Academia.eduAcademia.edu

Outline

Bibliography of Self-Organizing Map (SOM) Papers: 1998-2001 Addendum

2003, Neural Computing Surveys

Abstract

The Self-Organizing Map (SOM) algorithm has attracted a great deal of interest among researches and practitioners in a wide variety of fields. The SOM has been analyzed extensively, a number of variants have been developed and, perhaps most notably, it has been applied ...

Key takeaways
sparkles

AI

  1. The bibliography contains 2092 new articles on Self-Organizing Maps (SOM) published from 1998 to 2001.
  2. A total of 3343 papers were published on SOM from 1981 to 1997, with updates for newer research.
  3. Thirteen topical categories were created to analyze the evolution of SOM research applications.
  4. A WEBSOM interface maps 2426 documents to visualize thematic relationships within the collection.
  5. The paper includes keyword and thematic indices to assist users in navigating the extensive bibliography.

References (2,113)

  1. Timo Honkela, Samuel Kaski, Krista Lagus, and Teuvo Kohonen. Newsgroup exploration with WEBSOM method and browsing interface. Technical Report A32, Helsinki University of Technology, Laboratory of Computer and Information Science, Espoo, Finland, 1996.
  2. Samuel Kaski, Jari Kangas, and Teuvo Kohonen. Bibliography of self-organizing map (SOM) pa- pers: 1981-1997. Neural Computing Surveys, 1(3&4):1-176, 1998. Available in electronic form at http://www.icsi.berkeley.edu/ £ jagota/NCS/: Vol 1, pp. 102-350.
  3. Teuvo Kohonen. Automatic formation of topological maps of patterns in a self-organizing system. In Erkki Oja and Olli Simula, editors, Proc. 2SCIA, Scand. Conf. on Image Analysis, pages 214-220, Helsinki, Finland, 1981. Suomen Hahmontunnistustutkimuksen Seura r. y.
  4. Teuvo Kohonen. Self-organizing formation of topologically correct feature maps. Biol. Cyb., 43(1):59-69, 1982.
  5. Teuvo Kohonen. Self-Organizing Maps. Springer, Berlin, Heidelberg, 1995. (Third Extended Edition 2001). 947, 954, 951, 956, 1009, 1017, 1046, 1049, 1075, 1068, 1105, 1110, 1164, 1305, 1345, 1356, 1434, 1542, 1645, 1684, 1818, 1903, 1910, 1381, 1923, 1954, 1953, 1974, 2021, 2060] bankruptcy [25, 218, 2086, 802, 800, 801, 790, 856, 857] Bayesian [441, 446, 445, 833, 750, 860, 1026, 1068, 1120, 1138, 1211, 1210, 1252, 1263, 1264, 1625, 1684, 1729, 1742, 1800, 1817, 1829, 1831, 1832, 1955, 1956, 2007, 2039] benchmark [17, 172, 190, 189, 191, 213, 323, 354, 384, 484, 981, 1190, 1318, 1988, 1319, 1847, 1020, 1982] BGA [1499, 2051] binding problem [937] binocular [103, 1963] biochemical [868, 1163] biological [15, 31, 136, 158, 194, 207, 260, 263, 268, 285, 376, 428, 453, 480, 479, 689, 741, 887, 923, 948, 1017, 1057, 1139, 1146, 1148, 1163, 1164, 1235, 1219, 1372, 1371, 1370, 1392, 1414, 1426, 1511, 1513, 1519, 1560, 1668, 1736, 1861, 1912, 1913, 1923, 1928, 1950, 2029] biological macromolecules [1163, 1372, 1371, 1370] biomedical [35, 393, 394, 1911] Boltzmann machine [1274] brain [9, 54, 74, 126, 133, 149, 231, 243, 268, 359, 420, 423, 422, 470, 527, 531, 537, 623, 781, 783, 887, 893, 1044, 1059, 1149, 1230, 1290, 1384, 1392, 1421, 1420, 1570, 1762, 2088, 1969, 1970, 1971] brain image [1044] brain voxels [422] brainstem [393, 394, 1011] breast cancer [223, 367, 1542, 1599, 1684, 1962] bus [239, 246, 247, 734, 904, 1007, 1092, 1091, 2028] c-means [124, 258, 556, 775, 778, 780, 822, 939, 938, 1017, 1044, 1347, 1373, 1372, 1371, 1370, 1578, 1638, 1763, 1792, 1930] CAD [30, 84, 162, 939] cancer [90, 223, 228, 241, 261, 367, 384, 395, 820, 1086, 1139, 1141, 1140, 1542, 1599, 1684, 1962] cardiology [352, 448, 1469, 1606, 1756, 1755] CDMA [498, 657, 653, 654, 656, 655] cepstrum [254, 305, 2056] cerebral cortex [231, 948] chaos [329, 530, 1875] character recognition [117, 167, 235, 326, 610, 766, 946, 965, 987, 986, 1062, 1063, 1197, 1348, 1406, 1450, 1549, 1804, 1381, 2008, 2013, 2047] characters [167, 326, 610, 766, 946, 1905, 1906, 1908, 1993] chemical analysis [1242, 1243, 1312, 1313, 1775, 1785, 1777, 1780, 1784, 1944, 1945, 1946] chemical databases [119, 1502] chemical spectra [1243, 1309, 1310] chinese character recognition [235, 946, 1062, 1450, 1804] chip [382, 419, 486, 926, 1006, 1089, 1087, 1088, 1499, 1527, 1528, 1606, 1605] chromosomes [381, 380, 552, 961, 960, 1141, 1291] circuit [358, 406, 405, 486, 488, 580, 617, 734, 840, 926, 996, 1024, 1088, 1392, 1499, 1509, 1516, 1554, 1605, 1611, 1653, 1759, 1776, 1967, 2028, 2043] climate [192, 395, 1113] clinical [126, 207, 243, 550, 588, 725, 949, 1141, 1140, 1392, 1566, 1604, 1732, 1755, 1812, 1854, 1890, 1942, 1962, 1943, 2056] cloud classification [34, 2086, 962, 1764, 1765] cloud images [255, 962] CMOS [926, 996, 1089, 1087, 1088, 1418, 1509, 1605] central nervous system (CNS) [1399, 1538] co-occurrence [51, 2086, 387, 604, 696, 860, 1046, 1133, 1407, 1744, 1764, 1837, 1854] coarticulation [1806] cognitive [423, 477, 580, 1392, 1907, 1950, 1980] coherence [134, 168, 1194, 1269, 1345, 1744] color [50, 55, 56, 168, 211, 229, 277, 275, 352, 446, 445, 491, 540, 546, 585, 604, 626, 638, 674, 675, 835, 760, 804, 795, 809, 808, 820, 845, 840, 848, 862, 897, 922, 935, 936, 937, 966, 971, 1017, 1294, 1031, 1077, 1078, 1109, 1133, 1027, 1317, 1316, 1324, 1329, 1343, 1344, 1347, 1361, 1360, 1358, 1379, 1386, 1390, 2092, 1472, 1543, 1671, 1435, 1763, 1774, 1792, 1825, 1831, 1876, 1920, 1994, 2041] color segmentation [1017, 2041] color-based segmentation [2041] coloring [307, 626, 804, 795, 803, 897, 2037] complexity [4, 5, 47, 57, 71, 82, 127, 278, 636, 437, 506, 628, 719, 720, 836, 920, 974, 989, 1047, 1131, 1153, 1263, 1330, 1331, 1344, 1378, 1390, 1389, 1426, 1493, 1502, 1577, 1742, 1744, 1771, 1919, 1918, 1962, 2034, 2037, 2063] compounds [15, 57, 173, 361, 360, 426, 538, 629, 903, 928, 1122, 1366, 1399, 1502, 1754, 2018] compressed video [910, 909] compressing images [1162] compression [2, 60, 61, 64, 67, 80, 81, 82, 146, 150, 172, 193, 210, 2086, 283, 281, 323, 540, 684, 752, 784, 782, 1028, 1029, 1109, 1162, 1338, 1363, 1364, 1379, 1479, 1587, 1592, 1607, 1657, 1662, 1661, 1683, 1733, 1736, 1747, 1859, 2006, 2064, 2077] conjugate-gradient method [728] control [19, 52, 72, 102, 103, 111, 125, 130, 136, 152, 158, 165, 176, 233, 265, 266, 264, 309, 310, 351, 358, 364, 366, 372, 377, 396, 418, 424, 428, 437, 484, 494, 501, 502, 510, 535, 536, 551, 575, 584, 599, 606, 615, 253, 651, 657, 653, 654, 656, 655, 699, 708, 734, 743, 746, 760, 786, 805, 816, 851, 935, 936, 947, 982, 1000, 1005, 1024, 1054, 1059, 1110, 1111, 1149, 1220, 1239, 1212, 1224, 1226, 1217, 1236, 1223, 1233, 1218, 1240, 1216, 1246, 1247, 1256, 1254, 1255, 1266, 1271, 1318, 1329, 1365, 1374, 1394, 1422, 1424, 1426, 1448, 2092, 1484, 1509, 1319, 1538, 1576, 1605, 1612, 1614, 1679, 1683, 1722, 1755, 1793, 1805, 1807, 2087, 2088, 1833, 1834, 1835, 1876, 1886, 1879, 1910, 1914, 1940, 2052, 1968, 1987, 1994, 2003, 2004, 1996, 1997, 2008, 2026, 2050, 2055, 2074, 2075, 2081] control system [165, 265, 366, 377, 428, 494, 584, 1940, 2003, 2004, 1997] convergence [1, 80, 81, 93, 94, 104, 112, 115, 113, 202, 213, 233, 372, 381, 384, 433, 435, 453, 460, 576, 680, 691, 737, 827, 831, 846, 866, 914, 959, 998, 1051, 1052, 1199, 1252, 1250, 1281, 1328, 1524, 1529, 1532, 1551, 1553, 1639, 1656, 1745, 1808, 1857, 1855, 1860, 1858, 1930, 1973, 1982, 1987, 2040, 2062] coronary [271, 447, 1684] cortex [74, 100, 99, 231, 434, 444, 480, 481, 483, 478, 477, 482, 479, 496, 614, 751, 757, 948, 1009, 1021, 1146, 1147, 1172, 1173, 1180, 1181, 1196, 1233, 1235, 1219, 1240, 1241, 1384, 1397, 1396, 1398, 1421, 1538, 1619, 1624, 1649, 1647, 1648, 1724, 1723, 1725, 1726, 1752, 1762, 1907, 1914, 1950] cortical map(s) [481, 478, 479, 1021, 1172, 1173, 1196, 1233, 1235, 1219, 1240, 1241, 1397, 1396, 1726] counter-propagation [491, 1206, 1305] cross-validation [69, 173, 223, 1684, 1811] cursive character [167, 610, 1227] curvilinear component analysis (CCA) [530, 1013, 1875] data fusion [159, 589, 1017, 1061, 1545, 1603, 1746, 1750, 1917, 2065, 2066, 2068, 2069] data mining [17, 16, 18, 215, 304, 306, 307, 311, 330, 337, 385, 388, 399, 425, 467, 470, 510, 520, 557, 564, 805, 828, 829, 843, 842, 866, 882, 875, 877, 844, 976, 978, 998, 1006, 1033, 1030, 1032, 1129, 1158, 1170, 1242, 1243, 1309, 1312, 1310, 1314, 1311, 1308, 1438, 1451, 1530, 1577, 1034, 1610, 1620, 1716, 1757, 1777, 1794, 1822, 1849, 1862, 1869, 1870, 1884, 1885, 1932, 1989, 2015, 2016] data visualization [27, 284, 281, 470, 484, 622, 621, 626, 625, 682, 833, 801, 790, 855, 862, 863, 1184, 1768, 1863, 1862, 1861, 1872, 1867, 1885] data-analysis [469, 789] database [21, 30, 35, 50, 69, 71, 86, 95, 116, 113, 120, 119, 125, 167, 168, 207, 210, 215, 229, 248, 279, 304, 305, 311, 326, 357, 373, 399, 400, 425, 431, 443, 448, 472, 562, 607, 608, 638, 657, 678, 710, 711, 708, 709, 728, 769, 766, 821, 823, 862, 863, 890, 872, 927, 939, 944, 958, 966, 967, 970, 988, 1006, 1001, 1033, 1023, 1065, 1064, 1062, 1103, 1130, 1129, 1157, 1174, 1245, 1258, 1271, 1312, 1310, 1307, 1311, 1308, 1317, 1316, 1322, 1377, 1390, 1399, 2092, 1502, 1519, 1532, 1589, 1603, 1620, 1622, 1668, 1669, 1684, 1705, 1710, 1716, 1744, 1758, 1787, 1790, 1789, 1796, 1797, 2088, 1831, 1888, 1887, 1895, 1897, 1908, 1933, 1940, 1962, 2014, 2026] discrete cosine transform (DCT) [150, 1065, 1136, 1285, 1592, 1837] densitometric [359] density estimation [281, 479, 548, 681, 1828, 1840, 1847, 1960, 2040] diabetes [90, 1684] diagnostics [3, 38, 80, 81, 126, 223, 224, 227, 241, 254, 256, 313, 314, 352, 386, 391, 393, 394, 395, 405, 411, 415, 541, 547, 555, 590, 726, 732, 769, 774, 781, 839, 868, 911, 925, 927, 1929, 1117, 1139, 1335, 1375, 1419, 1422, 1518, 1542, 1594, 1607, 1643, 1684, 1717, 1732, 1735, 1739, 1755, 1757, 1799, 1811, 1853, 1854, 1911, 1912, 1913, 1955, 1961, 1962, 1979, 2021, 2020, 2045, 2056, 2075] digit recognition [248, 529, 833, 1063, 1383, 1382, 1550, 1700, 2057] digital images [35, 51, 359, 1640, 1758] digital libraries [6, 708, 792, 1169, 1456, 1454, 1459, 1460] dimensionality reduction [2, 265, 501, 515, 953, 955, 957, 1193, 2022, 1253, 1353, 1550, 2023] disease [90, 149, 254, 538, 868, 927, 1574, 1599, 1684, 1961] dynamic learning vector quantization (DLVQ) [2053] DNA sequences [372, 382, 530, 764, 1875] DNA microarray [228, 372, 383, 382, 1521, 1796, 1797] document [7, 6, 8, 67, 68, 200, 250, 353, 368, 369, 370, 495, 528, 529, 543, 561, 562, 563, 607, 608, 642, 643, 640, 710, 711, 708, 750, 754, 790, 793, 789, 821, 895, 886, 894, 890, 869, 872, 880, 896, 944, 945, 943, 976, 977, 975, 979, 1002, 1016, 1026, 1045, 1099, 1130, 1129, 1169, 1167, 1245, 1274, 1277, 1316, 1403, 1430, 1452, 1462, 1463, 1453, 1455, 1461, 1458, 1459, 1460, 1494, 1505, 1639, 1661, 1688, 1689, 1755, 1838, 1896, 1895, 1897, 2015, 2016, 2017, 2034] drug [41, 43, 385, 911, 1376, 1563, 1732] dynamic time warping (DTW) [277, 1906] dysphonia [166] economics [337, 338] edge