Abstract
The self-organizing map is an unsupervised neural network first described by the Finnish scientist Teuvo Kohonen. By a self-organizing adaptation process this neural network learns to map the input space onto a discretized representation which preserves the topology and reflects the probability distribution of the input. This book is about how the original selforganizing map as well as variants and extensions of it can be applied in different fields. In fourteen chapters, a wide range of applications of the Self-Organizing Map is discussed. To name a few, these applications include the analysis of financial stability, the fault diagnosis of plants, the creation of well-composed heterogeneous teams and the application of the self-organizing map to the atmospheric sciences.
References (513)
- Kaufman, G. Ed. (1995). Banking, Financial Markets, and Systemic Risk Research in Financial Services Greenwich/London , 7
- de Bandt, O., & Hartmann, P. (2000, December). Systemic Risk: a Survey. Discussion Paper 2634, Centre for Economic Policy Research.
- Schwarcz, S. L. (2008). Systemic risk. Duke Law School Legal Studies Paper 163, Duke University.
- Martinez-Jaramillo, S., Perez, O., Embriz, F., & Dey, F. (2010). Systemic risk, financial contagion and financial fragility. Journal of Economic Dynamics & Control, 34(11), 2358-2374.
- Allen, F., & Gale, D. (2000). Financial contagion. Journal of Political Economy, 108, 1-33.
- Nier, E., Yang, J., Yorulmazer, T., & Alentorn, A. (2006). Network models and finan- cial stability. Journal of Economic Dynamics & Control, 31, 2033-2060.
- Boss, M., Elsinger, H., Summer, M., & Thurner, S. (2004). The network topology of the interbank market. Quantitative Finance, 4, 677-684.
- Muller, J. (2006). Interbank credit lines as a channel of contagion. Journal of Financial Services Research, 29, 37-60.
- Altman, E. I., & Saunders, A. (1998). Credit risk measurement: developments over the last 20 years. Journal of Banking and Finance, 21, 1721-1742.
- Benito, A., Delgado, F., & Pagés, J. (2004). A synthetic indicator of financial pressure for Spanish firms. Banco de Espana, Working paper [411].
- Bernhardsen, E. (2001). A Model of Bankruptcy Prediction. Norges Bank Working Pa- per 2001/10.
- Bunn, P., & Redwood, V. (2003). Company Accounts-Based Modelling of Business Failures and the Implications for Financial Stability. Bank of England Working Paper [210].
- Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8(4), 537-569.
- Allison, P. (1982). Discrete-time methods for the analysis of event history. Sociological Methodology, 61-99.
- Bonfim, D. (2009). Credit risk drivers: evaluating the contribution of firm level infor- mation and of macroeconomic dynamics. Journal of Banking and Finance, 33(2), 281-299.
- Bhattacharjee, A., Higson, C., Holly, S., & Kattuman, P. (2009). Macroeconomic insta- bility and business exit: determinants of failures and acquisitions of UK Firms. Eco- nomica, 76, 108-131.
- Qu, Y. (2008). Macro Economic Factors and Probability of Default. European Journal of Economics, Finance and Administrative Sciences [13], 1450-2275.
- Graph Mining Based SOM: A Tool to Analyze Economic Stability http://dx.doi.org/10.5772/51240
- Pederzoli, C., & Torricelli, C. (2005). Capital requirements and business cycle re- gimes: forward-looking modelling of default probabilities. Journal of Banking and Fi- nance, 29(12), 3121-3140.
- Kohonen, T. (2001). Self-Organizing Maps. Third, extended edition, Springer.
- Kaski, S., Kangas, J., & Kohonen, T. (1998). Bibliography of Self-Organizing Map (SOM) Papers: 1981-1997. Neural Computing Surveys, 1, 102-350.
- Oja, M., Kaski, S., & Kohonen, T. (2003). Bibliography of Self-Organizing Map (SOM) Papers: 1998-2001 Addendum. Neural Computing Surveys, 3, 1-156.
- Polla, M., Honkela, T., & Kohonen, T. (2009). Bibliography of Self-Organizing Map (SOM) Papers: 2002-2005 Addendum. TKK Reports in Information and Computer Sci- ence, Report TKK-ICS-R23, Helsinki University of Technology.
- Martin, B., & Serrano, Cinca. C. (1993). Self Organizing Neural Networks for the Analysis and Representation of Data: some Financial Cases. Neural Computing & Ap- plications, 1(2), 193-206.
- Deboeck, G., Kohonen, T., & Edrs, . (1998). Visual Explorations in Finance: with Self- Organizing Maps. Springer Finance, New York.
- Montefiori, M., & Resta, M. (2009). A computational approach for the health care market. Health Care Management Science, 12(4), 344-350.
- Resta, M. (2011). Assessing the efficiency of Health Care Providers: A SOM perspec- tive. In: Laaksonen J., Honkela T. Advances in Self Organizing Maps. LNCS 6731, Spring- er, Heidelberg, 30-39.
- Resta, M. (2009). Early Warning Systems: an approach via Self Organizing Maps with applications to emergent markets. Proceedings of the 2009 conference on New Directions in Neural Networks: 18th Italian Workshop on Neural Networks: WIRN 2008, IOS Press, Amsterdam, The Netherlands.
- Sarlin, P., & Eklund, T. (2011). Fuzzy clustering of the self-organizing map: some ap- plications on financial time series. In: Laaksonen J., Honkela T. Advances in Self Organiz- ing Maps. LNCS 6731, Springer, Heidelberg, 40-50.
- Resta, M. (2012). The Shape of Crisis: lessons from Self Organizing Maps. Forthcoming in C. Kahraman Ed.: Computational intelligence applications in industrial engineering, Springer, Atlantis.
- Kangas, J. A., Kohonen, T., & Laaksonen, J. (1990). Variants of self-organizing maps. IEEE Trans Neural Netw, 1(1), 93-99.
- Kleiweg, P. (1996). Neurale netwerken: Een inleidende cursus met practica voor de studie Alfa-Informatica, Master thesis, Rijksuniversiteit Groningen.
- Mayer, R., & Rauber, A. (2010). Visualising Clusters in Self-Organising Maps with Minimum Spanning Trees. Proceedings of the International Conference on Artificial Neu- ral Networks (ICANN'10), Springer-Verlag, Berlin, Heidelberg, 364-2-15821-842-6, 426-431. Developments and Applications of Self-Organizing Maps 24 Applications of Self-Organizing Maps Applications of Self-Organizing Maps
- Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proc. Natl. Acad. Sci., USA, 99, 7821-7826.
- Graph Mining Based SOM: A Tool to Analyze Economic Stability http://dx.doi.org/10.5772/51240
- J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18(5):401-409, 1969.
- A. Ultsch and H. P. Siemon. Kohonen self-organization feature maps for exploratory data analysis. In Proceedings of International Neural Network Conference, pages 305-308, Dordrecht, 1990. Kulwer Academic Publisher.
- A. Ultsch. U*-matrix: a tool to visualize clusters in high dimensional data. Technical Report 36, Department of Computer Science, University of Marburg, 2003.
- J. Vesanto. SOM-based data visualization methods. Intelligent Data Analysis, 3:111-126, 1999.
- S. Kaski, J. Nikkila, and T. Kohonen. Methods for interpreting a self-organized map in data analysis. In Proceedings of European Symposium on Artificial Neural Networks, Bruges, Belgium, 1998.
- I. Mao and A. K. Jain. Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks, 6(2):296-317, 1995.
- Hujun Yin. ViSOM-a novel method for multivariate data projection and structure visualization. IEEE Transactions on Neural Networks, 13(1):237-243, 2002.
- Mu-Chun Su and Hsiao-Te Chang. A new model of self-organizing neural networks and its application in data projection. IEEE Transactions on Neural Networks, 123(1):153-158, 2001.
- Lu Xu, Yang Xu, and Tommy W.S. Chow. PolSOM-a new method for multidimentional data visualization. Pattern Recognition, 43:1668-1675, 2010.
- R. Kamimura. Self-enhancement learning: target-creating learning and its application to self-organizing maps. Biological cybernetics, pages 1-34, 2011.
- R. Kamimura. Constrained information maximization by free energy minimization. International Journal of General Systems, 40(7):701-725, 2011.
- Billings, S., & Wei, H. (2005). A New Class of Wavelet Networks for Nonlinear Sys- tem Identification. IEEE Transaction on Neural Networks, 14(4), 862-874.
- Wang, X., Chen, B., Yang, S., & Mc Greavy, C. (1999a). Application of Wavelets and Neural Networks to Diagnostic Systems Development, 2, an Integrated Framework and its Application. Computers and Chemical Engineering, 23, 945-954.
- Chen, B. H., Wang, X. Z., Yang, S. H., & Mc Greavy, C. (1999). Application of wave- lets and neural networks to diagnostic system development, 1, feature extraction. Computers & Chemical Engineering , July 1999, 23(7), 899-906.
- Zhan, Z., Ikeuchi, H., Saiki, N., Imamura, T., Miyake, T., Toda, H., & Horihata, S. (2008). Fast Wavelet Instantaneous Correction and its Application to Abnormal Sig- nal Detection. International Journal of Innovative Computing Information and Control, 4(10), 2697-2710.
- Cheng, Y., Junxian, L., Feng, B., & Guan, W. (2009). Hermite Cubic Spline Multi- Wavelet Natural Boundary Element Method. ICIC Express Letters, 3(2), 213-217.
- Xing, Y., Wu, X., & Zhiliang, X. (2008). Multiclass Least Squares Auto-Correlation Wavelet Support Vector Machines. ICIC Express Letters, 2(4), 345-350.
- Benítez-Pérez, H., & Benitez-Perez, Alma. (2009). The use of ARMAX strategy and Self Organizing Maps for Feature Extraction and Classification for Fault Diagnosis. International Journal of Innovative Computing, Information and Control, IJICIC, 5(2), 1- ISIII08-025.
- Whiteley, J., Davis, A., & Mehrotra, Ahalt S. (1996). Observations and Problems Ap- plying ART2 for Dynamic Sensor Pattern Interpretation. IEEE Transactions on Sys- tems, Man, and Cybernetics-Part A: Systems and Humans, 26, 4, July.
- Moisen, C., Benítez-Pérez, H., & Medina, L. (2008). Non-contact Ultrasound for Flaw Characterisation using ARTMAP and Wavelet Analysis. DOI: 10.1504/IJMPT. 2008.022517, International Journal of Materials and Product Technology, 33(4), 387-403.
- Abbate, A., Koay, H., Frankel, J., Schroeder, S., & Das, P. (1997). Signal Detection and Noise Suppression Using a Wavelet Transform Signal Processor: Application to Ul- trasonic Flaw Detection. IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre- quency Control , January 1997, 44(1), 14-26.
- Frazier, M. (1999). An Introduction to Wavelets Through Linear Algebra, Springer-Verlag.
- Kohonen, T. (1989). Self-Organization and Associative Memory, Springer-Verlag, Berlin, Germany.
- Hassoum, H. (1995). Fundamentals of Artificial Neural Networks, Massachusetts Insti- tute of Technology, USA.
- Nelles, O. (2001). Non-Linear Systems Identification, Springer-Verlag, Berlin, Germany. Using Wavelets for Feature Extraction and Self Organizing Maps for Fault Diagnosis of Nonlinear Dynamic Systems http://dx.doi.org/10.5772/50235
- Blanke, M., Kinnaert, M., Lunze, J., & Staroswicki, . (2003). Diagnosis and Fault Toler- ant Control, Springer-Verlag.
- Benítez-Pérez, Héctor, & Benitez-Perez, Alma. (2010). The use of WAVELET strategy and Self Organizing Maps for Feature Extraction and Classification for Fault Diagno- sis. International Journal of Innovative Computing, Information and Control, IJICIC, 6(11), 4923-4936.
- Developments and Applications of Self-Organizing Maps 66 Applications of Self-Organizing Maps Applications of Self-Organizing Maps References
- Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of deci- sion-making units. European Journal of Operational Research, 2, 429-44.
- Samoilenko, S., & Osei-Bryson, K. M. (2010). Determining sources of relative ineffi- ciency in heterogeneous samples: Methodology using Cluster Analysis, DEA and Neural Networks. European Journal of Operational Research, 206(2), 479-87.
- Sharma, M. J., & Yu, S. J. (2009). Performance based stratification and clustering for benchmarking of container terminals. Expert Systems with Applications PART 1) , 5016-5022.
- Churilov, L., & Flitman, A. (2006). Towards fair ranking of olympics achievements: The case of Sydney 2000. Computers and Operations Research, 33(7), 2057-2082.
- Biondi, Neto. L., Lins, M. P. E., Gomes, E. G., Soares de Mello., J. C. C. B., & Oliveira, F. S. (2004). Neural data envelopment analysis: a simulation. International Journal of Industrial Engineering, 11, 14-24.
