, and T. Nagnibeda. Schreier graphs of Grigorchuk's group and a subshift associated to a nonprimitive substitution. In Groups, graphs and random walks, volume 436 of London Math. Soc. Lecture Note Ser., pages 250-299. Cambridge Univ. Press, Cambridge, 2017.
- R. Grigorchuk, D. Lenz, T. Nagnibeda, and D. Sell. Subshifts with leading sequences, uniformity of cocycles and spectra of Schreier graphs. ArXiv https://arxiv.org/abs/1906.01898, 2019.
- R. Grigorchuk and B. Simanek. Spectra of Cayley graphs of the lamplighter group and random Schrödinger operators. ArXiv https://arxiv.org/abs/1902.10129, 2019. To appear in Trans. AMS.
- R. Grigorchuk and A. Żuk. The lamplighter group as a group generated by a 2-state automaton, and its spectrum. Geom. Dedicata, 87(1-3):209-244, 2001.
- R. Grigorchuk and A. Żuk. The Ihara zeta function of infinite graphs, the KNS spectral measure and integrable maps. In Random walks and geometry, pages 141-180. Walter de Gruyter, Berlin, 2004.
- N. Higson and G. Kasparov. E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math., 144(1):23-74, 2001.
- K. Juschenko, V. Nekrashevych, and M. de la Salle. Extensions of amenable groups by recurrent groupoids. Invent. Math., 206(3):837-867, 2016.
- H. Kesten. Symmetric random walks on groups. Trans. Amer. Math. Soc., 92:336-354, 1959.
- G. Kuhn. Anisotropic random walks on free products of cyclic groups, irreducible representations and idempotents of C * reg (G). Nagoya Math. J., 128:95-120, 1992.
- F. Lehner, M. Neuhauser, and W. Woess. On the spectrum of lamplighter groups and percolation clusters. Math. Ann., 342(1):69-89, 2008.
- L. Malozemov and A. Teplyaev. Self-similarity, operators and dynamics. Math. Phys. Anal. Geom., 6(3):201-218, 2003.
- J. F. Quint. Harmonic analysis on the Pascal graph. J. Funct. Anal., 256(10):3409-3460, 2009.
- Z. Šunić. Hausdorff dimension in a family of self-similar groups. Geom. Dedicata, 124:213-236, 2007.
- A. Valette. Can one hear the shape of a group? Rend. Sem. Mat. Fis. Milano, 64:31-44 (1996), 1994.
- W. Woess. Random walks on infinite graphs and groups, volume 138 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2000.