detection [40, 1067, 1189, 1750, 1773, 1774] EEG (electroencephalogram) [75, 539, 559, 723, 722, 724, 725, 751, 949, 1059, 1149, 1205, 1391, 1398, 1419, 1421, 1420, 1854] electric load [185, 186, 184, 183, 615, 834, 1380, 2087] electric power [154, 834, 1000, 1367, 1468, 1467, 1485, 1591] electrical [207, 386, 393, 615, 732, 1013, 1366, 1576, 1679, 1757, 1950, 2060] electrocardiogram (ECG) [83, 142, 147, 448, 447, 1049, 1157, 1340, 1582, 1720, 2064] electrode [1059, 1421] electromagnetic [118, 397, 413, 515, 758, 1520, 1717, 1814, 1816, 1815] electromyogram (EMG) [3, 254, 256, 253, 1812, 2052] electron spectroscopy [1242, 1243, 1309, 1780] electron-microscopy images [1163, 1164] electronics [1793] EM algorithm [63, 116, 478, 479, 553, 1026, 1193, 2022, 1219, 1767, 2023] endocardial [1470] engine [95, 277, 374, 541, 590, 1001, 1038, 1987, 2049, 2075] English [95, 768, 1002, 1033, 1055, 1729, 1897] entropy [69, 212, 444, 684, 750, 784, 778, 780, 1069, 1162, 1281, 1357, 1377, 1070, 1707, 1847, 1862, 1927, 2005, 2040, 2067] entropy maximization [1707, 2005] environmental [194, 209, 494, 523, 756, 805, 929, 1279, 1287, 1304, 1384, 1629, 1764, 1765, 1873, 1912, 1913, 2052] epileptic [723, 724, 725, 1854, 1970] equalization [1, 144, 241, 437, 691, 1124, 1362] evoked potentials [393, 394] evolutionary [14, 74, 189, 191, 214, 345, 591, 637, 657, 851, 879, 1022, 1263, 1299, 1297, 1298, 1318, 1355, 1422, 1500, 1319, 1814, 1883, 1890, 1889, 1900, 1922, 2076, 1981, 1987, 2059] exploration [49, 54, 215, 228, 242, 268, 303, 316, 389, 394, 395, 470, 526, 527, 530, 557, 564, 576, 581, 603, 642, 743, 796, 791, 800, 790, 807, 815, 813, 814, 812, 855, 857, 862, 863, 869, 872, 878, 920, 944, 976, 990, 1002, 1041, 1057, 1107, 1148, 1170, 1169, 1219, 1246, 1264, 1267, 1270, 1304, 1307, 1308, 1323, 1371, 1409, 1443, 1453, 1455, 1461, 1578, 1632, 1656, 1713, 1786, 1797, 1801, 1861, 1869, 1867, 1875, 1893, 1919, 1917, 1927, 1918, 2052, 1980, 2011] face image [122, 647, 669, 806, 824, 1193, 1702, 1701, 1789] fault diagnosis [38, 313, 405, 726, 732, 839, 1757, 1811, 1979, 2045] feedback [103, 351, 377, 502, 572, 652, 649, 648, 750, 868, 966, 967, 971, 1049, 1258, 1271, 1355, 1530, 1560, 1811, 1934, 1967, 1935] feedforward [77, 130, 208, 218, 240, 270, 310, 353, 374, 396, 419, 508, 517, 655, 707, 780, 949, 1049, 1111, 1120, 1138, 1139, 1164, 1330, 1331, 1533, 1538, 1563, 1566, 1771, 1814, 2053, 2083, 2085] fermentation [401] FFT [438, 524, 751, 957, 1064, 1148, 1398, 1419, 1799] fiber-optic [1246] filtering [40, 145, 200, 305, 309, 324, 353, 387, 421, 446, 445, 501, 502, 514, 560, 576, 575, 611, 253, 638, 667, 688, 691, 693, 727, 750, 751, 752, 923, 978, 1049, 1127, 1247, 1329, 1407, 1408, 1431, 1507, 1514, 1515, 1513, 1601, 1614, 1638, 1750, 1793, 1811, 1814, 1840, 1847, 1914, 1937, 2047, 2066, 2068, 2069, 2077, 2081] finance [6, 25, 49, 70, 286, 342, 329, 332, 341, 331, 337, 339, 338, 402, 525, 788, 800, 843, 855, 859, 844, 1251, 1473, 1474, 1594, 1595, 1596, 1597, 1682, 1745, 1779, 2088, 1873, 1958, 1990] fingerprint recognition [1933] finite-state vector quantization [2078] Fisher's linear discriminant (FLD) [3, 1193, 1684, 1804] fluorescence [173, 381, 380, 395, 592, 1574, 1796, 1817] FMRI [420, 423, 422, 477, 482, 1290, 1970] forecasting [185, 186, 184, 183, 226, 238, 255, 296, 318, 525, 547, 615, 834, 901, 902, 962, 1013, 1014, 1053, 1056, 1068, 1199, 1245, 1374, 1380, 1475, 1474, 1483, 1591, 1598, 1679, 1687, 1745, 2087, 1973, 2050] forward-looking infrared (FLIR) imagery [187, 1023, 1047, 1124, 1125, 1492, 1489] forest [204, 527, 596, 613, 1168, 1632, 1873, 1978]
  6. Fourier [242, 255, 406, 405, 414, 421, 524, 541, 550, 683, 707, 845, 957, 1115, 1149, 1341, 1375, 1744, 1799, 1854, 2056] fractal image [150, 530, 1136, 1875] fraud [634, 633, 1958] fuzzy [10, 18, 32, 57, 62, 63, 77, 79, 78, 124, 130, 134, 142, 152, 188, 208, 233, 237, 243, 258, 259, 262, 278, 303, 304, 310, 325, 329, 352, 364, 389, 388, 426, 494, 502, 509, 516, 556, 561, 606, 608, 627, 650, 663, 668, 672, 677, 676, 673, 684, 691, 725, 735, 737, 739, 741, 781, 784, 775, 782, 778, 783, 780, 821, 822, 841, 852, 853, 901, 910, 911, 929, 930, 931, 939, 938, 952, 951, 956, 1003, 1025, 1294, 1046, 1054, 1050, 1044, 1056, 1074, 1061, 1077, 1089, 1087, 1088, 1100, 1107, 1192, 1281, 1280, 1279, 1027, 1305, 1340, 1339, 1347, 1349, 1350, 1373, 1372, 1371, 1370, 1393, 1399, 1422, 1436, 1465, 1478, 1502, 1506, 1507, 1518, 1536, 1537, 1591, 1612, 1615, 1620, 1638, 1659, 1660, 1670, 1676, 1677, 1679, 1690, 1704, 1700, 1705, 1716, 1749, 1763, 1792, 1793, 1811, 1820, 1821, 2087, 1863, 1866, 1914, 1930, 1986, 1920, 1381, 1936, 1937, 1942, 1941, 1951, 1960, 1959, 1970, 1978, 1987, 1996, 1943, 2021, 2044, 2055, 2068, 2067, 2063, 2070, 2080] fuzzy artmap [426, 509, 627, 737, 1077, 1305, 1615, 1716, 1811] fuzzy c-means [258, 556, 775, 778, 780, 822, 939, 938, 1044, 1347, 1373, 1372, 1371, 1370, 1638, 1763, 1792, 1930] fuzzy clustering [78, 237, 259, 556, 561, 684, 784, 778, 780, 1294, 1027, 1340, 1399, 1502, 1506, 1507, 1863, 1936] fuzzy control [364, 494, 1054, 1914] Gabor filters [187, 612, 688, 923, 1407, 1408, 1513, 1847, 1914, 2047, 2077]
  7. Gaussian Markov random fields (GMRF) [1407] galaxy [278, 1108, 1107] gene expression [228, 791, 797, 790, 1323, 1478, 1521, 1737, 1796, 1797, 1798, 1830] generalized LVQ [235, 775, 1062, 1551, 1548] generative topographic mapping (GTM) [90, 129, 149, 213, 528, 529, 575, 754, 1104, 1768, 1767, 1829, 1863, 1862] genetic [99, 111, 124, 190, 191, 329, 403, 404, 429, 530, 552, 570, 691, 749, 764, 832, 851, 853, 879, 1022, 1068, 1135, 1141, 1163, 1164, 1199, 1263, 1304, 1355, 1383, 1409, 1413, 1411, 1419, 1466, 1474, 1500, 1591, 1699, 1693, 1751, 1797, 1814, 1875, 1920, 1973, 2080] geological [603, 860, 1148] geophysics [1138] geopotential [192, 1039] gesture recognition [277, 274, 276, 275, 408, 987, 986, 1119, 1246, 1302, 2092, 1547, 1810] grammar [572, 946] granulometric [1744] growing [19, 17, 16, 20, 18, 78, 83, 84, 117, 210, 216, 234, 352, 359, 368, 371, 369, 370, 376, 375, 413, 415, 484, 509, 588, 596, 665, 671, 670, 678, 682, 719, 720, 743, 746, 848, 910, 923, 1017, 1170, 1168, 1182, 1184, 1183, 1253, 1269, 1289, 1320, 1988, 1455, 1458, 1514, 1513, 1521, 1577, 1585, 1588, 1615, 1668, 1717, 1803, 1861, 1865, 1876, 1881, 1878, 1888, 1887, 1911, 1923, 1980, 1981, 2041] GSM [12, 437] GSOM [19, 20, 18, 31, 665, 934, 1888, 1887, 1892] handwriting [117, 235, 248, 326, 345, 346, 347, 373, 529, 554, 833, 754, 819, 946, 1042, 1074, 1062, 1075, 1063, 1227, 1221, 1348, 1383, 1382, 1550, 1700, 1804, 1905, 1906, 1908, 1381, 1958, 2008, 2044, 2057] hardware [135, 137, 146, 419, 691, 697, 698, 835, 904, 905, 1078, 1336, 1345, 1384, 1418, 1509, 1586, 1722, 1851, 1874] health [25, 38, 90, 174, 242, 243, 304, 313, 506, 507, 523, 901, 902, 1022, 1110, 1419, 1564, 1565, 1740, 1912, 1966, 2024, 2046] heart murmurs [1019, 2046]
  8. Hebbian [138, 480, 479, 572, 614, 687, 686, 702, 948, 1196, 1219, 1218, 1240, 1384, 1397, 1396, 1540, 1600, 1626, 1640, 1647, 1838, 2058] hidden Markov models (HMM) [145, 149, 277, 274, 276, 275, 345, 346, 347, 433, 432, 941, 942, 1026, 1278, 2092, 1497, 1575, 1590, 2089, 1965] hierarchical [19, 34, 82, 95, 105, 125, 126, 172, 185, 182, 186, 184, 179, 181, 183, 221, 220, 283, 284, 281, 323, 368, 371, 369, 370, 380, 416, 512, 702, 842, 866, 911, 937, 946, 966, 968, 969, 1001, 1090, 1122, 1170, 1175, 1202, 1249, 1329, 1384, 1390, 1389, 1097, 1452, 1480, 1528, 1555, 1560, 1572, 1612, 1680, 1690, 1710, 1708, 1709, 1734, 1767, 1809, 1837, 1869, 1896, 1897, 1908, 1938, 1961, 1970, 1994, 2015, 2016, 2054] hierarchical clustering [19, 34, 105, 323, 369, 380, 1175, 1097, 1970, 1994] high-energy physics [1427] histogram [55, 229, 241, 345, 346, 347, 645, 646, 644, 696, 695, 872, 1078, 1133, 1134, 1408, 1668, 1671, 1837, 1933] holographic [471, 472, 473, 1345] Hopfield network [216, 656, 1105, 1220, 1239, 1212, 1238, 1673, 2035] Hough transform [187, 1187, 1348, 2010] html [710, 711, 709, 976, 1105] hybrid [2, 51, 57, 88, 134, 135, 156, 165, 175, 226, 241, 277, 274, 276, 275, 278, 311, 345, 394, 428, 441, 494, 432, 531, 591, 609, 610, 629, 657, 656, 655, 725, 843, 901, 909, 954, 951, 844, 1002, 1060, 1107, 1111, 1123, 1142, 1189, 1209, 1239, 1259, 1278, 1315, 1341, 1339, 1369, 1399, 1407, 1422, 2092, 1473, 1474, 1497, 1502, 1531, 1590, 1589, 1673, 1679, 1681, 1704, 1700, 1708, 1786, 1803, 1833, 1834, 1835, 1898, 1910, 1919, 1381, 1918, 1958, 1965, 2035, 2053, 2075, 2080] identification [35, 62, 63, 438, 80, 81, 83, 89, 130, 145, 146, 176, 209, 224, 227, 233, 257, 308, 400, 401, 414, 418, 427, 436, 518, 517, 523, 585, 588, 630, 658, 677, 667, 691, 693, 728, 730, 736, 770, 768, 774, 861, 868, 875, 911, 953, 955, 1008, 1022, 1039, 1049, 1059, 1082, 1092, 1091, 1101, 1110, 1120, 1121, 1174, 1208, 1248, 1269, 1278, 1290, 1299, 1302, 1337, 1336, 1375, 1376, 1419, 1424, 1436, 1506, 1507, 1526, 1543, 1576, 1605, 1607, 1931, 1629, 1688, 1689, 1155, 1742, 1753, 1757, 1758, 1788, 1799, 1817, 1957, 1964, 2010, 2049, 2060, 2080] image [2, 8, 34, 35, 37, 40, 42, 46, 50, 51, 55, 56, 60, 61, 64, 72, 82, 88, 95, 103, 111, 122, 126, 133, 143, 150, 157, 168, 172, 178, 187, 193, 205, 206, 210, 211, 223, 222, 230, 232, 229, 241, 257, 262, 263, 2086, 2090, 276, 283, 281, 282, 285, 301, 767, 312, 324, 345, 346, 347, 359, 367, 379, 378, 388, 395, 408, 407, 417, 416, 423, 431, 441, 440, 446, 445, 455, 530, 537, 540, 546, 550, 567, 577, 585, 594, 593, 595, 604, 612, 618, 645, 646, 644, 662, 672, 678, 674, 673, 675, 684, 687, 688, 691, 692, 696, 699, 698, 709, 837, 835, 752, 761, 763, 765, 774, 784, 782, 783, 786, 806, 820, 822, 824, 845, 836, 831, 838, 848, 853, 860, 914, 921, 922, 923, 939, 961, 960, 962, 966, 967, 971, 968, 970, 969, 972, 974, 983, 1017, 1026, 1028, 1294, 1031, 1029, 1036, 1037, 1042, 1043, 1046, 1044, 1047, 1055, 1065, 1064, 1066, 1071, 1078, 1090, 1104, 1109, 1116, 1132, 1133, 1136, 1152, 1162, 1163, 1164, 1176, 1187, 1193, 1202, 1257, 1258, 1274, 1279, 1285, 1291, 1293, 1292, 1027, 1317, 1322, 1324, 1326, 1325, 1328, 1329, 1335, 1343, 1344, 1346, 1347, 1348, 1352, 1354, 1361, 1359, 1360, 1358, 1363, 1364, 1372, 1370, 1379, 1386, 1390, 1388, 1407, 1439, 1440, 1472, 1479, 1480, 1481, 1489, 1490, 1488, 1491, 1498, 1499, 1513, 1543, 1544, 1547, 1555, 1557, 1558, 1559, 1587, 1592, 1639, 1638, 1640, 1644, 1662, 1661, 1671, 1683, 1689, 1702, 1701, 1712, 1713, 1714, 1715, 1728, 1733, 1736, 1744, 1435, 1750, 1758, 1763, 1764, 1765, 1773, 1774, 1792, 1800, 1805, 1810, 1809, 1818, 1831, 1832, 1840, 1845, 1866, 1875, 1879, 1930, 1920, 1923, 1933, 1950, 1952, 1965, 1971, 1980, 1982, 1984, 2006, 2007, 2014, 2025, 2035, 2042, 2047, 2053, 2062, 2065, 2066, 2059, 2068, 2069, 2063, 2077, 2079, 2078] image analysis [35, 46, 2090, 281, 285, 359, 379, 662, 687, 774, 983, 1078, 1132, 1354, 1390, 1388, 1639, 1683, 1689, 1758, 1866, 1965] image classification [441, 763, 1026, 1046, 1055, 1116, 1439, 1440, 1555, 1671, 1832] image clustering [417] image coding [42, 82, 684, 1136, 1481, 1488, 1713, 1714, 1715, 1818, 2062, 2063, 2079, 2078] image compression [2, 60, 61, 82, 150, 172, 193, 540, 752, 784, 782, 1028, 1029, 1109, 1363, 1364, 1379, 1662, 1661, 1683, 1736, 2006, 2077] image database [168, 210, 229, 431, 970, 1317, 1322] image recognition [37, 407, 922, 1810, 1809, 2035] image retrieval [229, 416, 678, 966, 967, 971, 968, 969, 972, 1065, 1064, 1258, 1831, 1980, 2014, 2077] image segmentation [8, 126, 232, 262, 440, 585, 672, 674, 673, 675, 699, 822, 922, 961, 1017, 1026, 1294, 1044, 1078, 1202, 1274, 1292, 1027, 1335, 1435, 1930, 1920, 1971, 1984, 2025, 2035] image sequence [276, 835, 806, 836, 838, 921, 1479, 1543, 1587, 1644] imaging [9, 121, 352, 420, 423, 422, 455, 961, 960, 1290, 1375, 1498, 1499, 1574, 1643, 1661, 1734, 1920, 1970] impedance [1174, 1653, 1807] independent component analysis (ICA) [501, 721, 763, 1707, 2005] indexing [229, 363, 607, 843, 944, 945, 943, 844, 977, 1117, 1277, 1316, 1390, 1543, 1671, 2016, 2033, 2031, 2041, 2047, 2055] industrial [10, 24, 37, 438, 165, 395, 604, 667, 726, 731, 1005, 1251, 1498, 1633, 1636, 1631, 1805, 2050] infarction [352, 1471, 1470] information retrieval (IR) [561, 563, 642, 640, 750, 789, 944, 971, 1461, 1569, 1838] information-theoretic [1850, 1847] infrared (IR) [187, 267, 962, 1023, 1047, 1124, 1125, 1492, 1490, 1765] inheritance [702, 1907] integrated circuit [1509, 1516, 1759, 2043] intensity histogram [645, 646, 644] interference [2086, 414, 413, 498, 616, 656, 655, 706, 961, 960, 1017, 1392, 1679, 1836]