- Emrouznejad, A., & Shale, E. (2009). A combined neural network and DEA for meas- uring efficiency of large scale datasets. Computers and Industrial Engineering, 56(1), 249-54.
- Çelebi, D., & Bayraktar, D. (2008). An integrated neural network and data envelop- ment analysis for supplier evaluation under incomplete information. Expert Systems with Applications, 35(4), 1698-710.
- Angulo-Meza, L., Biondi Neto., L., Brandão, L. C., Andrade, F. V. S., Soares de Mello, J. C. C. B., & Coelho, P. H. G. (2011). Modelling with self-organising maps and data envelopment analysis: A case study in educational evaluation. Self organizing maps, new achievements, Vienna, Intech, 71-88.
- Paschoalino, F. F., & Soares de, Mello. J. C. C. B., Angulo-Meza L., Biondi Neto L. (2011). DMU clustering based on Cross Efficiency Evaluation. International Confer- ence on Data Envelopment Analysis and Its Applications to Management. Lima (Pe- ru).
- Sexton, T. R., Silkman, R. H., & Logan, A. J. (1986). Data Envelopment Analysis: Cri- tique and extensions. In: Silkman H, ed. Measuring efficiency: An assessment of data envelopment analysis. San Francisco Jossey-BassEditor: , 73-105.
- Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating tech- nical scale inefficiencies in data envelopment analysis. Mngmt Sc., 30(9), 1078-92.
- Doyle, J. R., & Green, R. H. (1994). Efficiency and cross-efficiency in DEA derivations, meanings and uses. Journal of the Operational Research Society, 45, 567-78.
- Doyle, J. R., & Green, R. H. (1995). Cross-Evaluation in DEA: Improving Discrimina- tion Among DMUs. Information Systems and Operational Research, 33(3), 205-22.
- Appa, G., Argyris, N., & Williams, H. P. (2006). A methodology for cross-evaluation in DEA. Working Paper: London School of Economics and Political Science Novem- ber 7.
- Soares de, Mello. J. C. C. B., Lins, M. P. E., & Gomes, E. G. (2002). Construction of a smoothed DEA frontier. Pesquisa Operacional., 28(2), 183-201.
- Wu, J., Liang, L., & Chen, Y. (2009). DEA game cross-efficiency approach to Olympic rankings. Omega, 37(4), 909-18.
- Gomes, E. G., Soares de Mello, J. C. C. B., Angulo-Meza, L., Silveira , J. Q., Biondi Ne- to, L., & Abreu, U. G. P. d. (2012). Some Remarks About Negative Efficiencies in DEA Models. In: Holtzman Y, ed. Advanced Topics in Applied Operations Management. Rijeka InTech , 113-32.
- Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008). The DEA game cross-efficiency model and its nash equilibrium. Operations Research, 56(5), 1278-88.
- Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008). Alternative secondary goals in DEA cross-efficiency evaluation. International Journal of Production Economics, 113(2), 1025-30.
- Mitra, P., Murthy, C. A., & Pal, S. K. (2002). Unsupervised feature selection using fea- ture similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3), 301-12.
- Willshaw, D. J., Buneman, O. P., & Longuet-Higgins, H. C. (1969). Non-holographic associative memory. Nature, 222, 960-2.
- Willshaw, D. J., & Von der, Malsburg. C. (1976). How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society of London Series B, 194, 431-45.
- Kohonen, T. (2001). Self-organizing maps. rd ed. ed. Berlin: Springer-Verlag.
- Haykin, S. (1999). Neural networks: a comprehensive foundation. nd ed. ed. New Jer- sey Prentice Hall Ex-Post Clustering of Brazilian Beef Cattle Farms Using Soms and Cross-Evaluation Dea Models http://dx.doi.org/10.5772/51324
- Bishop, C. M. (1995). Neural networks for pattern recognition. New York, Oxford University Press.
- Wu, J., Liang, L., Wu, D., & Yang, F. (2008). Olympics ranking and benchmarking based on cross efficiency evaluation method and cluster analysis: the case of Sydney 2000. International Journal of Enterprise Network Management, 2(4), 377-92.
- Plaxico, J. S., & Tweeten, L. G. (1963). Representative farms for policy and projection research. Journal of Farm Economics, 45, 1458-65.
- Centro de Estudos Avançados em Economia Aplicada. (2010). Metodologia do índice de preços dos insumos utilizados na produção pecuária brasileira. [cited 2010 March, 24];
- Gomes, E. G., Soares de Mello, J. C. C. B., Souza, L., Angulo-Meza, G. D. S., & Manga- beira, J. A.d. C. (2009). Efficiency and sustainability assessment for a group of farm- ers in the Brazilian Amazon. Annals of Operations Research.
- Womer, N. K., Bougnol, M. L., Dulá, J. H., & Retzlaff-Roberts, D. (2006). Benefit-cost analysis using data envelopment analysis. Annals of Operations Research, 145(1), 229-50.
- Kuosmanen, T., & Kortelainen, M. (2007). Valuing environmental factors in cost-ben- efit analysis using data envelopment analysis. Ecological Economics, 62(1), 56-65.
- Kuosmanen, T., Bijsterbosch, N., & Dellink, R. (2009). Environmental cost-benefit analysis of alternative timing strategies in greenhouse gas abatement: A data envel- opment analysis approach. Ecological Economics, 68(6), 1633-42.
- Bougnol, M. L., Dulá, J. H., Estellita, Lins. M. P., & Moreira da Silva, A. C. (2010). En- hancing standard performance practices with DEA. Omega, 38(1-2), 33-45.
- Angulo-Meza, L., Biondi, Neto. L., Soares de Mello, J. C. C. B., & Gomes, E. G. (2005). ISYDS-Integrated System for Decision Support (SIAD Sistema Integrado de Apoio a Decisão): A Software Package for Data Envelopment Analysis Model. Pesquisa Opera- cional., 25(3), 493-503.
- Fonseca MJ. A Paideia Grega Revisitada. RevistaMillenium 1998;3(9) 56-72.
- Zabala A. A Prática Educativa: Como Ensinar. Porto Alegre: Artmed; 1998.
- Libâneo JC. Didática. São Paulo: São Paulo; 1994.
- Behrens MA. Projetos de Aprendizagem Colaborativa num Paradigma Emergente. In: Moran JM, Masetto MT, Beherens MA. (eds.) Novas Tecnologias e Mediação Ped- agógica. Campinas: Papirus; 2000. p67-132.
- Torres PL, Irala EAF. Aprendizagem Colaborativa. In: Torres PL. (ed.) Algumas Vias para Entretecer o Pensar e o Agir. Curitiba: SENAR-PR; 2007. p65-97.
- Panitz T. Collaborative versus cooperative learning: A comparison of the two con- cepts which will help us understand the underlying nature of interactive learning, Cooperative Learning and College Teaching 1997;8(2) 1-13.
- Perrenoud P. Dix NouvellesCompétences pour Enseigner. Paris: ESF Éditeur; 1999.
- Colenci AT. O ensino de engenharia como uma atividade de serviços: a exigência de atuação em novos patamares de qualidade acadêmica. MSc thesis. Universidade de São Paulo; 2000.
- Maybi S. Team Building: comoconstruirequipeseficazes. Specialist thesis. Universi- dade de Passo Fundo; 2000.
- Gillies RM. Cooperative Learning: Integrating Theory and Practice. Thousand Oaks: Sage Publications; 2007.
- Millis B, Rhem J. Cooperative Learning in Higher Education: Across the Disciplines, Across the Academy. Sterling: Stylus Publishing; 2010.
- Costa JAF. Classificação automática e análise de dados por redes neurais auto-organ- izáveis. DSc thesis. UniversidadeEstadual de Campinas; 1999.
- Amorim T. Conceitos, técnicas, ferramentas
- Tan PN, Steinbach M, Kumar V. Introduction to Data Mining. Boston: Addison Wes- ley; 2005.
- Sferra HH, Corrêa AMCJ. Conceitos e Aplicações de Data Mining: Data Mining Con- ceptsandApplications. Revista de Ciência&Tecnologia 2003;11(22): 19-34.
- A Self -Organizing Map Based Strategy for Heterogeneous Teaming http://dx.doi.org/10.5772/52776
- Ha SH, Bae SM, Park SC. Web mining for distance education. In: IEEE Engineering Management Society (eds.) ICMIT 2000: Management in the 21st Century: proceed- ings of the IEEE International Conference on Management of Innovation and Tech- nology, v2, p715-719, ICMIT2000, 12-15 Nov 2000, Orchard Hotel, Singapore. IEEE Engineering Management Society; 2000.
- Machado AP, Ferreira R, Bittencourt II, Elias, E, Brito P, Costa E. Mineração de Texto em Redes Sociais Aplicada à Educação a Distância. Colabor@ -Revista Digital da CVA 2010; 6(23). http://pead.ucpel.tche.br/revistas/index.php/colabora/article/down- load/132/115 (accessed 20 May 2012).
- Paiva R, Bittencourt II, Pacheco H, Silav AP, Jaques P, Isotani S. Mineração de Dados e a Gestão Inteligente da Aprendizagem: Desafios e Direcionamento. In: SBC procee- dingsofthe I Workshop de Desafios da Computação Aplicada à Educação, Desa- fIE'2012, 17-18 July 2012, Curitiba, Brazil. Curitiba: UFPR; 2012.
- Baker RSJ, Isotani S, Carvalho AMJB. Mineração de Dados Educacionais: Oportuni- dades para o Brasil. RevistaBrasileira de InformáticanaEducação2011;19(2) 3-13.
- Baker RSJ. Date Mining for Education. In: McGaw B, Peterson P, Baker E. (eds.) Inter- national Encyclopedia of Education. Oxford: Elsevier; 2010. p112-118.
- Zaina LAM, Ruggiero WV, Bressan, G. Metodologia para Acompanhamento da Aprendizagem através da Web, Revista Brasileira de Informática na Educação 2004;12(1): 20-28. http://www.lbd.dcc.ufmg.br/colecoes/rbie/12/1/002.pdf (accessed 22 May 2012).
- Milani F, Camargo SS. Aplicação de Técnicas de Mineração de Dados na Previsão de Propensão à Evasão Escolar. In: Congresso Sul Brasileiro de Computação: procee- dingsofthe V Congresso Sul Brasileiro de Computação, V SULCOMP, 29 Sept -1 Oct 2010, Criciúma, Brazil. Criciúma: Ed. UNESC; 2010.
- Silveira SR. Formação de grupos colaborativos em um ambiente multiagente interati- vo de apredizagem na internet: um estudo de caso utilizando sistemas multiagentes e algoritmos genéticos. DScthesis. Universidade Federal do Rio Grande do Sul; 2006.
- Kampff AJC. Mineração de dados educacionais para geração de alertas em ambientes virtuais de aprendizagem como apoio à prática docente. DSc thesis. Universidade Federal do Rio Grande do Sul; 2009.
- Pimentel EP, França V, Omar N. A identificação de grupos de aprendizes no ensino presencial utilizando técnicas de clusterização. In: Sampaio FF, Motta CLR, Santoro FM (eds.) Proceedingsofthe XIV Simpósio Brasileiro de Informática na Educação, SBIE'2003, 12-14 November 2003, Rio de Janeiro, Brazil. Rio de Janeiro: NCE/IM/ UFRJ; 2003.
- Azambuja S. Estudo e implementação da análise de agrupamento em ambientes vir- tuais de aprendizagem. MScthesis. Universidade Federal do Rio de Janeiro; 2005. Developments and Applications of Self -Organizing Maps 114 Applications of Self-Organizing Maps Applications of Self-Organizing Maps
- Zanella A, Lopes LFD. Melhoria da qualidade do ensino através da análise de agru- pamento. In: ABEPRO (eds.) Proceedingsofthe XXVI Encontro Nacional de Engenha- ria de Produção, ENEGEP'2006, 9-11 October 2006, Fortaleza, Brazil. Fortaleza: ABEPRO; 2006.
- Mirkin B. Clustering for Data Mining: A Data Recovery Approach. Boca Raton: Chapman and Hall/CRC; 2005.
- Faceli K, Lorena AC, Gama J, Carvalho ACPLF. Inteligência Artificial: Uma Aborda- gem de Aprendizado de Máquina. Rio de Janeiro: LTC; 2011.
- Hair Jr. JF, Anderson RE, Tatham RL, Black WC. Multivariate Data Analysis. Upper Saddle River: Prentice Hall; 2005.
- Frei F. Introdução à Análise de Agrupamento: Teoria e Prática. São Paulo: Unesp; 2006.
- Kasznar IK, Gonçalves BML. Técnicas de Agrupamento: Clustering. EletroRevista: Revista Científica e Tecnológica 2007;6(20): 1-5. http://www.ibci.com.br/20Cluster- ing_Agrupamento.pdf (accessed 22 May 2012).
