Quantitative Relations and Approximate Process Equivalences
2003, CONCUR 2003 - Concurrency Theory
https://doi.org/10.1007/978-3-540-45187-7_33Abstract
We introduce a characterisation of probabilistic transition systems (PTS) in terms of linear operators on some suitably defined vector space representing the set of states. Various notions of process equivalences can then be re-formulated as abstract linear operators related to the concrete PTS semantics via a probabilistic abstract interpretation. These process equivalences can be turned into corresponding approximate notions by identifying processes whose abstract operators "differ" by a given quantity, which can be calculated as the norm of the difference operator. We argue that this number can be given a statistical interpretation in terms of the tests needed to distinguish two behaviours.
References (31)
- A. Aldini, M. Bravetti, and R. Gorrieri. A process algebraic approach for the analysis of probabilistic non-interference. Journal of Computer Security, 2003. To appear.
- J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process Algebra. Elsevier Science, Amsterdam, 2001.
- A. Böttcher and B. Silbermann. Introduction to Large Truncated Toeplitz Matrices. Springer Verlag, New York, 1999.
- S.L. Campbell and D. Meyer. Generalized Inverse of Linear Transformations. Constable and Company, London, 1979.
- P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings of POPL'77, pages 238-252, Los Angeles, 1977.
- P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In Proceedings of POPL'79, pages 269-282, San Antonio, Texas, 1979.
- P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic Pro- grams. Journal of Logic Programming, 13(2-3):103-180, July 1992.
- D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM Transactions on Programming Languages and Systems, 19(2):253-291, 1997.
- J. Desharnais, R. Jagadeesan, V. Gupta, and P.Panangaden. The metric analogue of weak bisimulation for probabilistic processes. In Proceedings of LICS'02, pages 413-422, Copenhagen, Denmark, 22-25 July 2002. IEEE.
- A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate confinement under uniform attacks. In Proceedings of SAS'02, volume 2477 of Lecture Notes in Computer Science. Springer Verlag, 2002.
- A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate non-interference. In Proceedings of CSFW'02, pages 3-17, Cape Breton, 24-26 June 2002. IEEE.
- A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate non-interference. Journal of Computer Security (WITS '02 Issue), 2003. To appear.
- A. Di Pierro and H. Wiklicky. Concurrent Constraint Programming: Towards Probabilistic Abstract Interpretation. In Proceedings of PPDP'00, pages 127-138, Montréal, Canada, 2000. ACM.
- A. Di Pierro and H. Wiklicky. Measuring the precision of abstract interpretations. In Proceedings of LOPSTR'00, volume 2042 of Lecture Notes in Computer Science, pages 147-164. Springer Verlag, 2001.
- A. Di Pierro and H. Wiklicky. A C*-algebraic approach to the operational seman- tics of programming languages. In preparation, 2003.
- A. Giacalone, C.-C. Jou, and S.A. Smolka. Algebraic reasoning for probabilistic concurrent systems. In Proceedings of the IFIP WG 2.2/2.3 Working Conference on Programming Concepts and Methods, pages 443-458. North-Holland, 1990.
- C. Godsil and G. Royle. Algebraic Graph Theory, volume 207 of Graduate Texts in Mathematics. Springer Verlag, New York -Heidelberg -Berlin, 2001.
- W.H. Greub. Linear Algebra, volume 97 of Grundlehren der mathematischen Wis- senschaften. Springer Verlag, New York, third edition, 1967.
- B. Jonsson, W. Yi, and K.G. Larsen. Probabilistic Extensions of Process Algebras, chapter 11, pages 685-710. Elsevier Science, Amsterdam, 2001. see [2].
- D. Kozen. Semantics for probabilistic programs. Journal of Computer and System Sciences, 22:328-350, 1981.
- K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation, 94:1-28, 1991.
- R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer Science. Springer-Verlag, Berlin -New York, 1980.
- B. Mohar and W. Woess. A survey on spectra of infinite graphs. Bulletin of the London Mathematical Society, 21:209-234, 1988.
- D. Monniaux. Abstract interpretation of probabilistic semantics. In Proceedings of SAS'00, volume 1824 of Lecture Notes in Computer Science. Springer Verlag, 2000.
- F. Nielson, H. Riis Nielson, and C. Hankin. Principles of Program Analysis. Springer Verlag, Berlin -Heidelberg, 1999.
- S.A. Smolka R.J. van Glabbeek and B. Steffen. Reactive, Generative and Stratified Models of Probabilistic Processes. Information and Computation, 121:59-80, 1995.
- D.A. Schmidt. Binary relations for abstraction and refinement. In Workshop on Refinement and Abstraction, Amagasaki, Japan, November 1999.
- J. Shao. Mathematical Statistics. Springer Texts in Statistics. Springer Verlag, New York -Berlin -Heidelberg, 1999.
- E.D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Sys- tems, volume 6 of Texts in Applied Mathematics. Springer Verlag, 1990.
- F. van Breugel and J. Worrell. Towards quantitative verification of probabilistic transition systems. In Proceedings of ICALP'01, volume 2076 of Lecture Notes in Computer Science, pages 421-432. Springer Verlag, 2001.
- R.J. van Glabbeek. The Linear Time -Branching Time Spectrum I. The Seman- tics of Concrete, Sequential Processes, chapter 1, pages 3-99. Elsevier Science, Amsterdam, 2001. see [2].