  9. Internet [200, 210, 215, 225, 250, 303, 344, 352, 363, 402, 657, 677, 703, 711, 904, 911, 978, 1001, 1243, 1289, 1422, 1444, 1449, 1463, 1577, 1621, 1863, 1862, 1861, 2011] interpolation [58, 131, 531, 532, 537, 547, 911, 947, 1086, 1188, 1390, 1392, 1486, 1545, 1546, 1739, 1825, 2002, 2038] intracardiac tachycardia [1606, 1605] invariant [8, 35, 48, 244, 276, 435, 618, 688, 693, 692, 823, 824, 1055, 1082, 1104, 1152, 1230, 1279, 1295, 1440, 1501, 1513, 1524, 1639, 1669, 1744, 1758, 1787, 1790, 1788, 1789] IR spectrometry [2018] isodata [556, 1017, 1750] jpeg [1029, 1543, 1662, 1661] Julier-Uhlmann-Kalman filter [727] k-means [88, 206, 352, 380, 400, 938, 1087, 1363, 1714, 1867, 1909, 1923]
  10. k-nearest neighbour classifier [113, 604, 760, 1534, 1684] Kalman filtering [575, 611] kanji recognition [2008] Karhunen-Loeve transform [150, 1744] kernel [365, 990, 1078, 1103, 1745, 1849, 1850, 1844, 1842, 1847, 1961, 1962, 1960] Klein bottle [1724] Kullback-Leibler [634, 633, 681, 2040, 2039]
  11. Landsat [69, 613, 612, 733, 1259, 1558, 1750, 1879] language [36, 130, 156, 353, 433, 477, 432, 563, 639, 640, 806, 904, 944, 1002, 1016, 1030, 1032, 1099, 1120, 1142, 1348, 1447, 2092, 1590, 1589, 1034, 1738, 1755, 1950, 2016, 2026] larvae [35, 1758] laser [85, 731, 1345] LBG [64, 82, 736, 1493, 1616, 1713, 1714, 2064] lexicon [1178] linguistic [6, 353, 389, 564, 580, 672, 673, 1056, 1120, 1312, 1349, 1350, 1607, 1620, 1665, 1777, 1780, 2080] lipid [689, 753] load forecasting [185, 186, 184, 183, 238, 615, 834, 1013, 1483, 1598, 1679, 2087, 2050] logistic regression [25, 218, 357, 950, 1732, 1961, 1962, 1960] LPC [1209, 1338, 1564, 1565, 1575] machine vision [760, 808, 935, 936, 1640, 1728, 1817] macromolecule [1372, 1371, 1370] magnetic resonance [101, 133, 243, 421, 423, 422, 781, 783, 1290, 1970, 1971] magnetosphere [1728] Mahalanobis distance [450, 1078, 1352, 1572] Manhattan distance [1154] market [91, 219, 237, 294, 320, 344, 329, 333, 337, 343, 510, 621, 1022, 1475, 1473, 1474, 1477, 1682, 1863, 1862, 1861, 2070] marketing [215, 337, 338, 1477, 1861] Markov model [149, 276, 275, 1026, 1119, 1278, 1497, 1965] maximum entropy [1707, 1847] medical [80, 81, 136, 193, 256, 359, 367, 411, 441, 440, 455, 547, 564, 590, 806, 868, 887, 911, 927, 1064, 1148, 1292, 1335, 1390, 1566, 1684, 1716, 1730, 1732, 1739, 1755, 1803, 2088, 1884, 1885, 1920, 1961, 1962] medical diagnosis [80, 81, 256, 547, 590, 911, 1335, 1684, 1732, 1961] medical image(s) [193, 359, 441, 440, 455] mesh [397, 1026, 1084, 1533, 2037] metabolic [401, 2061] metal [358, 413, 1405, 1418, 1717, 1977, 1976] meteorological [901, 902, 1036, 1037, 1068, 1175, 1199, 1728, 1764, 1952, 1973] microscopy images [960, 1163, 1164, 1291] mineralogical [1104] mitochondrial [1562] mixture density [681, 941, 942, 2089] mobile communication [144, 633] mobile robot [265, 266, 264, 494, 667, 727, 929, 930, 931, 1127, 1287, 1480, 1670, 1801, 1865] modulation [453, 618, 1336, 1431, 1690] molecular [15, 57, 73, 101, 119, 385, 426, 513, 538, 549, 689, 1010, 1115, 1399, 1414, 1432, 1502, 1563, 1754] money [914, 915, 913, 918, 916, 917, 912, 1328] monitoring [10, 24, 53, 52, 131, 134, 164, 240, 307, 358, 365, 414, 413, 428, 508, 509, 523, 526, 607, 611, 632, 655, 677, 721, 726, 747, 769, 770, 789, 805, 865, 903, 1006, 1024, 1038, 1050, 1060, 1162, 1204, 1390, 1448, 1495, 1516, 1556, 1564, 1587, 1607, 1628, 1717, 1735, 1740, 1746, 1757, 2087, 1849, 1854, 1866, 1876, 1912, 1939, 1938, 1940, 1955, 1956, 1977, 1976, 2056]
  12. Monte Carlo [141, 288, 948, 1093, 1264, 1094] morphology [283, 284, 281, 282, 285, 359, 448, 774, 845, 986, 1057, 1120, 1525, 1721, 1817] motion [266, 367, 421, 420, 434, 502, 546, 605, 253, 659, 837, 835, 836, 838, 905, 910, 909, 922, 986, 1239, 1266, 1283, 1284, 1346, 1560, 1585, 1619, 1624, 1670, 1807, 1808, 1983, 2041, 2079] motor [74, 157, 231, 243, 254, 365, 420, 494, 502, 746, 1110, 1114, 1220, 1239, 1212, 1224, 1226, 1228, 1213, 1217, 1229, 1231, 1233, 1218, 1266, 1265, 1326, 1325, 1421, 1426, 1425, 1538, 1735, 1992, 2074] motor control [746, 1220, 1212, 1224, 1226, 1217, 1233, 1218, 1266, 1538] MR images [126, 133, 359, 781, 783] multi-layer perceptron (MLP) [2, 38, 87, 117, 132, 133, 134, 156, 190, 189, 191, 203, 206, 216, 226, 240, 272, 305, 373, 392, 509, 534, 555, 604, 612, 627, 630, 656, 742, 758, 766, 786, 820, 901, 902, 904, 919, 986, 1022, 1042, 1077, 1140, 1164, 1246, 1268, 1274, 1332, 1341, 1339, 1382, 1404, 1406, 1427, 1488, 1519, 1531, 1542, 1575, 1598, 1615, 1625, 1681, 1684, 1749, 1753, 1811, 1814, 1815, 1817, 1824, 2087, 1834, 1835, 1854, 1900, 1961, 1959] multidimensional scaling [139, 866, 1527, 1528, 1578, 1864] multimedia [657, 656, 655, 710, 711, 708, 709, 905, 988, 1316, 1422, 1453, 1592] multiresolution [60, 61, 444, 1544, 1557] multiscale image [42, 126, 440] multisensor systems [272, 1077, 2089] multispectral [34, 40, 61, 88, 126, 379, 752, 1285, 1555, 1557, 1558, 1559, 1750, 1773, 1774, 1859, 1969, 1971] multispectral image [88, 752, 1555, 1558, 1559, 1773, 1774, 1971] music [180, 1186, 1316, 1431, 1453, 1663, 1691, 1705, 2046] myocardial infarction [1471, 1470] natural language [639, 640, 944, 1099, 1120, 1142, 1755] neurological [477, 1854] NP-complete [154, 268, 1674] nuclear power [1506, 1507] odor discrimination [509, 952, 951, 956, 1077, 1615] optical [146, 361, 446, 445, 472, 475, 509, 546, 669, 758, 921, 1259, 1345, 1406, 1422, 1498, 1520, 1627, 1700, 1705] orientation column [434, 1647] orientation map [252, 948, 1482, 1649] oscillators [618, 755, 756, 1907] oxide [627, 1077, 1121, 1336] parallel implementation [367, 906, 998, 1194, 1447, 1464, 1795, 1794, 2088, 1860]
  13. Parkinson's disease [149] particle [73, 178, 230, 419, 901, 974, 983, 1163, 1164] pathological [126, 352, 477, 534, 772, 773, 984, 1419] PCA [8, 21, 56, 117, 150, 153, 767, 328, 372, 415, 501, 509, 527, 763, 957, 983, 1023, 1077, 1113, 1149, 1152, 1156, 1259, 1361, 1360, 1492, 1489, 1491, 1557, 1558, 1559, 1592, 1637, 1657, 1689, 1875, 1909, 1914, 1957, 2056] Peano scan [1774] peptides [1562] person identification [1419] PET image [1845] phoneme [29, 279, 512, 941, 1151, 1278, 1426, 1497, 1690, 1806] phonocardiogram [2046] photoelectron spectroscopy [1309, 1827] PICSOM [966, 967, 971, 968, 970, 969, 972] plant [425, 435, 436, 518, 517, 729, 741, 816, 947, 1929, 1203, 1204, 1252, 1250, 1409, 1506, 1507, 1532, 1599, 1817, 1833, 1834, 1835] plasma [90, 753, 1728, 1910] polarimetric [212, 593, 661] polymer [245, 928, 1245, 1827] posture [408, 805, 853, 1216, 1302, 2092, 1538] power system [52, 239, 246, 247, 313, 314, 474, 508, 615, 732, 1000, 1007, 1093, 1092, 1091, 1204, 1269, 1468, 1467, 1485, 1507, 1651, 1650, 1652, 1757, 1964, 1094, 1996, 2021, 2045] prediction [5, 6, 15, 25, 33, 41, 53, 57, 87, 100, 101, 106, 107, 130, 171, 175, 185, 186, 184, 183, 218, 223, 233, 239, 240, 307, 328, 334, 357, 385, 390, 401, 413, 426, 636, 509, 517, 525, 538, 547, 549, 560, 576, 596, 615, 628, 635, 655, 659, 687, 731, 746, 757, 788, 843, 856, 919, 950, 844, 1929, 1056, 1067, 1077, 1140, 1168, 1176, 1199, 1204, 1209, 1208, 1216, 1256, 1254, 1267, 1268, 1280, 1283, 1284, 1304, 1374, 1397, 1399, 1414, 1483, 1560, 1564, 1565, 1591, 1629, 1645, 1686, 1687, 1716, 1732, 1745, 1749, 1811, 1826, 1834, 1835, 1887, 1894, 1967, 1973, 1974, 1990, 2032, 2048, 2050, 2056, 2081] preprocessing [21, 110, 274, 276, 446, 445, 501, 707, 721, 763, 955, 957, 1008, 1011, 1046, 1068, 1171, 1189, 1348, 1466, 1477, 1489, 1490, 1491, 1654, 1799, 2053] probabilistic [3, 10, 23, 34, 39, 90, 213, 219, 327, 439, 441, 553, 634, 633, 728, 873, 879, 955, 1086, 1096, 1151, 1252, 1305, 1356, 1397, 2092, 1548, 1553, 1767, 1852] probabilistic neural network (PNN) [90, 117, 439, 441, 728, 955, 1096, 1305, 1356, 1764, 1765] projection pursuit [69, 1840, 1845] protein sequences [449, 671, 890, 1568, 1668, 1666] pruning [117, 138, 418, 443, 719, 720, 1081, 1303, 1819, 1865, 1981, 2041]
  14. PSOM [1486, 1914] psychiatric [477] psychological [100, 1431, 1888, 1887] psychovisual [444] pulp [24, 402, 903, 1632, 1866, 1873] PVM [76, 1080, 1447] QAM [1, 1048, 1442, 2089, 1934, 1935] quantum computation [1035] quartz-resonator [951] questionnaires [1015, 1888, 1887] radar [46, 324, 400, 412, 593, 692, 707, 771, 1036, 1037, 1124, 1125, 1390, 1389, 1544, 1712, 1793, 1814, 1948, 1952, 1985] radiology [241, 367] Raman spectrometry [683, 2019] radial-basis-function (RBF) [16, 38, 87, 88, 125, 131, 144, 156, 222, 233, 277, 355, 384, 454, 484, 630, 728, 742, 780, 922, 1192, 1332, 1333, 1415, 1427, 1988, 1506, 1507, 1540, 1582, 1579, 1753, 1770, 1790, 1788, 1789, 1811, 1903, 1959, 2056, 2073] receiver operating characteristic (ROC) [223, 1290] recurrent [74, 130, 525, 649, 648, 655, 755, 756, 919, 987, 986, 1049, 1110, 1142, 1240, 1274, 1483, 1497, 1506, 1507, 1524, 1690, 1856, 1857, 1855, 1901, 1907] regression [25, 218, 357, 365, 399, 418, 423, 635, 758, 805, 865, 902, 950, 1112, 1304, 1311, 1356, 1566, 1679, 1732, 1840, 1845, 1932, 1961, 1962, 1960, 1978, 2050, 2073] reinforcement learning [4, 45, 584, 583, 713, 864, 963, 1041, 1114, 1706, 1801, 2052, 1508] REM sleep [99, 559] remote-sensing images [1965] retrieval [50, 68, 128, 200, 229, 353, 416, 443, 547, 562, 563, 600, 603, 607, 608, 642, 640, 657, 678, 710, 711, 708, 709, 789, 821, 911, 944, 945, 966, 967, 971, 968, 970, 969, 972, 976, 977, 1065, 1064, 1099, 1117, 1170, 1177, 1258, 1277, 1317, 1316, 1322, 1453, 1461, 1460, 2092, 1569, 1663, 1673, 1831, 1838, 1895, 1980, 2014, 2032, 2034, 2033, 2031, 1076, 2077]