- Bussab WO, Miazaki ES, Andrade DF. Introdução à análise de agrupamento. São Paulo: ABE/IME/USP; 1990.
- Kuncheva LI. Combining Pattern Classifiers: Methods and Algorithms. New Jersey: John Wiley & Sons; 2004.
- Pölzlbauer G. Survey and comparison of quality measures for self-organizing maps. In: Paralič J, Pölzlbauer G, Rauber A. (eds.) Proceedings of the Fifth Workshop on Data Analysis, WDA'04, 24-27 June 2004, VysokéTatry. Slovakia: Elfa Academic Press; 2004.
- Salazar Giron EJ, Arroyave G, Ortega Lobo O. Evaluating several unsupervised class- selection methods. In: Perez Ortega G, BranchBedoya, JW (eds.) Memorias Encuentro de Investigación sobre Tecnologías de Información Aplicadas a laSolución de Prob- lemas: EITI-2001, Medellín: Universidad Nacional de Colombia, 2001. p1-6.
- Salazar Giron EJ, Vélez AC, Mario Parra C, Ortega Lobo O. A cluster validity index for comparing non-hierarchical clustering methods. In: Ortega Lobo O, BranchBe- doya JW. (eds.) Memorias Encuentro de Investigación sobre Tecnologías de Informa- ción Aplicadas a laSolución de Problemas: EITI-2002, Medellín: Universidad de Antioquia, 2002. p115-120.
- Shim Y, Chung J, Choi, I. A comparison study of cluster validity indices using a non- hierarchical clustering algorithm. In: IEEE Computer Society Press (eds.) Proceedings A Self -Organizing Map Based Strategy for Heterogeneous Teaming http://dx.doi.org/10.5772/52776
- of the International Conference on Computational Intelligence for Modeling, Control and Automation CIMCA2005, 28-30 November 2005, Vienna, Austria; 2005.
- Kim M, Ramakrishna RS. New Indices for Cluster Validity Assessment. Pattern Rec- ognition Letters 2005;26(5) 2353-2363.
- Gonçalves ML, Netto MLA, Costa JAF, ZulloJr J. Data clustering using self-organiz- ing maps segmented by mathematic morphology and simplified cluster validity in- dexes. In: International Neural Network Society (eds.) proceedings of IEEE International Joint Conference on Neural Networks, IJCNN'06, 16-21 July 2006, Van- couver, Canada. Piscataway: IEEE Xplore; 2006.
- Saitta S, Raphael B, Smith IF. A bounded index for cluster validity. In: Perner P (ed.) LNCS: Lecture Notes in Artificial Intelligence 4571: proceedings of the 5th Interna- tional Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM'2007, 18-20 July 2007, Leipzig, Germany. Berlin: Springer-Verlag; 2007
- Kohonen T. Self-Organizing Maps. Berlin: Springer; 2001.
- MacQueen JB. Some methods for classification and analysis of multivariate observa- tions. In: Le Cam LM, Neyman J. (eds.) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Jun 21-Jul 18 1965 and Dec 27 1965-Jan 7 1966, Berkeley, USA. Berkeley: University of California Press; 1967.
- Linde Y, Buzo A, Gray RM. An Algorithm for Vector Quantizer Design. IEEE Trans- actions on Communications 1980;28(1) 84-95.
- Xu R, Wunsch II D. Survey of Clustering Algorithms. IEEE Transaction on Neural Networks 2005;16(3) 645-678.
- Chiang MMT, Mirkin B. Experiments for the number of clusters in K-means. In: Neves J, Santos MF, Machado JM (eds.) LNCS: Progress in Artificial Intelligence 4874: proceedings of the 13th Portuguese Conference on Artificial Intelligence, EP- IA'2007, 3-7 December 2007, Guimaraes, Portugal. Berlin: Springer-Verlag; 2007.
- Leisch F. Ensemble methods for neural clustering and classification. PhD Thesis. TeschnischeUniversität Wien; 1998.
- Han J, Kamber M. Data Mining: Concepts and Techniques. San Francisco: Morgan Kaufmann; 2006.
- Ultsch A. Knowledge Extraction from Self-Organizing Neural Networks. In: Opitz O, Lausen B, Klar R. (ed.) Information and classification. Berlin: Springer-Verlag; 1993. p301-306.
- Davies DL, Bouldin DW. A Cluster Separation Measure. IEEE Transactions on Pat- tern Analysis and Machine Intelligence 1979;1(2) 224-227.
- Villanueva WJP, Vonzuben FJ. Índices de validação de agrupamentos. In: Wu ST (ed.)
- Proceedingsofthe I Encontro dos Alunos e Docentes do Departamento de En- Developments and Applications of Self -Organizing Maps 116 Applications of Self-Organizing Maps Applications of Self-Organizing Maps genharia de Computação e Automação Industrial, EADCA'2008, 12-13 March 2008, Campinas, Brazil. Campinas: UNICAMP; 2008.
- UCI repository of machine learning databases. Department of Information and Com- puter Science, University of California, Irvine, CA, USA. http://www.ics.uci.edu/ ~mlearn/MLRepository.html (accessed 28 July 2012).
- Vesanto J, Alhoniemi E. Clustering of the self-organizing map. IEEE Transactions Neural Networks 2000;11(3) 586-600.
- A Self -Organizing Map Based Strategy for Heterogeneous Teaming http://dx.doi.org/10.5772/52776
- Bolle R., Connell J., Pankanti S., Ratha N., Senior A.Guide to Biometrics, Springer; 2004
- Monrose F., Rubin A.D., Keystroke Dynamics as a Biometric for Authentication. Fu- ture Generation Computer Systems: March;2000
- Brault J.J., Plamondon R. A Complexity Measure of Handwritten Curves: Modelling of Dynamic Signature Forgery. IEEE Trans. Systems, Man and Cybernetics. 1993; 23 400-3
- Kohonen T. Self Organizing Maps, Springer;ISBN 3-540-67921-9
- Dozono H., Nakakuni M., et al. The Analysis of Pen Pressures of Handwritten Sym- bols on PDA Touch Panel using Self Organizing Maps. Proceedings of the Interna- tional Conference on Security and Management; 2005: 440-5.
- Dozono H., Nakakuni M., et al. The Analysis of pen Inputs of Handwritten Symbols using Self Organizing Maps and its Application to User Authentication. Proceedings of 2006 International Joint Conference on Neural Networks: 2006; 4884-9.
- Dozono H., Nakakuni M., et al. The Analysis of Key Stroke Timings using Self Or- ganizing Maps and its Application to Authentication. Proceedings of the Internation- al Conference on Security and Management; 2006: 100-5
- Dokic S., Kulesh A., et al. An Overview of Multi-modal Biometrics for Authentica- tion. Proceedings of the International Conference on Security and Management; 2007: 39-44
- Nakakuni M., Dozono H., et al. Application of Self Organizing Maps for the Integrat- ed Authentication using Keystroke Timings and Handwritten Symbols. WSEAS TRANSACTIONS on INFORMATION SCIENCE & APPLICATIONS. 2006; 2-4 413-420
- Dozono H., Nakakuni M., et al. Application of Self Organizing Maps to User Authen- tication Using Combination of Key Stroke Timings and Pen Calligraphy. Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE; 2006: 105-10
- Dozono H., Nakakuni M., et al. Application of the Supervised Pareto Learning Self Organizing Maps to Multi-modal Biometric Authentication. Journal of Information Processing Society of Japan. 2008 49(9) 3028-37
- Dozono H., Nakakuni M., et al. Comparison of the Adaptive Authentication Systems for Behavior Biometrics using the Variations of Self Organizing Maps
- Dozono H., Nakakuni M., et al. The Adaptive Authentication System for Behavior Biometrics Using Pareto Learning Self Organizing Maps. Neural Information Proc- essing Models and Applications ICONIP 2010. Springer; 2010 LNCS6444 383-90
- Application of Self Organizing Maps to Multi Modal Adaptive Authentication System Using Behavior Biometrics http://dx.doi.org/10.5772/52100
- Dozono H., Nakakuni M., et al. The Authentication System for Multi-modal Behavior Biometrics Using Concurrent Pareto Learning SOM, Artificial Neural Networks and Machine Learning-ICANN 2011. Springer; 2011 LNCS6792 197-204
- Dozono H., Nakakuni M., et al. Application of Supervised Pareto Learning Self Or- ganizing Maps and Its Incremental Learning. Advances in Self Organizing Maps WSOM 2009. Springer; 2009 LNCS 5629 54-62
- Neagoe, V., E., Ropot, A., D. Concurrent Self-Organizing Maps for Pattern Classifica- tion, Proceeding ICCI '02 Proceedings of the 1st IEEE International Conference on Cognitive Informatics; 2002: 304-12
- Pantic, M., & Rothkrantz, L. J. M. (2000). Automatic Analysis of Facial Expressions: The State of the Art. IEEE Trans. Pattern Analysis and Machine Intelligence, 22(12), 1424-1445.
- Tian, Y. L., Kanade, T., & Cohn, J. F. (2001). Recognizing Action Units for Facial Ex- pression Analysis. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(2), 97-116.
- Akamatsu, S. (2002). Recognition of Facial Expressions by Human and Computer [I]: Facial Expressions in Communications and Their Automatic Analysis by Computer. The Journal of the Institute of Electronics, Information, and Communication Engi- neers (in Japanese), 85(9), 680-685.
- Akamatsu, S. (2002). Recognition of Facial Expressions by Human and Computer [II]: The State of the Art in Facial Expression Analysis-1; Automatic Classification of Fa- cial Expressions. The Journal of the Institute of Electronics, Information, and Com- munication Engineers (in Japanese), 85(10), 766-771.
- Akamatsu, S. (2002). Recognition of Facial Expressions by Human and Computer [III]: The State of the Art in Facial Expression Analysis-2; Recognition of Facial Ac- tions. The Journal of the Institute of Electronics, Information, and Communication Engineers (in Japanese), 85(12), 936-941.
- Akamatsu, S. (2003). Recognition of Facial Expressions by Human and Computer [IV: Finish]: Toward Computer Recognition of Facial Expressions Consistent with the Perception by Human. The Journal of the Institute of Electronics, Information, and Communication Engineers (in Japanese), 86(1), 54-61.
- Fasel, B., & Luettin, J. (2003). Automatic Facial Expression Analysis: A Survey. Pat- tern Recognition, 36, 259-275.
- Russell, J. A., & Bullock, M. (1985). Multidimensional Scaling of Emotional Facial Ex- pressions: Similarity from Preschoolers to Adults. J. Personality and Social Psychology, 48, 1290-1298.
- Yamada, H. (2000). Models of Perceptual Judgments of Emotion from Facial Expres- sions. Japanese Psychological Review in Japanese), 43(2), 245-255.
- Ishii, M., Sato, K., Madokoro, H., & Nishida, M. (2008). Generation of Emotional Fea- ture Space based on Topological Characteristics of Facial Expression Images. Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition All pages (CD-ROM), 6.
- Ishii, M., Sato, K., Madokoro, H., & Nishida, M. (2008). Extraction of Facial Expres- sion Categories and Generation of Emotion Map Using Self-Mapping. IEICE Trans. Information and Systems (in Japanese), J91-D(11), 2659-2672.
- Kohonen, T. (1995). Self-Organizing Maps. Springer Series in Information Sciences, 10.1007/978-3-642-97610-0.
- Quantification of Emotions for Facial Expression: Generation of Emotional Feature Space Using Self-Mapping http://dx.doi.org/10.5772/51136
- Nielsen, R. H. (1987). Counter Propagation Networks. Applied Optics, 26(23), 4979-4984.
- Pantic, M., Valstar, M. F., Rademaker, R., & Maat, L. (2005). Webbased Database for Facial Expression Analysis. Proc. IEEE Int. Conf. Multimedia and Expo, 317-321.
- Gross, R. (2005). Face Databases, Handbook of Face Recognition. , S.Li and A.Jain, ed., Springer-Verlag
- Lienhart, R., & Maydt, J. (2002). An Extended Set of Haar-like Features for Rapid Ob- ject Detection. Proc. IEEE Int. Conf. Image Processing, 1, 900-903.
- Developments and Applications of Self-Organizing Maps 160 Applications of Self-Organizing Maps Applications of Self-Organizing Maps References
- Yang, C. C., & Hsu, Y. L. (2010). A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring. Sensors, 10(8), 7772-7788.
- Kiani, K., Snijders, C. J., & Gelsema, E. S. (1997). Computerized Analysis of Daily Life Motor Activity for Ambulatory Monitoring. Technol. Health. Care 1997, 5, 307-318.
- Mathie, M. J., Celler, B. G., Lovell, N. H., & Coster, A. C. F. (2004). Classification of Basic Daily Movements Using a Triaxial Accelerometer. Med. Biol. Eng. Comput., 42, 679-687.
- Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accel- erometer for Ambulatory Monitoring. IEEE. Trans. Inf. Technol. Biomed., 10, 156-167.
- Najafi, B., Aminian,, K, Loew,, F, Blanc,, Y, & Robert, P. A. (2002). Measurement of Stand-Sit and Sit-Stand Transitions Using a Miniature Gyroscope and Its Application A Self Organizing Map Based Motion Classifier with an Extension to Fall Detection Problem and Its Implementation on a Smartphone http://dx.doi.org/10.5772/51002
- in Fall Risk Evaluation in the Elderly. IEEE Trans. on Biomedical Engineering, 49(8), 843-851.
- Yang, C. C., & Hsu, Y., L. (2009). Development of a Wearable Motion Detector for Telemonitoring and Real-Time Identification of Physical Activity. Telemed. J. E. Health, 15, 62-72.
- Veltink, P. H., Bussmann, B. J., de Vries, W., Martens, W. L., & van Lummel, R. C. (1996). Detection of Static and Dynamic Activities Using Uniaxial Accelerometers. IEEE. Trans. Rehabil. Eng., 4, 375-385.
- Foerster, F., Smeja, M., & Fahrenberg,, J. (1999). Detection of Posture and Motion by Accelerometry: A Validation Study in Ambulatory Monitoring. Comput. Human. Be- hav., 15, 571-583.
- Lyons, G. M., Culhane K., M., Hilton, D., Grace, P. A., & Lyons,, D. (2005). A Descrip- tion of an Accelerometer-Based Mobility Monitoring Technique. Med. Eng. Phys., 27, 497-504.
- Ohtaki, Y., Susumago, M., Suzuki, A., Sagawa, K., Nagatomi, R., & Inooka,, H. (2005). Automatic Classification of Ambulatory Movements and Evaluation of Energy Con- sumptions Utilizing Accelerometers and a Barometer. Microsyst. Technol., 11, 1034-1040.
- Sekine, M., Tamura, T., Togawa, T., & Fukui, Y. (2000). Classification of Waist-Accel- eration Signals in a Continuous Walking Record. Med. Eng. Phys., 22, 285-291.
- Bussmann, H. B., Reuvekamp, P. J., Veltink, P. H., Martens, W. L., & Stam, H. J. (1998). Validity and Reliability of Measurements Obtained with an "Activity Moni- tor" in People with and without a Transtibial Amputation. Phys. Ther., 78, 989-998.
- Lau, H., Y., Tong, K. Y., & Zhu, H. (2009). Support Vector Machine for Classification of Walking Conditions of Persons after Stroke with Dropped Foot. Hum. Mov. Sci., 28, 504-514.
- Zhang, T., Wang, J., Xu, L., & Liu, P. (2006). Fall Detection by Wearable Sensor and One-Class SVM Algorithm. Intel. Comput. Signal Process. Pattern Recognit., 345, 858-863.
- Huynh, T., & Schiele, B. (2006). Towards Less Supervision in Activity Recognition from Wearable Sensors. Proceedings of the 10th IEEE International Symposium on Weara- ble Computers, Montreux, Switzerland, 11-14 October 2006, 3-10.
- Long, X., Yin, B., & Aarts, R. M. (2009). Single-Accelerometer-Based Daily Physical Activity Classification. Proceedings of the 31st Annual International Conference of the IEEE EMBS, Minneapolis, MN, USA, 2-6 September 2009, 6107-6110.
- Allen, F. R., Ambikairajah, E., Lovell, N. H., & Celler, B. G. (2006). Classification of a Known Sequence of Motions and Postures from Accelerometry Data Using Adapted Gaussian Mixture Models. Physiol. Meas., 27, 935-951.
- Developments and Applications of Self-Organizing Maps 178 Applications of Self-Organizing Maps Applications of Self-Organizing Maps
- Mannini, A., & Sabatini, A. M. (2010). Machine Learning Methods for Classifying Human Physical Activity from On-Body Accelerometers. Sensors, 10, 1154-1175.
- Pober, D. M., Staudenmayer, J., Raphael, C., & Freedson, P. S. (2006). Development of Novel Techniques to Classify Physical Activity Mode Using Accelerometers. Med. Sci. Sports Exerc., 38, 1626-1634.
- Kohonen, T. (1990). The Self-Organizing Map. Proc. of IEEE, 78(9), 1990, 1464-1480.
- Kohonen,, T., Oja, E., Simula, O., Visa, A., & Kangas, J. (2002). Engineering applica- tions of the self-organizing map. Proc. of IEEE, 84(10), 2002, 1358-1384.
- Android Developer. (2011). Android Developer Guide, Available from:, http://devel- oper.android.com/index.html, 21-Dec-2011.
- Ericsson Labs. (2011). Mobile Sensor Actuator Link. https://labs.ericsson.com/devel- oper-community/blog/mobile-sensor-actuator-link, 21-Dec-2011.
- A Self Organizing Map Based Motion Classifier with an Extension to Fall Detection Problem and Its Implementation on a Smartphone http://dx.doi.org/10.5772/51002
- Ledford, H. (2010). Big science: The cancer genome challenge. Nature, 464(7291), 972-974.
- Toft, C., & Andersson, S. G. (2010). Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet.
- Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270(5235), 467-470.
- Using Self-Organizing Maps to Visualize, Filter and Cluster Multidimensional Bio-Omics Data http://dx.doi.org/10.5772/51702
- Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H., & Brown, E. L. (1996). Expres- sion monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotech- nol, 14(13), 1675-1680.
- Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T. L., Wilson, C. J., Bell, S. P., & Young, R. A. (2000). Genome-wide location and function of DNA binding proteins. Science, 290(5500), 2306-2309.
- Carroll, J. S., Meyer, C. A., Song, J., Li, W., Geistlinger, T. R., Eeckhoute, J., Brodsky, A. S., Keeton, E. K., Fertuck, K. C., Hall, G. F., Wang, Q., Bekiranov, S., Sementchen- ko, V., Fox, E. A., Silver, P. A., Gingeras, T. R., Liu, X. S., & Brown, M. (2006). Ge- nome-wide analysis of estrogen receptor binding sites. Nat Genet, 38(11), 1289-1297.
- Johnson, D. S., Mortazavi, A., Myers, R. M., & Wold, B. (2007). Genome-wide map- ping of in vivo protein-DNA interactions. Science; , 316(5830), 1497-1502.
- Domon, B., & Aebersold, R. (2006). Mass spectrometry and protein analysis. Science, 312(5771), 212-217.
- Walhout, A. J., & Vidal, M. (2001). High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. Methods, 24(3), 297-306.
- Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nat Biotechnol, 26(10), 1135-1145.
- Wang, Z., Gerstein, M., & Snyder-Seq, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10(1), 57-63.
- Hood, L., Heath, J. R., Phelps, M. E., & Lin, B. (2004). Systems biology and new tech- nologies enable predictive and preventative medicine. Science, 306(5696), 640-643.
- Treangen, T. J., & Salzberg, S. L. (2012). Repetitive DNA and next-generation se- quencing: computational challenges and solutions. Nat Rev Genet, 13(1), 36-46.
- Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 95(25), 14863-14868.
- Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., & Golub, T. R. (1999). Interpreting patterns of gene expression with self-organ- izing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A, 96(6), 2907-2912.
- Kohonen, T. (2001). Organizing Maps. Third, extended edition Springer
- Vesanto, J. (1999). SOM-based data visualization methods. Intelligent Data Analysis, 3(2), 111-126.
- Developments and Applications of Self-Organizing Maps 198 Applications of Self-Organizing Maps Applications of Self-Organizing Maps
- Xiao, L., Wang, K., Teng, Y., & Zhang, J. (2003). Component plane presentation inte- grated self-organizing map for microarray data analysis. FEBS Lett.
- Fang, H., Du, Y., Xia, L., Li, J., Zhang, J., & Wang, K. A. (2011). A topology-preserv- ing selection and clustering approach to multidimensional biological data. OMICS.
- Vesanto, J., & Ahola, J. Hunting for Correlations in Data Using the Self-Organizing Map. In Proc. of International ICSC Congress on Computational Intelligence Meth- ods and Applications (CIMA'99), Rochester, New York, USA, June 22-25
- Xu, K., Guidez, F., Glasow, A., Chung, D., Petrie, K., Stegmaier, K., Wang, K. K., Zhang, J., Jing, Y., Zelent, A., & Waxman, S. (2005). Benzodithiophenes potentiate dif- ferentiation of acute promyelocytic leukemia cells by lowering the threshold for li- gand-mediated corepressor/coactivator exchange with retinoic acid receptor alpha and enhancing changes in all-trans-retinoic acid-regulated gene expression. Cancer Res, 65(17), 7856-7865.
- Zheng, P. Z., Wang, K. K., Zhang, Q. Y., Huang, Q. H., Du, Y. Z., Zhang, Q. H., Xiao, D. K., Shen, S. H., Imbeaud, S., Eveno, E., Zhao, C. J., Chen, Y. L., Fan, H. Y., Wax- man, S., Auffray, C., Jin, G., Chen, S. J., Chen, Z., & Zhang, J. (2005). Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differen- tiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A, 102(21), 7653-7658.
- Du, Y., Wang, K., Fang, H., Li, J., Xiao, D., Zheng, P., Chen, Y., Fan, H., Pan, X., Zhao, C., Zhang, Q., Imbeaud, S., Graudens, E., Eveno, E., Auffray, C., Chen, S., Chen, Z., & Zhang, J. (2006). Coordination of intrinsic, extrinsic, and endoplasmic reticulum- mediated apoptosis by imatinib mesylate combined with arsenic trioxide in chronic myeloid leukemia. Blood, 107(4), 1582-1590.
- Fang, H., Wang, K., & Zhang, J. (2008). Transcriptome and proteome analyses of drug interactions with natural products. Curr Drug Metab, 9(10), 1038-1048.
- Wang, K., Fang, H., Xiao, D., Zhu, X., He, M., Pan, X., Shi, J., Zhang, H., Jia, X., Du, Y., & Zhang, J. (2009). Converting redox signaling to apoptotic activities by stress-re- sponsive regulators HSF1 and NRF2 in fenretinide treated cancer cells. PloS one, .
- Bi, Y. F., Liu, R. X., Ye, L., Fang, H., Li, X. Y., Wang, W. Q., Zhang, J., Wang, K. K., Jiang, L., Su, T. W., Chen, Z. Y., & Ning, G. (2009). Gene expression profiles of thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome reveal novel mo- lecular mechanism. Endocr Relat Cancer, 16(4), 1273-1282.
- Fang, H., Yang, Y., Li, C., Fu, S., Yang, Z., Jin, G., Wang, K., Zhang, J., & Jin, Y. (2010). Transcriptome analysis of early organogenesis in human embryos. Dev Cell, 19(1), 174-184.
- Wu, K., Dong, D., Fang, H., Levillain, F., Jin, W., Mei, J., Gicquel, B., Du, Y., Wang, K., Gao, Q., Neyrolles, O., & Zhang, J. (2012). An Interferon-Related Signature in the Using Self-Organizing Maps to Visualize, Filter and Cluster Multidimensional Bio-Omics Data http://dx.doi.org/10.5772/51702
- Transcriptional Core Response of Human Macrophages to Mycobacterium tubercu- losis Infection. PloS one, e38367.
- Khaitovich, P., Enard, W., Lachmann, M., & Paabo, S. (2006). Evolution of primate gene expression. Nat Rev Genet, 7(9), 693-702.
- Brawand, D., Soumillon, M., Necsulea, A., Julien, P., Csardi, G., Harrigan, P., Weier, M., Liechti, A., Aximu-Petri, A., Kircher, M., Albert, F. W., Zeller, U., Khaitovich, P., Grutzner, F., Bergmann, S., Nielsen, R., Paabo, S., & Kaessmann, H. (2011). The evo- lution of gene expression levels in mammalian organs. Nature, 478(7369), 343-348.
- Sammon, J. W. (1969). A Nonlinear Mapping for Data Structure Analysis. IEEE Trans. Comput., 18(5), 401-409.
- Plath, K., & Lowry, W. E. (2011). Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet, 12(4), 253-265.
- Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V. B., Wong, E., Orlov, Y. L., Zhang, W., Jiang, J., Loh, Y. H., Yeo, H. C., Yeo, Z. X., Narang, V., Govindarajan, K. R., Leong, B., Shahab, A., Ruan, Y., Bourque, G., Sung, W. K., Clarke, N. D., Wei, C. L., & Ng, H. H. (2008). Integration of external signaling pathways with the core tran- scriptional network in embryonic stem cells. Cell, 133(6), 1106-1117.
- Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., Bol- drick, J. C., Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L., Marti, G. E., Moore, T., Hudson, J,., Jr, Lu, L., Lewis, D. B., Tibshirani, R., Sherlock, G., Chan, W. C., Greiner, T. C., Weisenburger, D. D., Armitage, J. O., Warnke, R., Levy, R., Wilson, W., Grever, M. R., Byrd, J. C., Botstein, D., Brown, P. O., & Staudt, L. M. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature; , 403(6769), 503-511.
- Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., & Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286(5439), 531-537.
- Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59-69.
- Oja, M., Kaski, S., & Kohonen, T. (2002). Bibliography of Self-Organizing Map ( SOM ) Papers : 1998-2001 Addendum. Neural Networks, 3(1), 1-156.
- Po, M., Honkela, T., & Kohonen, T. (2009). Bibliography of self-organizing map (som) papers: 2002-2005 addendum. TKK Reports in Information and Computer Science, Helsin- ki University of Technology, Report TKK-ICS-R23.
- Juha, V., Johan, H., Esa, A., & Juha, P. (1999). Self-Organizing Map in Matlab: the SOM Toolbox. Developments and Applications of Self-Organizing Maps 200 Applications of Self-Organizing Maps Applications of Self-Organizing Maps
- Vesanto, J., & Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Trans Neural Netw, 11(3), 586-600.
- Siponen, M., Vesanto, J., Simula, O., & Vasara, P. An approach to automated inter- pretation of SOM. In Advances in Self-Organizing Maps: Springer: (2001). , 2001, 89-94.
- Toronen, P., Kolehmainen, M., Wong, G., & Castren, E. (1999). Analysis of gene ex- pression data using self-organizing maps. FEBS Lett, 451(2), 142-146.
- White, K. P., Rifkin, S. A., Hurban, P., & Hogness, D. S. (1999). Microarray analysis of Drosophila development during metamorphosis. Science, 286(5447), 2179-2184.
- Kaski, S. (2001). SOM-Based Exploratory Analysis of Gene Expression Data. N, Yin H, Allinson L, and Slack J. London: Springer , 2001124-131.
- Torkkola, K., Gardner, R. M., Kaysser-Kranich, T., & Ma, C. (2001). Self-organizing maps in mining gene expression data. Inf. Sci.
- Kanaya, S., Kinouchi, M., Abe, T., Kudo, Y., Yamada, Y., Nishi, T., Mori, H., & Ike- mura, T. (2001). Analysis of codon usage diversity of bacterial genes with a self-or- ganizing map (SOM): characterization of horizontally transferred genes with emphasis on the E. coli O157 genome. Gene.
- Wang, H. C., Badger, J., Kearney, P., & Li, M. (2001). Analysis of codon usage pat- terns of bacterial genomes using the self-organizing map. Mol Biol Evol, 18(5), 792-800.
- Nikkila, J., Törönen, P., Kaski, S., Venna, J., Castrén, E., & Wong, G. (2002). Analysis and visualization of gene expression data using self-organizing maps. Neural Netw.
- Covell, D. G., Wallqvist, A., Rabow, A. A., & Thanki, N. (2003). Molecular classifica- tion of cancer: unsupervised self-organizing map analysis of gene expression micro- array data. Mol Cancer Ther, 2(3), 317-332.
- Buckhaults, P., Zhang, Z., Chen, Y. C., Wang, T. L., St, Croix. B., Saha, S., Bardelli, A., Morin, P. J., Polyak, K., Hruban, R. H., Velculescu, V. E., & Shih, Ie. M. (2003). Identi- fying tumor origin using a gene expression-based classification map. Cancer Res, 63(14), 4144-4149.
- Wang, J., Delabie, J., Aasheim, H., Smeland, E., & Myklebost, O. (2002). Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. BMC Bioinformatics.
- Sultan, M., Wigle, D. A., Cumbaa, C. A., Maziarz, M., Glasgow, J., Tsao, M. S., & Ju- risica, I. (2002). Binary tree-structured vector quantization approach to clustering and visualizing microarray data. Bioinformatics (Oxford, England) Suppl 1S , 111-119.
- Hautaniemi, S., Yli-Harja, O., Astola, J., Kauraniemi, Pi., Kallioniemi, A., Wolf, M., Ruiz, J., Mousses, S., & Kallioniemi-P, O. (2003). Analysis and Visualization of Gene Using Self-Organizing Maps to Visualize, Filter and Cluster Multidimensional Bio-Omics Data http://dx.doi.org/10.5772/51702
- Expression Microarray Data in Human Cancer Using Self-Organizing Maps. Mach. Learn.
- Ressom, H., Wang, D., & Natarajan, P. (2003). Clustering gene expression data using adaptive double self-organizing map. Physiol Genomics, 14(1), 35-46.
- Hsu, A. L., Tang, S. L., & Halgamuge, S. K. (2003). An unsupervised hierarchical dy- namic self-organizing approach to cancer class discovery and marker gene identifica- tion in microarray data. Bioinformatics (Oxford, England), 19(16), 2131-2140.
- Monti, S., Tamayo, P., Mesirov, J., & Golub, T. (2003). Consensus Clustering: A Re- sampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Machine Learning, 52(1), 91-118.
- Brunet, J. P., Tamayo, P., Golub, T. R., & Mesirov, J. P. (2004). Metagenes and molecu- lar pattern discovery using matrix factorization. Proc Natl Acad Sci U S A, 101(12), 4164-4169.
- Kohonen, T., & Somervuo, P. (2002). How to make large self-organizing maps for nonvectorial data. Neural Netw.
- Yang, Z. R., & Chou, K. C. (2003). Mining biological data using self-organizing map. J Chem Inf Comput Sci, 43(6), 1748-1753.
- Abe, T., Kanaya, S., Kinouchi, M., Ichiba, Y., Kozuki, T., & Ikemura, T. (2003). Infor- matics for unveiling hidden genome signatures. Genome Res, 13(4), 693-702.
- Mahony, S., McInerney, J. O., Smith, T. J., & Golden, A. (2004). Gene prediction using the Self-Organizing Map: automatic generation of multiple gene models. BMC Bioin- formatics.
- Mahony, S., Hendrix, D., Golden, A., Smith, T. J., & Rokhsar, D. S. (2005). Transcrip- tion factor binding site identification using the self-organizing map. Bioinformatics (Oxford, England), 21(9), 1807-1814.
- Liu, D., Xiong, X., Das, Gupta. B., & Zhang, H. (2006). Motif discoveries in unaligned molecular sequences using self-organizing neural networks. IEEE Trans Neural Netw, 17(4), 919-928.
- Lee, N. K., & Wang, D. (2011). SOMEA: self-organizing map based extraction algo- rithm for DNA motif identification with heterogeneous model. BMC Bioinformatics Suppl 1S16.
- Ultsch, A, & Orchen, F. (2005). ESOM-Maps: tools for clustering, visualization,and classification with Emergent SOM.
- Dick, G. J., Andersson, A. F., Baker, B. J., Simmons, S. L., Thomas, B. C., Yelton, A. P., & Banfield, J. F. (2009). Community-wide analysis of microbial genome sequence sig- natures. Genome biology R85.
- Chan, C. K., Hsu, A. L., Halgamuge, S. K., & Tang, S. L. (2008). Binning sequences using very sparse labels within a metagenome. BMC Bioinformatics.
- Chan, C. K., Hsu, A. L., & Tang, S. L. (2008). Halgamuge SK.Using growing self-or- ganising maps to improve the binning process in environmental whole-genome shot- gun sequencing. J Biomed Biotechnol.
- Gatherer, D. (2007). Genome signatures, self-organizing maps and higher order phy- logenies: a parametric analysis. Evol Bioinform Online, 3211-236.
- Martin, C., Diaz, N. N., Ontrup, J., & Nattkemper, T. W. (2008). Hyperbolic SOM- based clustering of DNA fragment features for taxonomic visualization and classifi- cation. Bioinformatics (Oxford, England), 24(14), 1568-1574.
- Abe, T., Sugawara, H., Kanaya, S., Kinouchi, M., & Ikemura, T. (2006). Self-Organiz- ing Map (SOM) unveils and visualizes hidden sequence characteristics of a wide range of eukaryote genomes. Gene, 36527-34.
- Abe, T., Hamano, Y., Kanaya, S., Wada, K., & Ikemura, T. (2009). A Large-Scale Ge- nomics Studies Conducted with Batch-Learning SOM Utilizing High-Performance Supercomputers.
- Bio-Inspired Systems: Computational and Ambient Intelligence. (2009). 5517829-836.
- Weber, M., Teeling, H., Huang, S., Waldmann, J., Kassabgy, M., Fuchs, B. M., Klind- worth, A., Klockow, C., Wichels, A., Gerdts, G., Amann, R., & Glockner, F. O. (2011). Practical application of self-organizing maps to interrelate biodiversity and function- al data in NGS-based metagenomics. ISME J, 5(5), 918-928.
- Wu, W., Liu, X., Xu, M., Peng, J. R., & Setiono, R. A. (2005). A hybrid SOM-SVM ap- proach for the zebrafish gene expression analysis. Genomics Proteomics Bioinformatics, 3(2), 84-93.
- Ghouila, A., Yahia, S. B., Malouche, D., Jmel, H., Laouini, D., Guerfali, F. Z., & Abdel- hak, S. (2009). Application of Multi-SOM clustering approach to macrophage gene expression analysis. Infect Genet Evol, 9(3), 328-336.
- Newman, A. M., & Cooper, J. B. (2010). AutoSOME: a clustering method for identify- ing gene expression modules without prior knowledge of cluster number. BMC Bio- informatics.
- Vesanto, J. (2000). SOM Toolbox for Matlab 5: Helsinki University of Technology. ;.
- Vellido, A., Lisboa, P. J. G., & Meehan, K. (1999). Segmentation of the on-line shop- ping market using neural networks. Expert Systems with Applications, 17(4), 303-314.
- Vesanto, J., & Sulkava, M. (2002). Distance matrix based clustering of the Self-Organ- izing Map. Artificial Neural Networks-Icann, 2415951-956.
- Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, Using Self-Organizing Maps to Visualize, Filter and Cluster Multidimensional Bio-Omics Data http://dx.doi.org/10.5772/51702
- L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet; , 25(1), 25-29.
- Dreszer, T. R., Karolchik, D., Zweig, A. S., Hinrichs, A. S., Raney, B. J., Kuhn, R. M., Meyer, L. R., Wong, M., Sloan, C. A., Rosenbloom, K. R., Roe, G., Rhead, B., Pohl, A., Malladi, V. S., Li, C. H., Learned, K., Kirkup, V., Hsu, F., Harte, R. A., Guruvadoo, L., Goldman, M., Giardine, B. M., Fujita, P. A., Diekhans, M., Cline, M. S., Clawson, H., Barber, G. P., Haussler, D., & James, Kent. W. (2012). The UCSC Genome Browser da- tabase: extensions and updates 2011. Nucleic Acids Res (Database , 40(D918-923), 918-923.
- Smith, C.L., & Eppig, J.T. (2009). The mammalian phenotype ontology: enabling ro- bust annotation and comparative analysis. Wiley Interdiscip Rev Syst Biol Med, 1(3), 390-399.
- Ideker, T., Ozier, O., Schwikowski, B., & Siegel, A. F. (2002). Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics (Oxford, England) Suppl 1S , 233-240.
- Barreto, S. M. A., & Pérez-Uribe, A. (2007). Improving the correlation hunting in a large quantity of SOM component planes: classification of agro-ecological variables related with productivity in the sugar cane culture. In Proceedings of the 17th inter- national conference on Artificial neural networks.
- Boulet, R., Jouve, B., Rossi, F., & Villa, N. (2008). Batch kernel SOM and related Lap- lacian methods for social network analysis. Neurocomput.
- Seo, S., & Obermayer, K. (2004). Self-organizing maps and clustering methods for matrix data. Neural Netw. Developments and Applications of Self-Organizing Maps 204 Applications of Self-Organizing Maps Applications of Self-Organizing Maps References
- Jardine, N., & van Rijsbergen, C. J. (1971). The use of hierarchic clustering in informa- tion retrieval. Information Storage and Retrieval, 7(1), 217-240.
- Fang, Y. C., Parthasarathy, S., & Schwartz, F. (2002). Using Clustering to Boost Text Classification. In Proceedings of the IEEE ICDM Workshop on Text Mining, 101-112.
- Charu. (2004). On using Partial Supervision for Text Categorization. IEEE Transac- tions On Knowledge And Data Engineering, 16(2), 245-258.
- Developments and Applications of Self-Organizing Maps 216 Applications of Self-Organizing Maps Applications of Self-Organizing Maps
- Croft, W. B. (1978). Organizing and searching large files of documents. Ph.D. Thesis, University of Cambridge.
- Hearst, M. A., & Pedersen, J. O. (1996). Reexamining the cluster hypothesis: Scatter/ Gather on retrieval results. Proceedings of the 19th International ACM SIGIR Conference on Research and Development in InformationRetrieval (SIGIR'96), 76-84.