  15. RGB [301, 352, 604, 678, 760, 848, 935, 936, 1017, 1324, 1774] robotics [45, 102, 106, 158, 157, 195, 265, 266, 264, 358, 377, 446, 494, 521, 580, 605, 667, 727, 743, 746, 929, 930, 931, 963, 1024, 1069, 1071, 1114, 1126, 1127, 1148, 1191, 1239, 1238, 1271, 1287, 1402, 1429, 1070, 1446, 1480, 1484, 1486, 1539, 1670, 1683, 1690, 1706, 1753, 1770, 1769, 1802, 1801, 1805, 1807, 1865, 1900, 1914, 1508, 2074] robust [38, 45, 64, 77, 79, 106, 164, 203, 208, 219, 275, 379, 378, 412, 414, 426, 446, 445, 447, 453, 460, 457, 530, 602, 680, 667, 743, 759, 786, 805, 825, 828, 868, 922, 959, 1054, 1082, 1087, 1109, 1116, 1120, 1123, 1132, 1149, 1151, 1201, 1200, 1209, 1287, 1376, 1401, 1449, 2092, 1477, 1506, 1507, 1533, 1548, 1575, 1588, 1606, 1605, 1608, 1656, 1673, 1677, 1735, 1806, 1811, 2087, 1834, 1835, 1862, 1914, 1948, 1995, 2006, 2040, 2041, 2043, 2047, 2062, 2084, 2083, 2085] Sammon mapping [1130, 1129, 1154, 1455, 1555, 1867, 2037] satellite [34, 143, 144, 146, 204, 255, 2090, 612, 662, 863, 962, 1046, 1285, 1324, 1422, 1423, 1557, 1629, 1661, 1764, 1765, 1877, 1879, 1910, 1909, 1994, 2055] schizophrenia [477] segmentation [8, 9, 30, 51, 126, 133, 168, 232, 237, 243, 251, 252, 262, 269, 284, 282, 352, 357, 439, 440, 455, 512, 531, 532, 585, 604, 672, 674, 673, 675, 693, 697, 696, 695, 699, 837, 835, 781, 783, 822, 845, 836, 838, 909, 922, 924, 961, 960, 998, 1017, 1026, 1294, 1031, 1044, 1075, 1078, 1096, 1202, 1274, 1285, 1291, 1293, 1292, 1027, 1315, 1329, 1335, 1344, 1408, 1477, 1514, 1515, 350, 1543, 1608, 1644, 1643, 1665, 1666, 1435, 2089, 1863, 1862, 1861, 1930, 1986, 1920, 1936, 1937, 1965, 1969, 1971, 1984, 2008, 2025, 2035, 2041, 2047, 2070] seismic [32, 427, 728, 1138, 1281, 1280, 1742] seizure [497, 723, 950] self-organizing perceptron (SOP) [609, 610] self-supervised [1218, 1539, 1905, 1906] semantic [7, 27, 54, 175, 304, 370, 420, 572, 641, 835, 815, 813, 814, 812, 944, 945, 943, 977, 1002, 1098, 1099, 1162, 1403, 1097, 1621, 1755, 1831, 1893, 2012, 2031] sentence [108, 175, 353, 572, 736, 1142, 1690, 1895, 1897] sequence [33, 349, 134, 159, 182, 179, 181, 197, 217, 221, 220, 228, 268, 273, 277, 274, 276, 275, 376, 382, 411, 446, 445, 449, 494, 530, 532, 546, 553, 565, 580, 584, 583, 602, 655, 671, 739, 835, 743, 755, 764, 782, 806, 836, 838, 921, 929, 992, 1035, 1036, 1037, 1071, 1142, 1145, 1195, 1256, 1254, 1255, 1285, 1327, 1402, 1426, 1425, 1434, 1469, 1470, 1479, 1480, 1507, 1543, 1587, 1644, 1653, 1668, 1666, 1667, 1663, 1664, 1718, 1806, 1856, 1857, 1875, 1897, 1952, 1433, 1993, 1995, 2008, 1719, 2041] ship [662, 707, 1080, 1376] signal processing [136, 525, 691, 728, 1209, 1336, 1554, 1556, 1811, 1814, 2088, 1955, 1974, 2005, 2065] signature [95, 400, 515, 555, 769, 768, 771, 1055, 1080, 1124, 1125, 1279, 1786, 1958] silicon [501, 994, 1336, 1418] SIMD [1109, 1722] simulated annealing [148, 189, 381, 2062] sleep [99, 539, 559, 748, 1205, 1970, 2056] software [199, 283, 336, 338, 391, 423, 636, 455, 520, 557, 560, 581, 834, 709, 805, 904, 905, 1110, 1253, 1285, 1355, 1378, 1384, 1449, 1464, 1500, 1509, 1530, 1668, 1672, 1722, 1732, 1795, 1794, 2087, 1833, 1874, 1897, 2032, 2033, 2031] solder joint(s) [840, 1499, 2051] sonar [14, 245, 739, 860, 1079, 1127, 1865, 2025] sonogram [223] sparse [528, 572, 687, 688, 842, 904, 905, 998, 1397, 1639, 1640] speaker [110, 145, 305, 452, 736, 953, 955, 1209, 1208, 1278, 1667, 1690, 1824, 1893, 2000] spectrofluorometric [173, 1772, 1772] spectrometry [683, 903, 1122, 1853, 2018, 2019] spectroscopy [542, 753, 1242, 1243, 1309, 1780] spectrum [60, 61, 64, 90, 101, 145, 146, 173, 232, 255, 267, 304, 361, 395, 515, 524, 539, 550, 567, 604, 618, 660, 683, 691, 733, 739, 751, 752, 760, 772, 773, 805, 863, 903, 935, 936, 955, 1038, 1929, 1046, 1104, 1162, 1208, 1242, 1243, 1252, 1250, 1276, 1281, 1285, 1309, 1312, 1310, 1314, 1306, 1324, 1336, 1371, 1370, 1375, 1404, 1419, 1470, 1641, 1690, 1744, 1750, 1765, 1777, 1780, 569, 1811, 1826, 1827, 1854, 1859, 1888, 1433, 1993, 1994, 2055] speech [29, 80, 81, 108, 110, 130, 2086, 279, 305, 309, 362, 433, 451, 432, 503, 512, 533, 746, 772, 773, 778, 908, 932, 944, 945, 942, 953, 955, 958, 1069, 1151, 1185, 1235, 1276, 1278, 1338, 1426, 1070, 1434, 2092, 1497, 1531, 1575, 1590, 1589, 1665, 1666, 1667, 1663, 1690, 1806, 2089, 1847, 1860] speech recognition [29, 80, 81, 108, 130, 2086, 305, 451, 533, 773, 944, 942, 955, 958, 1276, 1497, 1575, 1590, 1589, 1665, 1666, 1667, 1663, 1690, 1806, 2089] speech signals [772, 773, 932, 1185, 1338, 1847] splines [1257] stereovision [1352] stock market [91, 344, 337] string [108, 148, 456, 580] stroke [257, 1375] subspace [8, 21, 201, 208, 2086, 415, 688, 721, 722, 789, 923, 944, 1146, 1152, 1193, 2092, 1514, 1513, 1657, 2089, 1847, 2000, 2030, 2057, 1076] subsymbolic [815, 814, 1177] surface inspection [697, 698, 809, 808, 810] surgery [149] system identification [62, 63, 418, 518, 517, 1049, 1248, 1424, 1605, 1155] tachycardia [1469, 1606, 1605, 1943] telecommunication [12, 2086, 309, 1633, 1632, 1743, 1947] temporal [50, 54, 87, 95, 208, 216, 217, 231, 243, 421, 423, 430, 433, 434, 464, 477, 482, 496, 519, 564, 565, 618, 652, 649, 648, 755, 842, 909, 929, 930, 931, 933, 987, 986, 1033, 1066, 1131, 1369, 1384, 1426, 1425, 1434, 1510, 1511, 1512, 1544, 1560, 1665, 1663, 1664, 1677, 1762, 1830, 1856, 1857, 1855, 1901, 1919, 1916, 1918, 2052, 1983] temporal sequence [217, 565, 755, 929, 1426, 1425, 1434, 1663, 1857] TEXSOM [1515, 350] text [7, 6, 8, 67, 68, 304, 305, 353, 433, 452, 432, 528, 529, 601, 642, 754, 790, 789, 821, 886, 894, 878, 896, 976, 977, 978, 979, 1002, 1001, 1016, 1045, 1055, 1129, 1158, 1170, 1169, 1166, 1179, 1274, 1327, 1403, 1430, 1464, 1463, 1453, 1455, 1451, 1458, 1504, 1505, 1577, 1688, 1689, 1738, 1755, 1795, 1824, 1896, 1895, 1897, 1980, 2015, 2016, 2017] text document [6, 642, 789, 896, 979, 1403, 1430, 1505, 1896, 1895, 1897, 2015, 2016] textile [72, 428, 786, 2048] texture [8, 21, 46, 50, 51, 56, 134, 168, 204, 208, 223, 232, 255, 257, 2086, 387, 558, 589, 604, 697, 696, 695, 698, 835, 760, 836, 838, 860, 924, 936, 962, 966, 971, 1065, 1064, 1067, 1078, 1133, 1134, 1139, 1148, 1202, 1258, 1292, 1316, 1359, 1360, 1358, 1375, 1407, 1408, 1514, 1515, 350, 1638, 1689, 1712, 1744, 1763, 1791, 1831, 1837, 1986, 1936, 1937, 1965, 1978] texture classification [51, 1407, 1744, 1791, 1837] texture features [8, 204, 223, 387, 612, 697, 696, 698, 835, 786, 836, 962, 1065, 1064, 1067, 1375, 1407, 1408, 1688, 1764, 1765, 1831, 1978] texture segmentation [232, 604, 695, 924, 1202, 1408, 1514, 1515, 350, 1986, 1936, 1937] therapy [447, 868, 1140, 1876, 1888, 1887] time series [69, 87, 107, 130, 180, 238, 423, 474, 482, 525, 564, 902, 919, 987, 986, 1013, 1060, 1251, 1474, 1686, 1687, 1720, 1745, 1812, 1822, 1887] time-frequency [413, 1019, 1717, 1816] tissue [243, 269, 367, 531, 550, 783, 1086, 1139, 1521] tomography [359, 1065, 1479, 1800] tracking [102, 103, 437, 551, 611, 727, 910, 947, 974, 999, 1237, 1376, 1390, 1431, 2092, 1793, 2041, 196] trading [344, 329, 1251, 1475, 1473, 1474, 1682] traffic [207, 226, 498, 526, 611, 657, 703, 705, 704, 1444, 1627] transputer [994] traveling salesman problem (TSP) [31, 47, 48, 154, 268, 487, 486, 492, 488, 490, 830, 846, 934, 1106, 1611, 1776, 1898] tree [56, 82, 150, 165, 172, 204, 203, 210, 211, 221, 220, 283, 284, 281, 376, 375, 431, 443, 522, 596, 612, 626, 666, 671, 670, 716, 900, 904, 906, 907, 966, 967, 971, 968, 969, 1138, 1170, 1168, 1258, 1309, 1306, 1307, 1308, 1316, 1337, 1360, 1366, 1390, 1387, 1389, 1388, 1519, 1566, 1639, 1684, 1745, 1762, 1767, 1837, 1908, 1986, 1936, 1937, 2054] tree structured SOM (TS-SOM) [211, 581, 900, 966, 971, 968, 969, 1837] turbines [721] U-matrix [194, 283, 284, 282, 285, 2037] ultrasonic [176, 244, 257, 256, 245, 922, 1305, 1375, 1643, 1670] unemployment [293] urologic [547] usability [79, 526, 557] varimax [1113] vitality conservation (VC) network [1923] vehicle [366, 1125, 1378, 1674] video [50, 221, 220, 223, 277, 275, 408, 444, 601, 600, 656, 905, 910, 909, 1071, 1302, 1316, 1346, 1369, 2092, 1810, 2088, 2041, 2047, 2079] virtual-reality [1786] viscosity [1220, 1538, 1807] vision [74, 103, 168, 197, 312, 589, 674, 675, 760, 786, 809, 808, 864, 935, 936, 939, 1071, 2092, 1560, 1640, 1678, 1683, 1728, 1791, 1817, 1923, 1950] visual cortex [74, 100, 434, 444, 614, 757, 1009, 1146, 1180, 1181, 1396, 1619, 1624, 1649, 1647, 1724, 1723, 1914, 1950] visualization [24, 27, 37, 60, 65, 131, 142, 153, 166, 199, 283, 284, 281, 285, 307, 337, 352, 354, 365, 398, 401, 439, 447, 468, 467, 470, 484, 491, 489, 506, 508, 520, 526, 529, 557, 581, 622, 621, 626, 625, 629, 631, 642, 639, 640, 666, 682, 833, 754, 764, 804, 800, 797, 801, 790, 805, 825, 855, 862, 863, 866, 887, 890, 897, 880, 933, 944, 960, 976, 977, 978, 983, 989, 1000, 1086, 1096, 1104, 1129, 1160, 1169, 1171, 1174, 1184, 1242, 1243, 1245, 1251, 1264, 1270, 1286, 1304, 1309, 1335, 1374, 1378, 1390, 1409, 1418, 1432, 1443, 1448, 1455, 1451, 1467, 1470, 1493, 1500, 1503, 1516, 1530, 1558, 1559, 1564, 1565, 1578, 1603, 1632, 1643, 1668, 1665, 1696, 1694, 1739, 1750, 1754, 1768, 1767, 1778, 1849, 1863, 1862, 1861, 1864, 1869, 1873, 1872, 1867, 1876, 1884, 1885, 1911, 1971, 2011, 2012, 2037] visuo-motor [157, 481, 746, 1326, 1325, 2074] Viterbi [437, 1965] VLSI [926, 1089, 1087, 1088, 1109, 1511, 1527, 1528, 1606, 1605, 1883, 1903] voice [64, 166, 181, 534, 572, 656, 765, 1012, 1186, 1338, 1566] volumetry [9, 1789, 1969, 2083, 2085] vowel [29, 166, 484, 1590, 1589] voxel [423, 422, 1971] VRML [352] W-CDMA [657, 656] wafer-scale integration [2027] Ward's clustering [1505] wavelet [170, 205, 206, 232, 254, 444, 768, 786, 1011, 1033, 1046, 1110, 1138, 1251, 1557, 1592, 1691, 1764, 1765, 1837, 1847, 1854] weather [255, 962, 999, 1039, 1068, 1125, 1175, 1199, 1390, 1389, 1679, 1973, 2050]
  16. WEBSOM [67, 68, 250, 467, 642, 793, 789, 976, 975, 978, 1016, 1403, 1838] Wigner distribution [1814, 1816] word [29, 54, 67, 108, 145, 175, 305, 345, 346, 347, 420, 451, 530, 547, 610, 709, 845, 886, 894, 872, 908, 944, 958, 976, 999, 1002, 1016, 1130, 1151, 1206, 1276, 1334, 1403, 1416, 1426, 1097, 1479, 1690, 1755, 1806, 1838, 1893, 1896, 1895, 1897, 2015, 2055]
  17. WWW [210, 352, 607, 710, 711, 708, 709, 1271, 1348, 1991] X-ray [176, 385, 1242, 1243, 1309, 1312, 1498, 1499, 1715, 1777, 1827] yeast fermentation [401] Z-analysis [1594] REFERENCES
  18. Abdulkader, H. and Ibnkahla, M. (2000). Convergence properties of self-organizing maps applied for com- munication channel equalization. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, volume 6, pages 3502-3505, Piscataway, NJ. Natl Polytechnics Inst of Toulouse, IEEE.
  19. Abidi, M. A., Yasuki, S., and Crilly, P. B. (1994). Image compression using hybrid neural networks. Digest of Technical Papers-IEEE International Conference on Consumer Electronics, pages 70-71.
  20. Abou Chadi, F. E. Z., Nashar, A., and Saad, M. (2001). Automatic analysis and classification of surface electromyography. Frontiers of Medical and Biological Engineering, 11:13-29.
  21. Abramson, M. and Wechsler, H. (2001). Competitive reinforcement learning for combinatorial problems. In Proceedings of the International Joint Conference on Neural Networks, volume 4, pages 2333-2338. George Mason University.
  22. Aguilera, P. A., Frenich, A. G., Torres, J. A., Castro, H., Vidal, J. L. M., and Canton, M. (2001). Application of the kohonen neural network in coastal water management: Methodological development for the assessment and prediction of water quality. Water Research, 35(17):4053-4062.
  23. Ahmad, K., Bale, T. A., and Burford, D. (1999). Text classification and minimal-bias training vectors. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings, volume 4, pages 2816-19, Pis- cataway, NJ. IEEE Service Center.
  24. Ahmad, K., Vrusias, B. L., and Ledford, A. (2001). Choosing feature sets for training and testing self- organising maps: A case study. Neural Computating & Applications, 10(1):56-66.
  25. Ahmed, M., Cooper, B., and Love, S. (2000). Document image segmentation using a two-stage neural net- work. In Proceedings of SPIE-The International Society for Optical Engineering, volume 3962, pages 25-33, Bellingham, WA. Lexmark Int Inc, SPIE.
  26. Ahmed, M. N. and Farag, A. A. (1997). 3D segmentation and labeling using self-organizing Kohonen network for volumetric measurements on brain CT imaging to quantify TBI recovery. In Boom, H., Robinson, C., Rutten, W., Neuman, M., and Wijkstra, H., editors, Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Bridging Disciplines for Biomedicine', volume 2, pages 738-9. IEEE, New York, NY, USA.
  27. Ahola, J., Alhoniemi, E., and Simula, O. (1999). Monitoring industrial processes using the self-organizing map. In SMCia/99 Proceedings of the 1999 IEEE Midnight-Sun Workshop on Soft Computing Methods in Industrial Applications, pages 22-7, Piscataway, NJ. IEEE Service Center.
  28. Aiello, A., Grimaldi, D., and Daponte, P. (2000). Non-intrusive estimation of the carrier frequency in GMSK signals. In AUTOTESTCON (Proceedings), pages 621-625, Piscataway, NJ. Universita della Calabria, IEEE.
  29. Aiello, A., Grimaldi, D., and Rapuano, S. (2001a). GMSK neural network based demodulator. In Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001. IEEE, Piscataway, NJ, USA, pages 2-6.
  30. Aiello, A., Grimaldi, D., and Veltri, S. (2001b). Frequency error measurement in GMSK signals in a multipath propagation environment. In Conference Record-IEEE Instrumentation and Measurement Technology Con- ference, volume 1, pages 507-512. Dip. di Elettronica, Informatica e Sistemistica, Universita della Calabria.
  31. Aigno, S. and Jiren, L. (1998). Evolutionary programming based Kohonen network for passive sonar targets clustering analysis. Acta Electronica Sinica, 26(7):128-32.
  32. Aires-de Sousa, J. and Gasteiger, J. (2002). Prediction of enantiomeric selectivity in chromatography: Appli- cation of conformation-dependent and conformation-independent descriptors of molecular chirality. Journal of Molecular Graphics and Modelling, 20(5):373-388.
  33. Alahakoon, D. and Halgamuge, S. K. (1998). Knowledge discovery with supervised and unsupervised self evolving neural networks. In Proceedings of the 5th International Conference on Soft Computing and In- formation/Intelligent Systems. Methodologies for the Conception, Design and Application of Soft Computing, volume 2, pages 907-10, Singapore. World Scientific.
  34. Alahakoon, D., Halgamuge, S. K., and Srinivasan, B. (1998). Self growing cluster development approach to data mining. IEEE International Conference on Systems, Man, and Cybernetics, 3:2901-2906.
  35. Alahakoon, D., Halgamuge, S. K., and Srinivasan, B. (1999a). Data mining with self generating neuro-fuzzy classifiers. In FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings, volume 2, pages 1096-101, Piscataway, NJ. IEEE Service Center.
  36. Alahakoon, D., Halgamuge, S. K., and Srinivasan, B. (2000). Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Transactions on Neural Networks, 11(3):601-614.
  37. Alahakoon, L. D., Halgamuge, S. K., and Srinivasan, B. (1999b). A self generating neural architecture for data analysis. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings, volume 5, pages 3548-51, Piscataway, NJ. IEEE Service Center.
  38. Alba, J. L., Pujol, A., and Villanueva, J. J. (2001). Separating geometry from texture to improve face analysis. In IEEE International Conference on Image Processing, volume 2, pages 673-676.
  39. Alhoniemi, E. (2000). Analysis of pulping data using the self-organizing map. TAPPI Journal, 83(7):66.
  40. Alhoniemi, E., Himberg, J., and Vesanto, J. (1999a). Probabilistic measures for responses of self-organizing map units. In Proc. of International ICSC Congress on Computational Intelligence Methods and Applications (CIMA'99), pages 286-290, Rochester, N.Y., USA. ICSC Academic Press.
  41. Alhoniemi, E., Hollmén, J., Simula, O., and Vesanto, J. (1999b). Process monitoring and modeling using the self-organizing map. Integrated Computer-Aided Engineering, 6(1):3-14.
  42. Alici, Y. (1996). Corporate solvency map through self-organising neural networks. IEEE IAFE Conference on Computational Intelligence for Financial Engineering (CIFEr), pages 286-292.
  43. Allinson, N., Yin, H., Allinson, L., and Slack, J., editors (2001). Advances in Self-Organising Maps. Springer.
  44. Allinson, N. M. and Yin, H. (1998). Interactive and semantic data visualisation using self-organising maps. In IEE Colloquium Neural Networks in Interactive Multimedia Systems, pages 1/1-10. IEE, London, UK.
  45. Allinson, N. M. and Yin, H. (1999). Self-organising maps for pattern recognition. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 111-20. Elsevier, Amsterdam.
  46. Almajali, S., Sharieh, A., and Qutiashat, M. (2001). Arabic speech recognition using SOM-LVQ neural net- works. Advances in Modelling & Analysis B: Signals, Information, Patterns, Data Acquisition, Transmission, Processing, Classification, 44:1-15.
  47. Alrashdan, A., Motavalli, S., and Fallahi, B. (2000). Automatic segmentation of digitized data for reverse engineering applications. IIE Transactions, 32:59-69.
  48. Altinel, I. K., Aras, N., and Oommen, B. J. (2000). Fast, efficient and accurate solutions to the hamiltonian path problem using neural approaches. Computers & Operations Research, 27(5):461-494.
  49. Alvarez, G., Guevara, S., Piedrahita, C., and Tapias, O. (1996). The application of fuzzy Kohonen neural networks to trace editing in seismic data processing. In Fourth European Congress on Intelligent Techniques and Soft Computing Proceedings, EUFIT '96, volume 2, pages 1146-50. Verlag Mainz, Aachen, Germany.
  50. Amarasingham, A. and Levy, W. B. (1998). Predicting the distribution of synaptic strengths and cell firing correlations in a self organizing, sequence prediction model. Neural Computation, 10:25-57.
  51. Ambroise, C., Seze, G., Badran, F., and Thiria, S. (2000). Hierarchical clustering of self-organizing maps for cloud classification. Neurocomputing, 30(1):47-52.
  52. Anagnostopoulos, C., Anagnostopoulos, J., Vergados, D., Kayafas, E., Loumos, V., and Theodoropoulos, G. (2001). Training a learning vector quantization network for biomedical classification. In Proceedings of the International Joint Conference on Neural Networks, volume 4, pages 2506-2511. Natl. Tech. Univ. of Athens (NTUA), Electrical and Computer Eng. Dept.
  53. Anderson, B. (1999). Kohonen neural networks and language. Brain and Language, 70(1):86-94.
  54. Andreu, G. and Crespo, A. (1996). Estimating the organization degree for a toroidal self-organizing feature map (TSOFM). In Solving Engineering Problems with Neural Networks. Proceedings of the International Conference on Engineering Applications of Neural Networks (EANN'96), volume 2, pages 649-52. Systems Engineering Association, Turku, Finland.
  55. Angelakis, C., Loukis, E. N., Pouliezos, A. D., and Stavrakakis, G. (2001). A neural network-based method for gas turbine blading fault diagnosis. International Journal of Modelling and Simulation, 21(1):51-60.
  56. Anouar, F., Badran, F., and Thiria, S. (1998). Probabilistic self-organizing map and radial basis function networks. Neurocomputing, 20(1-3):83-96.
  57. Ansamaki, J., Toivanen, P. J., and Parkinnen, J. (2000). New multispectral edge detection methods based on roughness and differential prewitt. In Signal Processing X Theories and Applications. Proceedings of EUSIPCO 2000. Tenth European Signal Processing Conference. Tampere Univ. Technology, Tampere, Finland, volume 3, pages 1349-52.
  58. Antikainen, O. K., Rantanen, J. T., and Yliruusi, J. K. (2000). Use of the kohonen self-organising map to predict the flowability of powders. STP pharma Sciences, 10(5):349-354.
  59. Antonini, M., Barlaud, M., Mathieu, P., and Feauveau, J. (1990). Multiscale image coding using the Ko- honen neural network. In Proceedings of Visual communications and image processing '90, pages 14-26, Bellingham, WA. Society of Photo-Optical Instrumentation Engineers.
  60. Anzali, S., Gasteiger, J., Holzgrabe, U., Polanski, J., Sadowski, J., Teckentrup, A., and Wagener, M. (1998). The use of self organizing neural networks in drug design. Perspectives in Drug Discovery and Design, 9- 11:273-299.
  61. Aoki, H. and Saito, T. (2000). On classification function of self-organizing map with threshold operation. Transactions of the Institute of Electronics, Information and Communication Engineers A, pages 1122-4.
  62. Arai, Y. and Hakura, J. (2000). Teleoperation system for real world robots-adaptive robot navigation based on sensor fusion. In Proceedings Seventh International Conference on Parallel and Distributed Systems: Workshops. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 487-92.
  63. Arakawa, Y., Yoshioka, M., and Omatu, S. (2001). Land cover mapping of synthetic aperture radar data by using texture analysis and self-organizing map. Transactions of the Institute of Electrical Engineers of Japan, Part C, 121:234-9.
  64. Aras, N., Altmel, I. K., and Oommen, J. (2000). A kohonen-like decomposition method for the traveling salesman problem KNIES-DECOMPOSE. In ECAI 2000. 14th European Conference on Artificial Intelligence. including Prestigious Applications of Intelligent Systems (PAIS-2000). Proceedings (Frontiers in Artificial Intelligence and Applications Vol.54). IOS Press, Amsterdam, Netherlands, pages 261-5.
  65. Aras, N., Oommen, B. J., and Altinel, I. K. (1999). Kohonen network incorporating explicit statistics and its application to the travelling salesman problem. Neural Networks, 12(9):1273-1284.
  66. Arciniegas, I., Daniel, B., and Embrechts, M. J. (2001). Exploring financial crises data with self-organisinf maps (SOM). In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 39-46. Springer.
  67. Ardizzone, E., Capra, A., and La Cascia, M. (2000). Using temporal texture for content-based video retrieval. Journal of Visual Languages and Computing, 11:241-52.
  68. Arrowsmith, M. J., Varley, M. R., Picton, P. D., and Heys, J. D. (1999). Hybrid neural network system for texture analysis. In Seventh International Conference on Image Processing and Its Applications (Conf. Publ. No.465), volume 1, pages 339-43, London, UK. IEE.
  69. Arroyo, J. M. R., Beddoes, A. J., and Alinson, N. M. (2001a). Insulation condition assessment of 11 kv paper cables using neural networks. In IEE Symposium Pulsed Power 2001 (Digest No.01/156). IEE, London, UK, volume 1.
  70. Arroyo, J. M. R., Beddoes, A. J., and Allinson, N. M. (2001b). Condition monitoring of 11 KV paper insu- lated cables using self-organising maps. In Canadian Conference on Electrical and Computer Engineering, volume 1, pages 259-264. EA Technology Ltd.
  71. Assadollahi, R. and Pulvermuller, F. (2001). Neural network classification of word evoked neuromagnetic brain activity. Emergent neural computational architectures based on neuroscience. Towards neuroscience- inspired computing. Springer-Verlag, Berlin, Germany; 2001; x+576 pp.p.311-19, pages 311-19.
  72. Atsalakis, A., Andreadis, I., and Papamarkos, N. (2001a). Histogram based color reduction through self- organized neural networks. In Artificial Neural Networks-ICANN 2001, Proceedings, pages 470-476.
  73. Atsalakis, A., Papamarkos, N., and Strouthopoulos, C. (2001b). A new adaptive color quantization technique. In Artificial Neural Networks-ICANN 2001, Proceedings, pages 1006-1012.
  74. Audouze, K., Ros, F., Pintore, M., and Chretien, J. (2000). Prediction of odours of aliphatic alcohols and carbonylated compounds using fuzzy partition and self organising maps (SOM). Analusis, 28(7):625-632.
  75. Aupetit, M., Couturier, P., and Massotte, P. (2000). Function approximation with continuous self-organizing maps using neighboring influence interpolation. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. LGI2P -Site EERIE - EMA, ICSC Academic Press.
  76. Aupetit, M., Couturier, P., and Massotte, P. (2001). Vector quantisation with -observable neighbors. In Allison, N., Yin, H., Allison, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 230-7.