- Leouski, A. V., & Croft, W. B. (1996). An evaluation of techniques for clustering search results. Technical Report IR-76, Department of Computer Science, University of Massachusetts, Amherst.
- Allen, R. B., Obry, P., & Littman, M. (1993). An interface for navigating clustered document sets returned by queries. Proceedings of the ACM Conference on Organization- al Computing Systems, 166-171.
- Cutting, Douglass R., Karger, David R., & etc. Scatter/Gather. (1992). A Cluster-based Approach to Browsing Large Document Collections. SIGIR'92, 318-329.
- Voorhees, E. M. (1986). The efficiency of Inverted Index and Cluster Searches. In: Pro- ceedings of the ACM Conference on R&D in IR. Pisa, 1986, 164-174.
- El -Hamdouchi, A., & Willett, P. (1989). Comparison of Hierarchic Agglomerative Clustering Methods for Document Retrieval. The Computer Journal, 32(3), 220-227.
- Kural, Yasemin, Robertson, Steve, & Jones, Susan. (2001). Clustering Information Re- trieval Search Outputs. Information Processing & Management, 1630-1700.
- Salton, G., Wong, A., & Yang, C. (1975). A vector space model for automatic index- ing. Communications of the ACM ., 18(11), 613-620.
- Seung-Shik, Kang. (2003). Keyword-based Document Clustering. The 6th International Workshop on Information Retrieval with Asian Languages, 132-137.
- Lerman, K. (2004). Document Clustering in Reduced Dimension Vector Space. Pro- ceedings of CSAW'04.
- Niu, Z. Y., Ji, D. H., & Tan, C. L. (2004). Document clustering based on cluster valida- tion. 13th Conference on Information and Knowledge Management. CIKM 2004, Washing- ton DC, USA, 501-506.
- Osiński, S. (2004). Dimensionality Reduction Techniques for Search Results Cluster- ing. MSc. thesis, University of Sheffield, UK.
- Wang, B. B., Mc Kay, R. I., Hussein, A., Abbass, , et al. (2003). A comparative study for domain ontology guided feature extraction1. Darlinghurst, Australia. In Proc of 26th Australian Computer Science Conference (ACSC2003), Australian Computer Society Inc., 69-78.
- Witten, I. H., Paynter, G. W., Frank, E., Gutwin, C., & Nevill-Manning, C. G. (1999). KEA: Practical automatic keyphrase extraction. Proceedings of DigitalLibraries 99 (DL'99), ACM Press, 254-256. Application of Self-Organizing Maps in Text Clustering: A Review http://dx.doi.org/10.5772/50618
- Turney, P. (2002, July). Mining the Web for Lexical Knowledge to Improve Keyphase Extraction: Learning from Labeled and Unlabeled Data. P. Source: NRC/ERB-1096, NRC Publication Number: NRC 44947.2002.
- Zamir, O., & Etzioni, O. (1999). Grouper: A dynamic clustering interface to web search results. Computer networks, 31, 1361-1374.
- Herbert, J. P., & Yao, J. T. (2009). A Granular Computing Framework for Self-Organ- izing Maps. Neurocomputing, 72, 2865-2872.
- Niklasson, L., Bodén, M., & Ziemke, . (1998). Self-organization of very large docu- ment collections: State of the art. Proceedings of ICANN98, the 8th International Confer- ence on Artificial Neural Networks, 65-74.
- Lin, X., Soergel, D., & Marchionini, G. (1991). A self-organizing semantic map for in- formation retrieval. Proceedings of the annual international ACM SIGIR conference on re- search and development in information retrieval, 262-269.
- Su, K. Lamu-Chun, Chang, Hsiao-te, & Chou, Chien-hsing. (1996). Approach to inter- active exploration. In proc int'l conf knowledge discovery and data mining(KDD'96), 238-243.
- Miikkulainen, R. (1990). Script recognition with hierarchical feature maps. Connection science, 2, 83-101.
- Merkl, D. (1993). Structuring software for reuse: the case of self-organizing maps. Pis- cataway, NJ, IEEE Service Center. Int. Joint Conf. on Neural Networks, III, 1993, 2468-2471.
- Roussinov, D., & Ramsey, M. (1998). Information forage through adaptive visualiza- tion. The Third ACM Conference on Digital Libraries, 303-304.
- Rauber. (1999). LabelSOM: On the labeling of self-ofganizing maps. In proc int'l joint conf neural networks(IJCNN'99).
- Martinetz, T. M., & Schulten, K. J. (1991). A "neural-gas'' network learns topologies' in Kohonen. Artificial neural networks, 397-402.
- Fritzke, B. (1995). Growing grid-a self-organising network with constant neighbour- hood range and adaptation strength. Neural Process. Letters, 2, 9-13.
- Bauer, Ha., & Villmann, T. (1997). Growing a hypercubical output space in a self-or- ganising feature map. IEEE Transactions on Neural Networks, NN-8(2), 218-226.
- Ritter, H., Martinetz, T., & Schulten, K. (1992). Heurd Computation and Self-Organizinp Maps: Introduction, Addison-Wesley.
- Kohonen, T. (1990). The self-organizing map. Proc. of the IEEE, 9, 1464-1479.
- Yin, H., & Allinson, N. M. (1990). Bayesian self-organising map for gaussian mix- tures. IEEE Proceedings: Vision, Image and Signal Processing, 148(4), 234-240.
- Mulier, F., & Cherkassky, V. (1994). Learning rate schedules for self-organizing maps, In Proceedings of 12th International Conference on Pattern Recognition, 2, 224-228.
- Jung , Yunjae. (2001). Design and Evaluation of Clustering Criterion for Optimal Hi- erarchical Agglomerative Clustering. Phd. thesis, University of Minnesota.
- Steinbach, M., Karypis, G., & Kumar, V. (2000). A comparison of document clustering techniques. In KDD Workshop on Text Mining.
- Larsen, Bjornar, & Chinatsu, Aone. (1999). Fast and effective text mining using linear- time document clustering. In Proc. of the Fifth ACM SIGKDD Int'l Conference on Knowl- edge Discovery and Data Mining, 16-22.
- Aggarwal, Charu C., Gates, Stephen C., & Yu, Philip S. (1999). On the merits of build- ing categorization systems by supervised clustering. In Proc.of the Fifth ACM SIGKDD Int'l Conference on Knowledge Discovery and Data Mining, 352-356.
- Cutting, D. R., Pedersen, J. O., Karger, D. R., & Tukey, J. W. (1992). Scatter/gather: A cluster-based approach to browsing large document collections. Copenhagen. In Pro- ceedings of the ACM SIGIR, 318-329.
- Luke, Brian T. (1999). K-Means Clustering, http://fconyx.ncifcrf.gov/~lukeb/ kmeans.html.
- Martin, S., & Detlef, N. (2006). Towards the Automation of Intelligent Data Analysis. Applied Soft Computing, 6, 348-356.
- Zhou, X. Y., Sun, Z. H., Zhang, B. L., & Yang, Y. D. (2006). Research on Clustering and Evolution Analysis of High Dimensional Data Stream. Journal of Computer Re- search and Development, 43, 2005-2011.
- Huang, S., Chen, Z., Yu, Y., & Ma , W. Y. (2006). Multitype Features Coselection for Web Document Clustering. IEEE Transactions on Knowledge and Data Engineering, 18, 448-459.
- Dhillon, I. S., Guan, Y. Q., & Kogan, J. (2002). Iterative Clustering of High Dimension- al Text Data Augmented by Local Search. In: Proceedings of the Second IEEE Interna- tional Conference on Data Mining, 131-138, IEEE Press, Japan.
- Ghaseminezhad, M. H., & Karami, A. (2011). A Novel Self-Organizing Map (SOM) Neural Network for Discrete Groups of Data Clustering. Applied Soft Computing, 11, 3771-3778.
- Melody , Y. K. (2001). Extending the Kohonen Self-Organizing Map Networks for Clustering Analysis. Computational Statistics & Data Analysis, 38, 161-180.
- Tseng, C. L., Chen, Y. H., Xu, Y. Y., Pao, H. T., & Fu, H. C. (2004). A Self-Growing Probabilistic Decision-Based Neural Network with Automatic Data Clustering. Neu- rocomputing, 61, 21-38. Application of Self-Organizing Maps in Text Clustering: A Review http://dx.doi.org/10.5772/50618
- Tsai, C. F., Tsai, C. W., Wu, H. C., & Yang, T. (2004). ACODF: A Novel Data Cluster- ing Approach for Data Mining in Large Databases. Journal of Systems and Software, 73, 133-145.
- Lee, S., Kim, G., & Kim, S. (2011). Self-Adaptive and Dynamic Clustering for Online Anomaly Detection. Expert Systems with Applications, 38, 14891-14898.
- Alahakoon, D., , S., Halganmuge, K., & Srinivasan, B. (2000). Dynamic self-organiz- ing maps with controlled growth for knowledge discovery. IEEE Transactions on Neu- ral Networks, 11(3), 601-614.
- Merkl, Rauber D., & Dittenbach, M. (2002). The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Transactions on Neural Net- works, 13(6), 1331-1341.
- Qin, A.-K., & Suganthan, P.-N. (2004). Robust growing neural gas algorithm with ap- plication in cluster analysis. Neural Networks, 17(8-9), 1135-1148.
- L., Robert, K., & Warwick, K. (2002). The plastic self organising map. Hawaii. Pro- ceedings of the 2002 International Joint Conference on Neural Networks, IEEE, 727-732.
- Hung, C., & Wermter, S. (2003). A dynamic adaptive self-organising hybrid model for text clustering. Melbourne. Proceedings of the Third IEEE International Conference on Data Mining, IEEE, Florida, USA, 75-82.
- Liu, Yuanchao, Wang, Xiaolong, & Wu, Chong. (2008, January). ConSOM: A concep- tional self-organizing map model for text clustering. Neurocomputing, 71(4-6), 857-862.
- Liu, Yuan-chao, Wu, Chong, & Liu, Ming. (2011, August). Research of fast SOM clus- tering for text information. Expert Systems with Applications, 38(8), 9325-9333.
- Liu, Yuanchao, Wang, Xiaolong, & Liu, Ming. (2009). V-SOM: A Text Clustering Method based on Dynamic SOM Model. Journal of Computational Information Systems, 5(1), 141-145.
- Developments and Applications of Self-Organizing Maps 220 Applications of Self-Organizing Maps Applications of Self-Organizing Maps References
- Ball, P. (2004). Critical mass: How one thing leads to another. Portsmouth, NH: Hei- nemann.
- Bentley, R. A., & Maschner, H. D. G. (2003). Complex systems and archaeology. Salt Lake City: University of Utah Press.
- Fladmark, K. R. (1982). Microdebitage analysis: initial considerations. Journal of Ar- chaeological Science, 9, 205-220.
- Hassan, F.A. (1978). Sediments in archaeology: Methods and implications for palae- oenvironmental and cultural analysis. Journal of Field Archaeology, 197-213.
- Developments and Applications of Self-Organizing Maps 228 Applications of Self-Organizing Maps Applications of Self-Organizing Maps
- Goldberg, P., Nash, D. T., & Petraglia, M. D. (1993). Press Formation Processes. Ar- chaeological Context Madison, Wisconsin: Prehistory.
- Dunnell, R. C., & Stein, J. K. (1989). Theoretical issues in the interpretation of micro- artifacts. Geoarchaeology, 31-42.
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 198(43), 59-69.
- Kontogiorgos, D. (2008). Geoarchaeological and microartifacts analysis of archaeo- logical sediments. A case study from a Neolithic Tell site in Greece. Nova Science Publish- ers Inc., New York.
- Kontogiorgos, D., Leontitsis, A., & Sangole, A. (2007). Telling a non linear story: The investigation of microartefacts non linear structure. Journal of Archaeological Science, 1532-1536.
- Kontogiorgos, D., & Preka, K. (2009). From Neolithic to Hellenistic. A Geoarchaeo- logical Approach to the Burial of the a Hellenistic Theatre: The Evidence from Parti- cle Size Analysis and Microartifacts. On Site Geoarchaeology on a Neolithic Tell Site in Greece: Archaeological Sediments,Microartifacts and Softwear Development, Kontogiorgos, D. Ed., Nova Science Publishers, Inc., New York, 71-80.
- Kontogiorgos, D., & Leontitsis, A. (2011). Is it Visible? Micro-artefacts Non-Linear Stuc- ture and Natural Formation Processes In: Self-Organizing Maps and Novel Algorithm De- sign. Intech open access Publishers. Vienna, Austria., 643-648.
- Mc Guire, R. H. (1995). Behavioural Archaeology: Reflections of a Prodigal Son. J. M. Skibo, W. H.Walker and A. E. Nielsen (eds.) Expanding Archaeology, 162-177, Salt Lake City, University of Utah Press.