  77. Avcibas, I. and Sankur, B. (2000). Statistical analysis of image quality measures. In Signal Processing X Theories and Applications. Proceedings of EUSIPCO 2000. Tenth European Signal Processing Conference. Tampere Univ. Technology, Tampere, Finland, volume 4, pages 2181-4.
  78. Avcibas, I., Sankur, B., and Sayood, K. (2002). Statistical evaluation of image quality measures. Journal of Electronic Imaging, 11:206-23.
  79. Azam, F. and Van Landingham, H. F. (1998a). Adaptive self organizing feature map neuro-fuzzy technique for dynamic system identification. In Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intelligent Systems and Semiotics (ISAS), pages 337-41. IEEE, New York, NY, USA.
  80. Azam, F. and Van Landingham, H. F. (1998b). A new approach for modular neural network design and learn- ing. In Wang, P. P., editor, Proc. JCIS'98, volume II, pages 147-189. Association for Intelligent Machinery, Inc.
  81. Azami, S. B. Z. and Feng, G. (2000). Robust vector quantizer design using self-organizing neural networks. Signal Processing, 80(7):1289-1298.
  82. Azcarraga, A. P. (2000a). Assessing self-organization using order metrics. In Proceedings of the International Joint Conference on Neural Networks, volume 6, pages 159-164, Piscataway, NJ. Natl Univ of Singapore, IEEE.
  83. Azcarraga, A. P. (2000b). Evaluating SOMs using order metrics. In 8th European Symposium on Artificial Neural Networks. ESANN"2000. Proceedings. D-Facto, Brussels, Belgium, pages 255-60.
  84. Azcarraga, A. P. and Yap, T. N. J. (2001a). Comparing keyword extraction techniques for WEBSOM text archives. In Proceedings 13th IEEE International Conference on Tools with Artificial Intelligence. ICTAI 2001. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 187-94.
  85. Azcarraga, A. P. and Yap, T. N. J. (2001b). SOM-based methodology for building large text archives. In Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 66-73.
  86. Bachmann, C. M., Fusina, R. A., and Donato, T. F. (2001). Effects of time series imagery on automated classification of coastal wetland environments using projection pursuit methods. In International Geoscience and Remote Sensing Symposium (IGARSS), volume 4, pages 1868-1870. Naval Research Laboratory, Remote Sensing Division, Code 7212, Institute of Electrical and Electronics Engineers Inc.
  87. Back, B., Sere, K., and Vanharanta, H. (1998a). Analyzing financial performance with self-organizing maps. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 1, pages 266-70. IEEE, New York, NY, USA.
  88. Back, B., Sere, K., and Vanharanta, H. (1998b). Managing complexity in large databases using self-organized maps. Accounting, Management and Information Technologies, 8(4):191-210.
  89. Bahlmann, C., Heidemann, G., and Ritter, H. (1999). Artificial neural networks for automated quality control of textile seams. Pattern Recognition, 32(6):1049-1060.
  90. Balmelli, L. (1996). Adaptive sampling for very large particle systems using an incremental self-organizing feature map: an application in molecular dynamic. In Boulic, R. and Hegron, G., editors, Computer Animation and Simulation '96. Proceedings of the Eurographics Workshop, pages 15-29. Springer-Verlag, Wien, Austria.
  91. Ban, S.-W., Cho, J.-k., Jung, S.-k., and Lee, M. (2000). Active vision system based on human eye saccadic movement. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E83-A(6):1066-1073.
  92. Bandeira, N., Lobo, V., and Moura Pires, F. (2000). Analysis of EEG of shooters. In Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences. METMBS'00. CSREA Press-Univ. Georgia, Athens, GA, USA, volume 1, pages 35-9.
  93. Bandeira, N., Lobo, V. J., and Moura-Pires, F. (1998). Training a self-organizing map distributed on a PVM network. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 1, pages 457-61. IEEE, New York, NY, USA.
  94. Baraldi, A. and Alpaydin, E. (2002). Constructive feedforward ART clustering networks-part II. IEEE Transactions on Neural Networks, 13(3):662-677.
  95. Baraldi, A. and Blonda, P. (1999). A survey of fuzzy clustering algorithms for pattern recognition. II. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 29:786-801.
  96. Baraldi, A., Blonda, P., Parmiggiani, F., Pasquariello, G., and Satalino, G. (1998). Model transitions in de- scending F LVQ. IEEE Transactions on Neural Networks, 9(5):724-738.
  97. Baras, J. S. and Dey, S. (1999a). Adaptive classification based on compressed data using learning vector quantization. In Proceedings of the 38th IEEE Conference on Decision and Control, volume 4, pages 3677- 83, Piscataway, NJ. IEEE Service Center.
  98. Baras, J. S. and Dey, S. (1999b). Combined compression and classification with learning vector quantization. IEEE Transactions on Information Theory, 45:1911-20.
  99. Barbalho, J. M., Neto, A. D. D., Costa, J. A. E., and Netto, M. L. A. (2001). Hierarchical SOM applied to image compression. In Proceedings of the International Joint Conference on Neural Networks, volume 1, pages 442-447. Univ. Federal do Rio Grande do Norte, Dept. of Electrical Engineering, Lab. of Computer Eng. and Automation.
  100. Barea, R., Boquete, L., Garcia, R., Mazo, M., Lopez, E., M., E., and J., R. F. (1998). ECG identification using self-organising maps. In Proceedings of NC 1998. International ICSC/IFAC Symposium on Neural Computation. ICSC Academic Press, Zurich, Switzerland, pages 378-83.
  101. Barhak, J. and Fischer, A. (2001a). Adaptive reconstruction of freeform objects with 3d SOM neural network grids. In Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 97-105.
  102. Barhak, J. and Fischer, A. (2001b). Parameterization and reconstruction from 3d scattered points based on neural network and PDE techniques. IEEE Transactions on Visualization and Computer Graphics, 7(1):1-16.
  103. Barragan, M. J. R., Bote, V. P. G., Guerrero, A. P., and Alonso, F. Z. (2000). Scientific journals: determination of the requirements of use. Revista Espanola de Documentacion Cientifica, 23:417-36.
  104. Barreto, G. A. and Araujo, A. F. R. (2001). A self-organizing NARX network and its application to prediction of chaotic time series. In Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 2144-2149. Depto. de Engenharia Electrica USP.
  105. Bastos, L. C., Bastos, R. C., and Nishida, W. (1999). Radial basis function for classification of remote sensing images. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings, volume 3, pages 1959-62, Piscataway, NJ. IEEE Service Center.
  106. Bastos, R. C. and Bastos, L. C. (1999). Success factors determination for entrepreneurs in santa catarina by using neural networks. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings, volume 5, pages 3556-9, Piscataway, NJ. IEEE Service Center.
  107. Bathen, T. F., Engan, T., Krane, J., and Axelson, D. (2000). Analysis and classification of proton NMR spectra of lipoprotein fractions from healthy volunteers and patients with cancer or CHD. ANTICANCER RESEARCH, 20(4):2393-2408.
  108. Bauer, H. U. (1998). Exploiting topography of neural maps: A case study on investment strategies for emerging markets. IEEE IAFE Conference on Computational Intelligence for Financial Engineering (CIFEr), pages 216-219.
  109. Bauer, H. U., Herrmann, M., and Villmann, T. (1999). Neural maps and topographic vector quantization. Neural Networks, 12(4-5):659-676.
  110. Baykal, N. and Erkmen, A. M. (1998). An elastic potential field approach to self-organizing map. In IEEE ICIPS'98. Proceedings of the Second IEEE International Conference on Intelligent Processing Systems. IEEE, Piscataway, NJ, USA, pages 555-9.
  111. Baykal, N. and Erkmen, A. M. (1999). Extended self organizing feature map: A tagged potential field ap- proach. Neural Processing Letters, 10(1):57-72.
  112. Becanovic, V. (2000). Image object classification using saccadic search, spatio-temporal pattern encoding and self-organization. Pattern Recognition Letters, 21(3):253-263.
  113. Beckenkamp, F. G. and Pree, W. (2000). Building neural network components. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. C. Doppler Lab for Software Research, University of Constance, ICSC Academic Press.
  114. Bednar, J. and Miikkulainen, R. (1998). Pattern-generator-driven development in self-organizing models. In Bower, J. M., editor, Computational Neuroscience: Trends in Research, pages 317-323. Plenum, New York.
  115. Bednar, J. A. and Miikkulainen, R. (1997). A neural network model of visual tilt aftereffects. In Proceedings of the 19th Annual Meeting of the Cognitive Science Society (COGSCI-97), pages 37-42, Hillsdale, NJ. Erlbaum.
  116. Bednar, J. A. and Miikkulainen, R. (2000a). Self-organization of innate face preferences: could genetics be expressed through learning? In Proceedings Seventeenth National Conference on Artificial Intelligence (AAAI-2000). Twelfth Innovative Applications of Artificial Intelligence Conference (IAAI-2000). AAAI Press, Menlo Park, CA, USA, pages 117-22.
  117. Bednar, J. A. and Miikkulainen, R. (2000b). Tilt aftereffects in a self-organizing model of the primary visual cortex. Neural Computation, 12(7):1721-1740.
  118. Beger, R. D. and Wilkes, J. G. (2001). Developing c-13 NMR quantitative spectrometric data-activity relation- ship (QSDAR) models of steroid binding to the corticosteroid binding globulin. Journal of Computer-aided Molecular Design, 15(7):659-669.
  119. Behera, L., Chaudhury, S., and Gopal, M. (1998). Application of self organizing neural networks in robot tracking control. IEE Proceedings-Control Theory and Applications, 145:135-140.
  120. Behera, L. and Krishna, G. (1999). Neural controller based binocular vision system for object tracking. IETE Journal of Research, 45(1):63-71.
  121. Benaim, M., Fort, J. C., and Pages, G. (1998). Convergence of the one-dimensional Kohonen algorithm. Advances in Applied Probability, 30(3):850-69.
  122. Bengtsson, M. (1996). Hierarchical Clustering in a Mean Field Theory. Scientific rept.
  123. Benitez, C., Lander, D. K., and Ramirez, J. (2000a). Reduction of dimensionality for perceptual clustering. In Proceedings of the International Joint Conference on Neural Networks, volume 5, pages 148-151, Piscataway, NJ. Universidad Simon Bolivar, IEEE.
  124. Benitez, L. M., Ferreira, A., and Iparraguirre, D. I. P. (2000b). Chaotic time series prediction using the kohonen algorithm. In 8th European Symposium on Artificial Neural Networks. ESANN"2000. Proceedings. D-Facto, Brussels, Belgium, pages 347-52.
  125. Benitez, M. C., Rubio, A., Garcia, P., and de la Torre, A. (2000c). Different confidence measures for word verification in speech recognition. Speech Communication, 32(1):79-94.
  126. Benitez Rochel, R., Trella Lopez, M., and Conejo Muñoz, R. (2000). Neural networks applied to item re- sponse theory. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga, ICSC Academic Press.
  127. Bennani, Y. (1999). Adaptive weighting of pattern features during learning. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings, volume 5, pages 3008-13, Piscataway, NJ. IEEE Service Center.
  128. Benson, K. (2000). Evolving finite state machines with embedded genetic programming for automatic target detection. In Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, volume 2, pages 1543-1549, Piscataway, NJ. Defence Evaluation and Research Agency Malvern, IEEE.
  129. Benson, M. W. and Hu, J. (2000). Asynchronous self-organizing maps. IEEE Transactions on Neural Net- works, 11(6):1315-1322.
  130. Bermejo, S. and Cabestany, J. (1999). Online gradient learning algorithms for k-nearest neighbor classifiers. In Foundations and Tools for Neural Modeling. International Work-Conference on Artificial and Natural Neural Networks, IWANN'99. Proceedings, (Lecture Notes in Computer Science Vol.1606), volume 1, pages 546-55, Berlin, Germany. Springer-Verlag.
  131. Bermejo, S. and Cabestany, J. (2000). Batch learning vector quantization algorithm for nearest neighbour classification. Neural Processing Letters, 11(3):173-184.
  132. Bermejo, S. and Cabestany, J. (2001a). Finite-sample convergence properties of the LVQ1 algorithm and the batch LVQ1 algorithm. Neural Processing Letters, 13(2):135-157.
  133. Bermejo, S. and Cabestany, J. (2001b). Learning with nearest neighbour classifiers. Neural Processing Letters, 13(2):159-181.
  134. Bermejo, S., Cabestany, J., and Payeras, M. (1998). A new dynamic LVQ -based classifier and its application to handwritten character recognition. In 6th European Symposium on Artificial Neural Networks. ESANN'98. Proceedings, pages 203-8, Brussels, Belgium. D-Facto.
  135. Bermudez, J. L., Piras, A., and Rubinstein, M. (1996). Classification of lightning electromagnetic waveforms with a self-organizing Kohonen map. In Janiszewski, J. M., Moron, W., and Sega, W., editors, Thirteenth International Wroclaw Symposium Electromagnetic Compatibility 1996, pages 517-21. Inst. Telecommun, Warsaw, Poland.
  136. Bernard, P., Golbraikh, A., Kireev, D., Chretien, J. R., and Rozhkova, N. (1998). Comparison of chemical databases analysis of molecular diversity with self organizing maps SOM. Analusis, An International Journal on Analytical Chemistry, 26:333-341.
  137. Bernard, S., Boujemaa, N., Vitale, D., and Bricot, C. (2001). Fingerprint classification using kohonen topo- logical map. In IEEE International Conference on Image Processing, volume 3, pages 230-233. INRIA Rocquencourt.
  138. Bertin, E. (1997). Self organizing maps and imaging surveys. Astrophysics and Space Science Library, 210:221-2.
  139. Betke, M. and Kawai, J. (1999). Gaze detection via self-organizing gray-scale units. In Proceedings Inter- national Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems. In Conjunction with ICCV'99., pages 70-6, Los Alamitos, CA, USA. IEEE Computer Society Press.
  140. Bezdek, J. C. and Kuncheva, L. I. (1999). Point prototype generation and classifier design. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 71-96. Elsevier, Amsterdam.
  141. Bezdek, J. C. and Kuncheva, L. I. (2001). Nearest prototype classifier designs: An experimental study. Inter- national Journal of Intelligent Systems, 16(12):1445-1473.
  142. Bezerianos, A., Vladutu, L., and Papadimitriou, S. (2000). Hierarchical state space partitioning with a network self-organizing map for the recognition of ST-t segment changes. Medical and Biological Engineering and Computing, 38(4):406-415.
  143. Bhandarkar, S. M. and Nammalwar, P. (2001). Segmentation of multispectral MR images using a hierarchical self-organizing map. In Proceedings of the IEEE Symposium on Computer-Based Medical Systems, pages 294-299. Department of Computer Science, University of Georgia.
  144. Bharitkar, S. and Filev, D. (2001). An online learning vector quantization algorithm. In Proceedings of the Sixth International Symposium on Signal Processing and its Applications. IEEE, Piscataway, NJ, USA, volume 2, pages 394-7.
  145. Bian, J. C., Chen, H. B., Yang, P. C., and Lu, D. R. (1999). Retrievals of over-ocean precipitable water from Ssm/I by SOM network model. Chinese Science Bulletin, 44(11):1038-1041.