- Reid, J. J. (1995). Four Strategies after Twenty Years: A Return to Basics. J. M. Skibo, W. H. Walker and A. E. Nielsen (eds.) Expanding Archaeology, 15-21, Salt Lake City, Uni- versity of Utah Press.
- Rosen, A.M. (1986). Cities of Clay: The Geoarchaeology of Tells.University of Chicago Press, Chicago.
- Rosen, A. M. (1989). Ancient Town and City Sites: A View from the Microscope. American Antiquity, 564-578.
- Ormerod, P. (2005). Why most things fail: Evolution, extinction, and economics, London, Faber & Faber.
- Sangole, A. (2003). Data-driven modeling using spherical self-organizing feature maps. PhD thesis, University of Western Ontario, Canada, Universal Publishers, 1-58112-319-1.
- Sangole, A., & Knopf, G. K. (2003). Visualization of random ordered numeric data sets using self-organized feature maps. Computers and Graphics, 963-976.
- Non-Linear Spatial Patterning in Cultural Site Formation Processes http://dx.doi.org/10.5772/51193
- Schiffer, M. B. (1972). Archaeological Context and Systemic Context. American Antiq- uity, 156-165.
- Schiffer, M. B. (1987). Formation Processes of the Archaeological Record, University of New Mexico Press, Albuquerque.
- Sherwood, S. C. (2001). Microartifacts. Goldberg, P., Holliday, V.T., and Ferring, R., Eds., Earth Sciences and Archaeology, Kluwer Academic/ Plenum Publishers, New York, 327-351.
- Sherwood, S. C., Simek, J. F., & Polhemus, R. R. (1995). Artifact size and spatial proc- ess: macro-and microartifacts in a Mississipian House. Geoarchaeology, 429-455.
- Stein, J.K. (1986). Coring archaeological sites. American Antiquity, 505-527.
- Ultsch, A., & Siemon, H. P. (1990). Kohonen's self-organizing feature maps for ex- ploratory data analysis. Proceedings of the International Neural Network Conference. Dor- drecht, The Netherlands, 305-308.
- Tani, M. (1995). Beyond the Identification of Formation Processes: Behavioural Infer- ence Based on Traces Left by Cultural Formation Processes. Journal of Archaeological Method and Theory, 231-252.
- Vance, E. D. (1987). Microdebitage and archaeological activity analysis. Archaeology, 58-59.
- Vesanto, J. S. O. (1999). SOM-based data visualization methods. Journal of Intelligent Data Analysis, 111-126.
- Watts, D.J. (2003). Six degrees: The science of a connected age.London: Random House. Developments and Applications of Self-Organizing Maps 230 Applications of Self-Organizing Maps Applications of Self-Organizing Maps tion of a HSOM that is particularly well suited for spatial analysis. This implementation is publically available for general use at [68].
- References
- Openshaw, S., & Openshaw, C. (1997). Artificial Intelligence in Geography, John Wiley & Sons, Inc., 329.
- Gahegan, M. (2003). Is inductive machine learning just another wild goose (or might it lay the golden egg)? International Journal of Geographical Information Science, 17(1), 69-92.
- Miller, H., & Han, J. (2001). Geographic Data Mining and Knowledge Discovery. London, UK, Taylor and Francis., 372.
- Openshaw, S. (1994). What is GISable spatial analysis? in New Tools for Spatial Anal- ysis Eurostat Luxembourg , 36-44.
- Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review., ACM Comput. Surv, 31(3), 264-323.
- Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery: An Overview. , in Advances in Knowledge Discovery and Data Mining, U.M. Fayyad, et al., Editors., AAAI Press/ The MIT Press. , 1-43.
- Miller, H., & Han, J. (2001). Geographic data mining and knowledge discovery an overview. , in Geographic Data Mining and Knowledge Discovery, H. Miller and J. Han, Editors., Taylor and Francis London, UK , 3-32.
- Fukunaga, K. (1990). Introduction to statistical pattern recognition. nd ed: Academic Press Inc.
- Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification, Wiley-Inter- science. Spatial Clustering Using Hierarchical SOM http://dx.doi.org/10.5772/51159
- Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data : an introduction to cluster analysis. Wiley series in probability and mathematical statistics. Applied probability and statistics , New York John Wiley & Sons ., 342.
- Han, J., Kamber, M., & Tung, A. K. H. (2001). Spatial clustering methods in data min- ing: A survey, in Geographic Data Mining and Knowledge Discovery. H.J. Miller and J. Han, Editors., Taylor and Francis London. , 188-217.
- Plane, D. A., & Rogerson, P. A. (1994). The Geographical Analysis of Population: With Applications to Planning and Business,. New York, John Wiley & Sons.
- Feng, Z., & Flowerdew, R. (1998). Fuzzy geodemographics: a contribution from fuzzy clustering methods,. in Innovations in GIS 5, S. Carver, Editor, Taylor & Francis Lon- don , 119-127.
- Birkin, M., & Clarke, G. (1998). GIS, geodemographics and spatial modeling in the UK financial service industry. Journal of Housing Research, 9, 87-111.
- Openshaw, S., Blake, M., & Wymer, C. (1995). Using Neurocomputing Methods to Classify Britain's Residential Areas Available from: http://www.geog.leeds.ac.uk/ papers/95-1/.
- Openshaw, S., & Wymer, C. (1995). . Classifying and regionalizing census data, in Census users handbook,. S. Openshaw, Editor, GeoInformation International Cam- brige, UK , 239-268.
- Fahmy, E., Gordon, D., & Cemlyn, S. (2002). Poverty and Neighbourhood Renewal in West Cornwall. in Social Policy Association Annual Conference Nottingham, UK.
- Birkin, M., Clarke, G., & Clarke, M. (1999). GIS for Business and Service Planning, in Geographical Information Systems. , M. Goodchild, et al., Editors.,Geoinformation Cambridge
- Bellman, R. (1961). Adaptive Control Processes: A Guided Tour,. Princeton, New Jer- sey, Princeton University Press.
- Rees, P., Martin, D., & Williamson, P. (2002). Census data resources in the United Kingdom, in. The Census Data System, P. Rees, D. Martin, and P. Williamson, Edi- tors., Wiley Chichester , 1-24.
- Goodchild, M. (1986). Spatial Autocorrelation. CATMOG, 47, Norwich, Geo Books.
- Tobler, W. (1973). A continuous transformation useful for districting. Annals, New York Academy of Sciences, 219, 215-220.
- Openshaw, S. (1984). The modifiable areal unit problem. Norwich, England, Geo- Books-CATMOG 38.
- Kohonen, T. (2001). Self-Organizing Maps. rd edition ed, Berlin Springer
- Muñoz, A., & Muruzábal, J. (1998). Self-organizing maps for outlier detection. Neuro- computing, 18(1-3), 33-60.
- Hadzic, F., Dillon, T. S., & Tan, H. (2007). Outlier detection strategy using the self- organizing map. in Knowledge Discovery and Data Mining: Challenges and Reali- ties, X.Z.I. Davidson, Editor, Information Science Reference Hershey, PA, USA , 224-243.
- Nag, A., Mitra, A., & Mitra, S. (2005). Multiple outlier detection in multivariate data using self-organizing maps title. Computational Statistics, 245-264.
- Barbalho, J. M., et al. (2001). Hierarchical SOM applied to image compression. in In- ternational Joint Conference on Neural Networks,. IJCNN'01. 2001. Washington, DC
- Céréghino, R., et al. (2005). Using self-organizing maps to investigate spatial patterns of non-native species. Biological Conservation, 459-465.
- Green, C., et al. (2003). Geographic analysis of diabetes prevalence in an urban area. Social Science & Medicine, 57(3), 551-560.
- Guo, D., Peuquet, D. J., & Gahegan, M. (2003). ICEAGE: Interactive Clustering and Exploration of Large and High-Dimensional Geodata. GeoInformatica, 229-253.
- Koua, E., & Kraak, M. J. (2004). Geovisualization to support the exploration of large health and demographic survey data. International Journal of Health Geographics, 3(1), 12.
- Oyana, T. J., et al. (2005). Exploration of geographic information systems (GIS)-based medical databases with self-organizing maps (SOM): A case study of adult asthma. in Proceedings of the 8th International Conference on GeoComputation Ann Arbor University of Michigan
- Skupin, A. (2003). A novel map projection using an artificial neural network. in Pro- ceedings of 21st International Cartographic Conference Durban, South Africa: ICC.
- Bação, F., Lobo, V., & Painho, M. (2008). Applications of Different Self-Organizing Map Variants to Geographical Information Science Problems. in Self-Organising Maps: Applications in Geographic Information Science P. Agarwal and A. Skupin, Editors. , 21-44.
- Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 59-69.
- Koikkalainen, P., & Oja, E. (1990). Self-organizing hierarchical feature maps. in Inter- national Joint Conference on Neural Networks, IJCNN Washington, DC, USA
- Lampinen, J., & Oja, E. (1992). Clustering properties of hierarchical self-organizing maps. Journal of Mathematical Imaging and Vision, 261-272.
- Kemke, C., & Wichert, A. (1993). Hierarchical Self-Organizing Feature Maps for Speech Recognition. in Proc. WCNN'93, World Congress on Neural Networks Law- rence Erlbaum. Spatial Clustering Using Hierarchical SOM http://dx.doi.org/10.5772/51159
- Luttrell, S. P. (1989). Hierarchical vector quantisation. Communications, Speech and Vi- sion, IEE Proceedings I, 136(6), 405-413.
- Miikkulainen, R. (1990). Script Recognition with Hierarchical Feature Maps. Connec- tion Science, 2(1), 83-101.
- Luttrell, S. P. (1988). Self-organising multilayer topographic mappings. in IEEE Inter- national Conference on Neural Networks San Diego, California
- Ichiki, H., Hagiwara, M., & Nakagawa, M. (1991). Self-organizing multilayer seman- tic maps. in International Joint Conference on Neural Networks, IJCNN-91. Seattle.
- Graham, D. P. W., & D'Eleuterio, G. M. T. (1991). A hierarchy of self-organized mul- tiresolution artificial neural networks for robotic control. in International Joint Con- ference on Neural Networks, IJCNN-91. Seattle.
- Lee, J., & Ersoy, O. K. (2005). Classification of remote sensing data by multistage self- organizing maps with rejection schemes. in Proceedings of 2nd International Confer- ence on Recent Advances in Space Technologies, RAST 2005.Istanbul, Turkey
- Li, J. M., & Constantine, N. (1989). Multistage vector quantization based on the self- organization feature maps. in Visual Communications and Image Processing IV..SPIE
- Saavedra, C., et al. (2007). Fusion of Self Organizing Maps. in Computational and Ambient Intelligence , 227-234.
- Sauvage, V. (1997). The T-SOM (Tree-SOM). in Advanced Topics in Artificial Intelli- gence , 389-397.
- Bação, F., Lobo, V., & Painho, M. (2005). Geo-SOM and its integration with geograph- ic information systems. , in WSOM 05, 5th Workshop On Self-Organizing Maps: Uni- versity Paris 1 Panthéon-Sorbonne , 5-8.
- Chifu, E. S., & Letia, I. A. (2008). Text-Based Ontology Enrichment Using Hierarchi- cal Self-organizing Maps. in Nature inspired Reasoning for the Semantic Web (Na- tuReS 2008) Karlsruhe, Germany.
- Kasabov, N., & Peev, E. (1994). Phoneme Recognition with Hierarchical Self Organ- ised Neural Networks and Fuzzy Systems-A Case Study. in Proc. ICANN'94, Int. Conf. on Artificial Neural Networks Springer
- Douzono, H., et al. (2002). A design method of DNA chips using hierarchical self-or- ganizing maps. in Proceedings of the 9th International Conference on Neural Infor- mation Processing. ICONIP'02. Orchid Country Club, Singapore
- Hanke, J., et al. (1996). Self-organizing hierarchic networks for pattern recognition in protein sequence. Protein Science, 5(1), 72-82.
- Zheng, C., et al. (2007). Hierarchical SOMs: Segmentation of Cell-Migration Images. in Advances in Neural Networks-ISNN 2007 , 938-946.
- Vallejo, E., Cody, M., & Taylor, C. (2007). Unsupervised Acoustic Classification of Bird Species Using Hierarchical Self-organizing Maps. in Progress in Artificial Life , 212-221.
- Tsao, C. Y., & Chou, C. H. (2008). Discovering Intraday Price Patterns by Using Hier- archical Self-Organizing Maps. in JCIS-2008 Proceedings, Advances in Intelligent Systems Research.. Shenzhen, China Atlantis Press
- Salas, R., et al. (2007). A robust and flexible model of hierarchical self-organizing maps for non-stationary environments. Neurocomput, 70(16-18), 2744-2757.
- Carpinteiro, O. A. S. (1999). A Hierarchical Self-Organizing Map Model for Sequence Recognition. Neural Processing Letters, 9(3), 209-220.