  146. Bishop, C. M., Svensén, M., and Williams, C. K. I. (1998). Developments of the generative topographic mapping. Neurocomputing, 21(1-3):203-224.
  147. Blanco, A., Delgado, M., and Pegalajar, M. C. (2000). Extracting rules from a (fuzzy/crisp) recurrent neural network using a self-organizing map. International Journal of Intelligent Systems, 15(7):595-621.
  148. Blanco, I. D., Diez Gonzalez, A. B., Cuadrado Vega, A. A., and Enguita Gonzalez, J. (1999). RBF approach for trajectory interpolation in self-organizing map based condition monitoring. In 1999 7th IEEE International Conference on Emerging Technologies and Factory Automation. Proceedings ETFA '99., volume 2, pages 1003-10, Piscataway, NJ. IEEE Service Center.
  149. Blasco, J. A., Fueyo, N., Dopazo, C., and Chen, J. Y. (2000). A self-organizing-map approach to chemistry representation in combustion applications. Combustion Theory and Modelling, 4(1):61-76.
  150. Blonda, P., Carella, A., DeBlasi, R., Dicuonzo, F., LaForgia, V., Milella, D. Pasquariello, G., and Satalino, G. (1993). Neural network modular system for object classification in brain MR images. Artificial Intelligence in Medicine, 10:477-480.
  151. Blonda, P., Satalino, G., Wasowski, J., Parise, M., A, B., and A, R. (1999). Neural techniques for SAR intensity and coherence data classification. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.3871, volume 3871, pages 374-81.
  152. Bode, M., Freyd, O., Fischer, J., Niedernostheide, F.-J., and Schulze, H.-J. (2001). Hybrid hardware for a highly parallel search in the context of learning classifiers. Artificial Intelligence, 130(1):75-84.
  153. Bogdan, M. and Rosenstiel, W. (2001). Detection of cluster in self-organizing maps for controlling a prostheses using nerve signals. In 9th European Symposium on Artificial Neural Networks. ESANN'2001. Proceedings. D-Facto, Evere, Belgium, pages 131-6.
  154. Bohn, C. A. (1998). Kohonen feature mapping through graphics hardware. In Wang, P. P., editor, Proc. JCIS'98, volume II, pages 64-67. Association for Intelligent Machinery, Inc.
  155. Bojer, T., Hammer, B., Schunk, D., and von Toschanowitz K., T. (2001). Relevance determination in learning vector quantization. In 9th European Symposium on Artificial Neural Networks. ESANN'2001. Proceedings. D-Facto, Evere, Belgium, pages 271-6.
  156. Bonabeau, E. (2002). Graph multidimensional scaling with self-organizing maps. Information Sciences, 143(1-4):159-180.
  157. Bonabeau, E. and Henaux, F. (1998a). Self-organizing maps for drawing large graphs. Information Processing Letters, 67(4):177-84.
  158. Bonabeau, E. and Henaux, F. (1998b). Monte Carlo partitioning of graphs with a self organizing map. Inter- national Journal of Modern Physics C, 9:1107-1119.
  159. Bortolan, G. and Pedrycz, W. (2002). An interactive framework for an analysis of ECG signals. Artificial Intelligence in Medicine, 24(2):109-132.
  160. Bose, S. and Murthy, C. A. (1996). New LVQ Model. Technical rept.
  161. Bouchired, S., Ibnkahla, M., Roviras, D., and Castanie, F. (1998). Equalization of satellite mobile communi- cation channels using combined self-organizing maps and RBF networks. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98, volume 6, pages 3377-9. IEEE, New York, NY, USA.
  162. Bovbel, E. E., Kheidorov, I. E., and Kotlyar, M. E. (2000). Speaker identification using autoregressive hidden markov models and adaptive vector quantisation. In Text, Speech and Dialogue. Third International Workshop, TSD 2000. Proceedings (Lecture Notes in Artificial Intelligence Vol.1902). Springer-Verlag, Berlin, Germany, pages 207-10.
  163. Bowles, J., Clamons, D., Gillis, D., Palmadesso, P., Antoniades, J., Baumback, M., Daniel, M., Grossmann, J., Haas, D., and Skibo, J. (1999). New results from the orasis/nemo compression algorithm. In Proceedings of SPIE-The International Society for Optical Engineering, volume 3753, pages 226-234.
  164. Braccini, G., Edenbrandt, L., Lagerholm, M., Peterson, C., Rauer, O., Rittner, R., and Sornmo, L. (1997). Self-organizing maps and Hermite functions for classification of ECG complexes. In Computers in Cardiology 1997, pages 425-8. IEEE, New York, NY, USA.
  165. Bradburn, D. S. (1991). Self-organization of non-numeric data sets. International Joint Conference on Neural Networks, pages 37-42.
  166. Branston, N. M. and El Deredy, W. (1999). Capturing movement responses of single cells in the human basal ganglia using hidden Markov models. In ICANN99. Ninth International Conference on Artificial Neural Networks (IEE Conf. Publ. No.470), volume 1, pages 395-400, London, UK. IEE.
  167. Breazu, M., Toderean, G., Volovici, D., and Iridon, M. (1999). Speeding up fractal image compression by working in Karhunen-Loeve transform space. In IJCNN'99. International Joint Conference on Neural Net- works. Proceedings, volume 4, pages 2694-7, Piscataway, NJ. IEEE Service Center.
  168. Breidegard, B. (2000). En datorexekverbar modell för lärande. Number 1. Licentiatuppsats Certec, LTH.
  169. Breining, C. (2000). State detection for hands-free telephone sets by means of fuzzy LVQ and SOM. Signal Processing, 80(7):1361-1372.
  170. Brosse, S., Giraudel, J. L., and Lek, S. (2001). Utilisation of non-supervised neural networks and principal component analysis to study fish assemblages. Ecological Modelling, 146(1-3):159-166.
  171. Brozek, J., Kulczycki, J., Szpyra, W., and Tylek, W. (1998). Designing the m-loops electric power distribution networks using artificial neural networks. In Engineering Benefits from Neural Networks. Proceedings of the International Conference EANN '98, pages 261-4. Systems Engineering Association, Turku, Finland.
  172. Brückner, B. and Wesarg, T. (2002). Self-Organizing Neural Networks-Recent Advances and Applications, volume 78 of Studies in Fuzziness and Soft Computing, chapter Modeling Speech Processing and Recogni- tion in the Auditory System Using the Multilevel Hypermap Architecture, pages 145-64. Physica-Verlag Heidelberg.
  173. Buckle, M. and Strey, A. (2001). Specification and simulation of neural networks using epsiloNN. Neural Network World, 11:73-89.
  174. Buessler, J. L., Kara, R., Wira, P., Kihl, H., and Urban, J. P. (1999). Multiple self-organizing maps to facilitate the learning of visuo-motor correlations. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics., volume 3, pages 470-5, Piscataway, NJ. IEEE Service Center.
  175. Buessler, J. L. and Urban, J. P. (2000). Neurobiology suggests the design of modular architectures for neural control. In IEEE International Conference on Intelligent Robots and Systems, volume 1, pages 64-69. TROP Research Group, University of Mulhouse.
  176. Buessler, J.-L., Urban, J.-P., and Gresser, J. (2002). Additive composition of supervised self-organizing maps. Neural Processing Letters, 15(1):9-20.
  177. Bunke, H., Gunter, S., and Jiang, X. (2001). Towards bridging the gap between statistical and structural pattern recognition: two new concepts in graph matching. In Advances in Pattern Recognition-ICAPR 2001. Sec- ond International Conference. Proceedings (Lecture Notes in Computer Science Vol.2013). Springer-Verlag, Berlin, Germany, pages 1-11.
  178. Burger, M., Graepel, T., and Obermayer, K. (1998). An annealed self-organizing map for source channel coding. In Jordan, M., Kearns, M., and Solla, S., editors, Advances in Neural Information Processing Systems, volume 10, pages 430-436.
  179. Burrascano, P., Fiori, S., and Mongiardo, M. (1999). A review of artificial neural networks applications in microwave computer-aided design. International Journal of RF and Microwave Computer Aided Engineering, 9:158-74.
  180. Burton, R. M. and Plaehn, D. C. (1999). One-dimensional Kohonen maps are super-stable with exponential rate. Advances in Applied Probability, 31(2):367-393.
  181. Cadieux, S., Michaud, F., and Lalonde, F. (2000). Intelligent system for automated fish sorting and count- ing. In IEEE International Conference on Intelligent Robots and Systems, volume 2, pages 1279-1284. Syst. d'automatismes et de mesure, Hydro-Quebec's Research Cent. (IREQ).
  182. Cagnoni, A., Mauri, G., and Pensini, M. P. (1997). An hybrid architecture for on-line defects classification in automatic inspection systems. In Neural Networks in Engineering Systems. Proceedings of the 1997 In- ternational Conference on Engineering Applications of Neural Networks, volume 1, pages 329-32. Systems Engineering Association, Turku, Finland.
  183. Callan, D. E., Kent, R. D., Roy, N., and Tasko, S. M. (1999). Self-organizing map for the classification of normal and disordered female voices. Journal of Speech, Language, and Hearing Research, 42:355-66.
  184. Camastra, F. and Vinciarelli, A. (2001). Cursive character recognition by learning vector quantization. Pattern Recognition Letters, 22(6-7):625-629.
  185. Campbell, N. W., Thomas, B. T., and Troscianko, T. (1996). Neural networks for the segmentation of outdoor images. In Solving Engineering Problems with Neural Networks. Proceedings of the International Conference on Engineering Applications of Neural Networks (EANN'96), volume 1, pages 343-6. Systems Engineering Association, Turku, Finland.
  186. Campos, M. M. and Carpenter, G. A. (1998a). Building adaptive basis functions with a continuous SOM. In Wang, P. P., editor, Proc. JCIS'98, volume II, pages 68-71. Association for Intelligent Machinery, Inc.
  187. Campos, M. M. and Carpenter, G. A. (1998b). WSOM: building adaptive wavelets with self-organizing maps. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 1, pages 763-7. IEEE, New York, NY, USA.
  188. Campos, M. M. and Carpenter, G. A. (2000). Building adaptive basis functions with a continuous self-organizing map. Neural Processing Letters, 11(1):59-78.
  189. Campos, M. M. and Carpenter, G. A. (2001). S-TREE: Self-organizing trees for data clustering and online vector quantization. Neural Networks, 14(4-5):505-525.
  190. Capitan-Vallvey, L. F., Navas, N., del Olmo, M., Consonni, V., and Todeschini, R. (2000). Resolution of mixtures of three nonsteroidal anti-inflammatory drugs by fluorescence using partial least squares multivariate calibration with previous wavelength selection by kohonen artificial neural networks. Talanta, 52(6):1069- 1079.
  191. Caravaglia, S. (2001). Statistical analysis of the Tanimoto coefficient self-organizing map (TCSOM) applied to health behavioral survey data. In International Joint Conference on Neural Networks, Washington, DC, USA, July 15-19. CD-ROM.
  192. Cardei, V. C. and Hadley, R. F. (1997). Predicting semantic categories using a hybrid neural network. Techni- cal report no. CSS-IS TR97-02.
  193. Cardiel, G. B., De los Angeles Fabian Alvarez, M., Martinez, M. V., and Villasenor, L. (2001). Inteligencias artificiales y ensayos ultrasonicos para la deteccion de defectos. Revista de Metalurgia (Madrid), 37(3):403- 411.
  194. Carlson, E. (1998). Real estate investment appraisal of land properties using SOM. In Deboeck, G. and Kohonen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 117-127. Springer, London.
  195. Carosone, F., Cenedese, A., and Querzoli, G. (1995). Recognition of partially overlapped particle images using the Kohonen neural network. Experiments in Fluids, 19(4):225-232.
  196. Carpinteiro, O. A. S. (1998a). A hierarchical self-organizing map model for sequence recognition. In Niklas- son, L., Bodén, M., and Ziemke, T., editors, Proceedings of ICANN98, the 8th International Conference on Artificial Neural Networks, volume 2, pages 815-820. Springer, London.
  197. Carpinteiro, O. A. S. (1998b). A self-organizing map model for analysis of musical time series. In de Padua Braga, A. and Ludermir, T. B., editors, Proceedings 5th Brazilian Symposium on Neural Networks, pages 140-5. IEEE Computer Society, Los Alamitos, CA, USA.
  198. Carpinteiro, O. A. S. (1999). Hierarchical self-organizing map model for sequence recognition. Neural Pro- cessing Letters, 9(3):209-220.
  199. Carpinteiro, O. A. S. (2000). A hierarchical self-organising map model for sequence recognition. Pattern Analysis and Applications, 3(3):279-287.
  200. Carpinteiro, O. A. S. and Alves da Silva, A. P. (1999). A hierarchical self-organizing map model in short- term load forecasting. In Engineering Applications of Neural Networks. Proceedings of the 5th Interna- tional Conference on Engineering Applications of Neural Networks (EANN'99), pages 75-80, Torun, Poland. Wydawnictwo Adam Marszalek.
  201. Carpinteiro, O. A. S. and Alves Da Silva, A. P. (2001). A hierarchical self-organizing map model in short-term load forecasting. Journal of Intelligent and Robotic Systems: Theory and Applications, 31(1-3):105-113.
  202. Carpinteiro, O. A. S., da Silva, A. P. A., and Feichas, C. H. L. (2000). Hierarchical neural model in short-term load forecasting. In Proceedings of the International Joint Conference on Neural Networks, volume 6, pages 241-246, Piscataway, NJ. Escola Federal de Engenharia de Itajuba, IEEE.
  203. Carpinteiro, O. A. S. and P., A. A. (2000). A hierarchical neural model in short-term load forecasting. In Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 120-4.
  204. Carreira, M. J., Mirmehdi, M., Thomas, B. T., and Haddon, J. F. (2000). Grouping of directional features using an extended hough transform. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 3, pages 990-3.
  205. Castellano, G. and Fanelli, A. M. (2000). Self-organizing neural fuzzy inference network. In Proceedings of the International Joint Conference on Neural Networks, volume 5, pages 14-19, Piscataway, NJ. Universita degli Studi di Bari, IEEE.
  206. Castillo, P. A., Merelo, J. J., Gonzalez, J., Rivas, V., and Romero, G. (1999a). SA-Prop: optimization of multilayer perceptron parameters using simulated annealing. In Foundations and Tools for Neural Modeling. International Work-Conference on Artificial and Natural Neural Networks, IWANN'99. Proceedings, (Lecture Notes in Computer Science Vol.1606), volume 1, pages 661-70, Berlin, Germany. Springer-Verlag.
  207. Castillo, P. A., Merelo, J. J., Prieto, A., Rivas, V., and Romero, G. (2000). G-prop: Global optimization of multilayer perceptrons using GAs. Neurocomputing, 35:149-163.
  208. Castillo, P. A., Rivas, V., Merelo, J. J., Gonzalez, J., Prieto, A., and Romero, G. (1999b). G-Prop-II: global optimization of multilayer perceptrons using GAs. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99., pages 2022-7, Piscataway, NJ. IEEE Service Center.
  209. Cavazos, T. (2000). Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the balkans. Journal of Climate, 13(10):1718-1732.
  210. Cazuguel, G., Cziho, A., Solaiman, B., and Roux, C. (1998). Medical image compression and character- ization using vector quantization: an application of self-organizing maps and quadtree decomposition. In Laxminarayan, S. and Micheli-Tzanakou, E., editors, Proceedings. 1998 IEEE International Conference on Information Technology Applications in Biomedicine, ITAB '98, pages 127-32. IEEE, New York, NY, USA.