- Law, E., & Phon-Amnuaisuk, S. (2008). Towards Music Fitness Evaluation with the Hierarchical SOM. in Applications of Evolutionary Computing , 443-452.
- Carpinteiro, O.A.S., & Alves da Silva, A.P. (2001). A Hierarchical Self-Organizing Map Model in Short-Term Load Forecasting. Journal of Intelligent and Robotic Systems, 105-113.
- Dittenbach, M., Merkl, D., & Rauber, A. (2002). Organizing And Exploring High-Di- mensional Data With The Growing Hierarchical Self-Organizing Map. in Proceed- ings of the 1st International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2002) Orchid Country Club, Singapore.
- Guimarães, G., & Urfer, W. (2000). Self-Organizing Maps and its Applications in Sleep Apnea Research and Molecular Genetics,. , University of Dortmund-Statistics Department
- Pampalk, E., Widmer, G., & Chan, A. (2004). A new approach to hierarchical cluster- ing and structuring of data with Self-Organizing Maps. Intell. Data Anal, 8(2), 131-149.
- Suganthan, P. N. (1999). Hierarchical overlapped SOM's for pattern classification. Neural Networks, IEEE Transactions on, 10(1), 193-196.
- Endo, M., Ueno, M., & Tanabe, T. (2002). A Clustering Method Using Hierarchical Self-Organizing Maps. The Journal of VLSI Signal Processing, 32(1), 105-118.
- Vesanto, J., et al. (1999). Self-organizing map in Matlab: the SOM Toolbox. in Pro- ceedings of the Matlab DSP Conference Espoo, Finland: Comsol Oy
- Bação, F., Lobo, V., & Painho, M. (2004). Geo-self-organizing map (Geo-SOM) for building and exploring homogeneous regions. Geographic Information Science, Proceed- ings, 3234, 22-37.
- Lobo, V., Bação, F., & Henriques, R. (2009). GeoSOM suite. 15-11-2009]; Available from: www.isegi.unl.pt/labnt/geosom Spatial Clustering Using Hierarchical SOM http://dx.doi.org/10.5772/51159
- Ambroise, C.; Seze, G. Badran F, and S. Thiria, 2000: Hierarchical clustering of self- organizing maps for cloud classification, Neurocomputing, 30, 47-52, ISSN 0925-2312
- Armstrong, R, M. J. Brodzik, and A. Varani, 1997: The NSIDC EASE-Grid: Address- ing the need for a common, flexible, mapping and gridding scheme. Earth System Monitor, 7(3), 3 pp.
- Beesley, J.A., and R.E. Moritz, 1999: Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. J. Climate, 12, 395-415.
- Cassano, J.J, P. Uotilla, A.H. Lynch, E.N. Cassano, 2007: Predicted changes in Synop- tic Forcing of Net Precipitation in Large Arctic River basins During the 21 st century, J. Geoph. Res-Biogeosciences, 112, G04S49, doi:10.1029/2006JG000332.
- Hewitson, B.C., and R.G. Crane, 2002: Self-organizing maps: applications to synoptic climatology. Clim. Res., 22, 13-26.
- Hong, Y.; Hsu, K., Sorooshian, S. and X. Gao, 2005: Self-organizing nonlinear output (SONO): A neural network suitable for cloud patch-based rainfall estimation at small scales, Water Resources Research, 41, No. W03008,
- Kohonen, T., 2001:Self-organizing maps. 3d ed. Springer-Verlag, 501 pp. Developments and Applications of Self-Organizing Maps 266 Applications of Self-Organizing Maps Applications of Self-Organizing Maps
- Lynch, A.H., P. Uotila, J.J. Cassano, 2006: Changes in synoptic weather patterns in the polar regions in the 20th and 21st centuries, Part 2: Antarctic. International Jour- nal of Climatology, 26(9), 1181-1199.
- Nakicemovic, N. and R. Swart, 2000: Intergovernmental Panel on Climate Change Special Report on Emission Scenarios. Cambridge University Press, 570 pp.
- Overland, J.E., P. Turet, and A.H. Oort, 1996: Regional variations of moist static ener- gy flux in the Arctic. J. Climate, 9(1), 54-65.
- Petersen, G.N., Olafsson, H., and J.E. Krisjansson, 2003: Flow in the lee of idealized mountains and Greenland. J. Atmos. Sci, 60, 2183-2195.
- Reusch, D.B., R. Alley and B.C. Hewitson, 2005: Relative performance of self-organiz- ing maps and principal component analysis in pattern. Extraction from synthetic cli- matologic. Polar Geography, 29, 188-212.
- Sammon, J.W., 1969: A nonlinear mapping for data structure analysis. IEEE Transac- tions on Computers, 18, 401-409.
- Serreze, M.C., and R.G. Barry, 2005: The Arctic Climate System. Cambridge University Press, 146 pp.
- Carse, F., Barry, R.G., and J.C. Rogers, 1997a: Icelandic Low cyclone activity: climato- logical features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10, 453-464. 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmosphere-Ocean, 33, 1-23.
- Skific, Natasa, Jennifer A. Francis, John J. Cassano, 2009a: Attribution of Projected Changes in Atmospheric Moisture Transport in the Arctic: A Self-Organizing Map Perspective. J. Climate, 22, 4135-4153.
- Skific, Natasa, Jennifer A. Francis, and John J. Cassano 2009b: Attribution of Seasonal and Regional Changes in Arctic Moisture Convergence, J Clim, 22(19), 5115.
- Tian, Bin, M.A. Shaikh, M.R. Azimi-Sadjadi,T.H.V. Haar, and D.L. Reinke, 1999: A study of cloud classification with neural networks using spectral and textural fea- tures, IEEE Transactions on Computers, 10(1),138-151.
- Uotila, P.; Lynch, A. H., Cassano J. J. and R.I. Cullather, 2007: Changes in Antarctic net precipitation in the 21st century based on Intergovernmental Panel on Climate Change (IPCC) model scenarios, Journal of Geophysical Research, 112, D10107.
- Uppala, S.M., P.W. Kallberg, A. J. Simmons, U. Andrae, V.D. Bechtold, M, Fiorino, J.K. Gibson, J. Haseler, A. Hernandez, G. A. Kelly, X. Li, K. Onogi,S. Saarinen, N. Sokka, R. P. Allan, E. Andersson, K. Arpe, M. A. Balmaseda, A. C. M. Beljaars, L. Van De Berg, J. Bidlot, N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fisher, M. Fuentes, S. Hagermann, E. Holm, B.J. Hoskins, L. Isaksen, P.A.E.M. Jans- sen, A.P. McNally, J.F. Mahfouf, J.J. Morcreete, N.A. Rayner, R.W. Saunders, P. Si- Self-Organizing Maps: A Powerful Tool for the Atmospheric Sciences http://dx.doi.org/10.5772/54299
- mon, A. Sterl, K. E. Trenberth, A. Untch, D. Vasiljevic, P. Viterbo, and J.Wollen, 2005: The ERA-40 reanalysis. Quart. J. Royal. Met. Soc., 131, 2961-3012.
- Zhang, R.; Wang, Y., Liu, W., Zhu, W, and J. Wang, 2006: Cloud classification based on self-organizing feature map and probabilistic neural network, Proceedings of the 6 th World Congress on Intelligent Control and Automation, June 21 -23, 2006, Dalian, China, 41-45, ISSN 0272-1708 Developments and Applications of Self-Organizing Maps 268 Applications of Self-Organizing Maps Applications of Self-Organizing Maps References
- European Space Agency. (2011). Medium Resolution Imaging Spectrometer (MERIS) Product Handbook [3], http://envisat.esa.int/handbooks/meris/.
- NASA's Earth Observing System. (2012). Landsat 7., http://eospso.gsfc.nasa.gov/ eos_homepage/mission_profiles/docs/Landsat7.pdf.
- Centre National d'Etudes Spatiales. (2006). Main characteristics of the Pleiades mission, http://smsc.cnes.fr/PLEIADES/GP_mission.htm.
- Deutsche Forschungsanstalt für Luft-und Raumfahrt. (2007). TerraSAR-X Ground Segment, Level 1b Product Format Specification [1.3 (TX-GS-DD-3307)], 257, http:// sss.terrasar-x.dlr.de/.
- Image Simplification Using Kohonen Maps: Application to Satellite Data for Cloud Detection and Land Cover Mapping http://dx.doi.org/10.5772/51352
- Earth Observation Research Center, Japan Aerospace eXploration Agency. (1997). ALOS user Handbook (NDX-070015), http://www.eorc.jaxa.jp/ALOS/en/doc/ alos_userhb_en.pdf.
- Agenzia Spaziale Italiana. (2007). COSMO-SkyMed System Description & User Guide, Rev. A (ASI-CSM-ENG-RS-093-A), 49, http://www.cosmo-skymed.it/docs/ASI-CSM- ENG-RS-093-A-CSKSysDescriptionAndUserGuide.pdf.
- Kerr, Y., Waldteufel, P., Wigneron, J. P., & Font, Berger. (2003). The Soil Moisture and Ocean Salinity Mission IGAARS 2003, Toulouse.
- Ackerman, S., Strabala, K., Menzel, P., Frey, R., Moeller, C., Gumley, L., Baum, B., Wetzel, Seemann. S., & Zhong, H. (2006). Discriminating clear sky from cloud with MODIS. Algorithm theoretical basis document MOD35, 129.
- PELCOM project. (2000). Development of a consistent methodology to derive land cover information on a European scale from remote sensing for environmental mod- elling. PELCOM FINAL REPORT-DGXII. Editor C.A. Mücher, 299.
- Lebbah, M., Chazottes, A., Thiria, S., & Badran, F. (2005). Mixed Topological Map, ESANN 2005 proceedings-European Symposium on Artificial Neural Networks. Bruges, April, 26-29, 357-362.
- © ASTRIUM-© Cnes 2004-2010. (2012). 2011, SPOT: accuracy and coverage combined, http://www.astriumgeo.com/files/pmedia/public/ r233_9_geo_0013_spot_en_2012_03.pdf.
- Niang, A., Gross, L., Thiria, S., & Badran, S. (2003). Automatic neural classification of ocean colour reflectance spectra at the top of the atmosphere with introduction of expert knowledge. RSE, 86, 257-271.
- Breon, F. M., Buriez, J. C., Couvert, P., Deschamps, P. Y., Deuze, J. L., Herman, M., Goloub, P., Leroy, M., Lifermann, A., Moulin, C., Parol, F., Seze, G., Tanre, D., Van- bauce, C., & Vesperini, M. (2002). Scientific results from the POLarization and Direction- ality of the Earth's Reflectances (POLDER). Adv. Space Res., 30(11), 2383-2386.
- Jovanovic, V., Miller, K., Rheingans, B., & Moroney, C. (2012). Multi-angle Imaging SpectroRadiometer (MISR) Science Data Product Guide (JPL D-73355), http:// eosweb.larc.nasa.gov/PRODOCS/misr/DPS/MISR_Science_Data_Product_Guide.pdf.
- Pascale, D. (2003). A Review of RGB color spaces...from xyY to R'G'B', http://www.babel- color.com/download/A%20review%20of%20RGB%20color%20spaces.pdf,, 17-19.
- Salomonson, V. V., & Appel, I. (2006). Development of the Aqua MODIS NDSI Frac- tional Snow Cover Algorithm and Validation Results. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 44(7).
- Xu, H. (2007). Extraction of Urban Built-up Land Features from Landsat Imagery Using a Thematic oriented Index Combination Technique, Photogrammetric Engineering & Remote Sensing, 73(12), 1381-1391.
- Developments and Applications of Self-Organizing Maps 288 Applications of Self-Organizing Maps Applications of Self-Organizing Maps
- Kohonen, T. (1994). Self-Organizing Map, Springer, Berlin.
- Lebbah, M., Thiria, S., & Badran, F. (2000). Topological Map for Binary Data, Proceedings of ESANN 2000, Bruges, 26, 27-28.
- Baatz, M., & Schäpe, A. (2000). Multiresolution Segmentation: an optimization ap- proach for high quality multi-scale image segmentation. Journal of Photogrammetry and Remote Sensing, 58(3-4).
- Heidinger, A. K., Anne, V. R., & Dean, C. (2002). Using MODIS to estimate cloud contamination of the AVHRR data-record. Journal of Atmospheric and Oceanic Technol- ogy, 19, 586-601.
- European Space Agency. (2010). Sentinel 2 payload data ground segment, product defini- tion document (GMES-GSEG-EOPG-TN-09-0029)., http://emits.esa.int/emits-doc/ ESRIN/Sentinel-2/ProductsDefinitionDocument(PDD).pdf.
- Image Simplification Using Kohonen Maps: Application to Satellite Data for Cloud Detection and Land Cover Mapping http://dx.doi.org/10.5772/51352