  211. Cereghino, R., Giraudel, J. L., and Compin, A. (2001). Spatial analysis of stream invertebrates distribution in the adour-garonne drainage basin (france), using kohonen self organizing maps. Ecological Modelling, 146(1-3):167-180.
  212. Cervera, E. and del Pobil, A. P. (1999). A SOM-based sensing approach to robotic manipulation tasks. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 207-218. Elsevier, Amsterdam.
  213. Cha, E. Y. and Kang, M. H. (1998). Multiple target tracking in clutter backgrounds using self-organizing feature map. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 2, pages 1162-6. IEEE, New York, NY, USA.
  214. Cha, Y. Y. and Oh, J. H. (2001). A field-of-view generation algorithm using neural network. Mechatronics, 11(6):731-744.
  215. Chakraborty, G. and Chakraborty, B. (2000). A novel normalization technique for unsupervised learning in ANN. IEEE Transactions on Neural Networks, 11:253-7.
  216. Chan, A. and Spracklen, T. (2000). Feature indicators: a self-organizing map approach to legacy code. In Proceedings of the International Conference on Artificial Intelligence. IC-AI'2000. CSREA Press, Athens, GA, USA, volume 3, pages 1449-54.
  217. Chan, A. T. S., Shiu, A., Cao, J., and Leong, H. V. (2001a). Reactive web policing based on self-organizing maps. In Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001. IEEE, Piscataway, NJ, USA, volume 1, pages 160-4.
  218. Chan, C. W., Cheung, K. C., Jin, H., and Zhang, H. Y. (1999). A constrained kohonen network and its application to sensor fault detection. In Automatic Control in Aerospace 1998. Proceedings volume from the 14th IFAC Symposium. Elsevier Science, Kidlington, UK, pages 249-54.
  219. Chan, C. W., Jin, H., Cheung, K. C., and Zhang, H. Y. (2001b). Fault detection of systems with redundant sensors using constrained kohonen networks. Automatica, 37(10):1671-1676.
  220. Chan, J. C. W., Chan, K. P., and Yeh, A. G. O. (2001c). Detecting the nature of change in an urban envi- ronment: A comparison of machine learning algorithms. Photogrammetric Engineering and Remote Sensing, 67(2):213-225.
  221. Chan, J. C. W., S., D. R., and Townshend, J. R. G. (2001d). Improved recognition of spectrally mixed land cover classes using spatial textures and voting classifications. In Computer Analysis of Images and Pat- terns. 9th International Conference, CAIP 2001. Proceedings (Lecture Notes in Computer Science Vol.2124). Springer-Verlag, Berlin, Germany, pages 217-27.
  222. Chan, L. A. and Nasrabadi, N. M. (1997). Automatic Target Recognition Using Wavelet-Based Vector Quan- tization. Interim rept. Dec 96-Jul 97.
  223. Chan, L. A. and Nasrabadi, N. M. (1999). Automatic target recognition using vector quantization and neural networks. Optical-Engineering, 38:2147-61.
  224. Chance, D., Lebby, G. L., King, M. C., and Cooke, M. J. (2001). Unsupervised mapping of biometric sig- natures for enhanced computer security. In Proceedings of the IASTED International Conference. Artificial Intelligence and Applications. ACTA Press, Anaheim, CA, USA, pages 86-8.
  225. Chandrasekaran, V. and Liu, Z. Q. (1998). Topology constraint free fuzzy gated neural networks for pattern recognition. IEEE Transactions on Neural Networks, 9(3):483-502.
  226. Chang, H. C., Kopaska-Merkel, D. C., and Chen, H. C. (2002). Identification of lithofacies using kohonen self-organizing maps. Computers & Geosciences, 28(2):223-229.
  227. Chang, J.-S. and Chiueh, T.-D. (2000). Image vector quantization using classified binary-tree-structured self- organizing feature maps. IEICE Transactions on Information and Systems, E-83-D(10):1898-1907.
  228. Chang, J.-S., Lin, J. H. J., and Chiueh, T.-D. (1998a). Color image vector quantization using binary tree structured self-organizing feature maps. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 2, pages 1428-32. IEEE, New York, NY, USA.
  229. Chang, K.-C. and Lu, Y.-C. (1995). High resolution polarimetrizc SAR target classification with neural net- work. IEEE International Conference on Fuzzy Systems, 3:1681-1688.
  230. Chang, K.-y. and Ghosh, J. (2001). Unified model for probabilistic principal surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(1):22-41.
  231. Chang, M., Yu, H.-J., and Heh, J.-S. (1998b). Evolutionary self-organizing map. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 1, pages 680-5. IEEE, New York, NY, USA.
  232. Changchien, S. W. and Lu, T. C. (2001). Mining association rules procedure to support on-line recommenda- tion by customers and products fragmentation. Expert Systems with Applications, 20(4):325-335.
  233. Chappelier, J. C., Gori, M., and Grumbach, A. (2001). Time in connectionist models. Sequence learning. Paradigms, algorithms, and applications (Lecture Notes in Artificial Intelligence Vol.1828). Springer-Verlag, Berlin, Germany; 2001; xiii+387 pp.p.105-34, pages 105-34.
  234. Chappelier, J. C. and Grumbach, A. (1996). A Kohonen map for temporal sequences. In Neural Networks and Their Applications. Conference Proceedings, pages 104-10. Domaine Univ. Saint-Jerome, Marseille, France.
  235. Charalambous, C., Charitou, A., and Kaourou, F. (2000). Comparative analysis of artificial neural network models: Application in bankruptcy prediction. Annals of operations research, 99:403-425.
  236. Charalambous, C., Hadjinicola, G. C., and Muller, E. (2001). Product positioning using principles from the self-organizing map. In Artificial Neural Networks-ICANN 2001, Proceedings, pages 457-463.
  237. Chella, A., Guarino, M. D., and Pirrone, R. (2001a). Description of dynamic structured scenes by a SOM/ARSOM hierarchy. In Artificial Neural Networks-ICANN 2001. International Conference. Proceedings (Lecture Notes in Computer Science Vol.2130). Springer-Verlag, Berlin, Germany, pages 1034-41.
  238. Chella, A., Guarino, M. D., and Pirrone, R. (2001b). A SOM/ARSOM hierarchy for the description of dy- namic scenes. In AI*IA 2001: Advances in Artificial Intelligence. 7th Congress of the Italian Association for Artificial Intelligence. Proceedings (Lecture Notes in Artificial Intelligence Vol.2175). Springer-Verlag, Berlin, Germany, pages 362-8.
  239. Chen, C. H. and Shrestha, B. (2000). Classification of multi-sensor remote sensing images using self- organizing feature maps and radial basis function networks. In International Geoscience and Remote Sensing Symposium (IGARSS), volume 2, pages 711-713, Piscataway, NJ. Univ of Massachusetts Dartmouth, IEEE.
  240. Chen, D. R., Chang, R. F., and Huang, Y. L. (2000). Breast cancer diagnosis using self-organizing map for sonography. Ultrasound in Medicine and Biology, 26:405-11.
  241. Chen, F.-L. and Liu, S.-F. (2000). Neural-network approach to recognize defect spatial pattern in semiconduc- tor fabrication. IEEE Transactions on Semiconductor Manufacturing, 13(3):366-373.
  242. Chen, H., Houston, A. L., Sewell, R. R., and Schatz, B. R. (1998). Internet browsing and searching: User evaluations of category map and concept space techniques. Journal of the American Society for Information Science, 49:582-603.
  243. Chen, H. B., Grant-Muller, S., Mussone, L., and Montgomery, F. (2001a). A study of hybrid neural net- work approaches and the effects of missing data on traffic forecasting. Neural Computating & Applications, 10(3):277-286.
  244. Chen, J., Hagiwara, I., Su, X., and Shi, Q. Z. (2002). A bispectrum feature extraction enhanced structure damage detection approach. JSME Internatiocal Journal Series C-Mechanical Systems Machine Elements and Manufacturing, 45(1):121-126.
  245. Chen, J. J. W., Peck, K., Hong, T. M., Yang, S. C., Sher, Y., Shih, J., Wu, R., Cheng, J., Roffler, S., Wu, C., and Yang, P. (2001b). Global analysis of gene expression in invasion by a lung cancer model. CANCER RESEARCH, 61(13):5223-5230.
  246. Chen, T., Chen, L. H., and Ma, K. K. (1999a). Colour image indexing using SOM for region-of-interest retrieval. Pattern Analysis and Applications, 2:164-71.
  247. Chen, Y. and Chwang, A. T. (1997). Self-organized feature map of particle image for flow measurement. Proceedings of the SPIE-The International Society for Optical Engineering, 3172:142-52.
  248. Chen, Y. and Reggia, J. A. (2000). The temporal correlation hypothesis for self-organizing feature maps. International Journal of Systems Science, 31:911-21.
  249. Chen, Z., Feng, T. J., and Houkes, Z. (1999b). Texture segmentation based on wavelet and Kohonen network for remotely sensed images. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics., volume 6, pages 816-21, Piscataway, NJ. IEEE Service Center.
  250. Chen, Z., He, J., and Yuan, Z. (1999c). An adaptive identification and control scheme using radial basis function networks. Journal of Systems Engineering and Electronics, 10(1):54-61.
  251. Cheng, G. and Zell, A. (2000). Externally growing cell structures for pattern classification. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. University Tubingen; Wilhelm-Schickard-Institut for Computer Science, Dept. Computer Architecture, ICSC Academic Press.
  252. Cheng, L. L. and Nakagawa, M. (1999). Prototype learning algorithms for nearest neighbor classifier with application to handwritten character recognition. In Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR '99, pages 378-81, Los Alamitos, CA, USA. IEEE Computer Society.
  253. Cheng, Y. (1998). Batch self-organizing maps on a unit sphere. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 3, pages 2273-6. IEEE, New York, NY, USA.
  254. Chi, S.-C., Kuo, R.-J., and Teng, P.-W. (2000). Fuzzy self-organizing map neural network for market segmen- tation of credit card. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 5, pages 3617-3622, Piscataway, NJ. I-Shou Univ, IEEE.
  255. Chicco, G., Napoli, R., and Piglione, F. (2001a). Load pattern clustering for short-term load forecasting of anomalous days. In 2001 IEEE Porto Power Tech Proceedings. IEEE, Piscataway, NJ, USA, volume 2, page 6.
  256. Chicco, G., Napoli, R., and Piglione, F. (2001b). Neural networks for fast voltage prediction in power systems. In 2001 IEEE Porto Power Tech Proceedings. IEEE, Piscataway, NJ, USA, volume 2, page 5.
  257. Chinnam, R. B. (1999). On-line reliability estimation of individual components, using degradation signals. IEEE Transactions on Reliability, ional Society for Optical Engineering, 48(4):403-412.
  258. Chiou, Y. S., Lure, Y. M. F., Ligomenides, P. A., Freedman, M. T. M. D., and Fritz, S. L. (1993). Shape feature analysis using artificial neural networks for improvements of hybrid lung nodule detection system. Proc. SPIE-The International Society for Optical Engineering, Society of photo-optical instrumentation engineers., 1898:609-617.
  259. Chitralekha, R. and Iftekharuddin, K. M. (1999). Detection of targets varying in fine details, rotation, and translation. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.3805, volume 3805, pages 146-55.
  260. Chiu, M. J., Lin, C. C., Chuang, K. H., Chen, J.-H., and Huang, K.-M. (2001). Tissue segmentation-assisted analysis of fMRI for human motor response: An approach combining artificial neural network and fuzzy c means. Journal of Digital Imaging, 14(1):38-47.
  261. Cho, H. C. and Lee, K. (1999). 3-D object recognition using an ultrasonic sensor array and neural net- works. In Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients., volume 2, pages 1181-4, Piscataway, NJ. IEEE Service Center.
  262. Cho, H. C. and Lee, K. (2001). The 3-d underwater object recognition using neural networks and ultrasonic sensor fabricated with 1-3 type piezoelectric composites. Transactions of the Korean Institute of Electrical Engineers, C, 50:324-8.
  263. Cho, H. S., Park, J. K., and Kim, G. W. (1999a). Power system transient stability analysis using Kohonen neural networks. Engineering Intelligent Systems for Electrical Engineering and Communications, 7:209-14.
  264. Cho, H. S., Park, J. K., and Kim, G. W. (1999b). Power system transient stability analysis using kohonen neural networks. Engineering Intelligent Systems for Electrical Engineering and Communications, 7(4):209-214.
  265. Cho, S. B. (2000). Ensemble of structure-adaptive self-organizing maps for high performance classification. Information Sciences, 123(1):103-114.
  266. Cho, S.-B. (2001). Self-organizing map ensembles with structure adaptation. In International Joint Conference on Neural Networks, Washington, DC, USA, July 15-19. CD-ROM.
  267. Cho, S. B. (2002). Applying WEBSOM to automatic FAQ e-mail classification. International Journal of Knowledge Based Intelligent Engineering Systems, 6:17-22.
  268. Choe, Y. and Miikkulainen, R. (1997). Self-organization and segmentation with laterally connected spiking neurons. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-97), pages 1120-1125, San Francisco. Kaufmann.
  269. Choe, Y. and Miikkulainen, R. (1998). Self-organization and segmentation in a laterally connected orientation map of spiking neurons. Neurocomputing, 21:51-60.
  270. Choi, H. L., Byun, H. J., Song, W. G., Son, J. W., and Lim, J. T. (2000). On pattern classification of EMG signals for walking motions. Artificial Life and Robotics, 4:193-7.
  271. Christodoulou, C. and Pattichis, C. S. (1998). Combining neural classifiers in EMG diagnosis. In 6th European Congress on Intelligent Techniques and Soft Computing. EUFIT '98, volume 3, pages 1837-41, Aachen, Germany. Verlag Mainz.
  272. Christodoulou, C. I., Michaelides, S. C., Pattichis, C., and Kyriakou, K. (2001). Classification of satellite cloud imagery based on multi-feature texture analysis and neural networks. In IEEE International Conference on Image Processing, volume 1, pages 497-500. Department of Computer Science, University of Cyprus.
  273. Christodoulou, C. I. and Pattichis, C. S. (1999). Medical diagnostic systems using ensembles of neural SOFM classifiers. In ICECS'99. Proceedings of ICECS '99. 6th IEEE International Conference on Electronics, Cir- cuits and Systems., volume 1, pages 121-4, Piscataway, NJ. IEEE Service Center.
  274. Christodoulou, C. I., Pattichis, C. S., Pantziaris, M., T., T., A., N., T., E., M., S., and S., D. (1999). Multi- feature texture analysis for the classification of carotid plaques. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings, volume 5, pages 3591-6, Piscataway, NJ. IEEE Service Center.
  275. Chuang, K. H., Chiu, M. J., Lin, C. C., and Chen, J. H. (1999). Model-free functional MRI analysis using Kohonen clustering neural-network and fuzzy c-means. IEEE Transactions on Medical Imaging, 18(12):1117- 1128.
  276. Chung, F. L. and Lee, T. (1994). Fuzzy learning model for membership function estimation and pattern classification. IEEE International Conference on Fuzzy Systems, 1:426-431.
  277. Chung, H. and Ryu, T. W. (2000). Recognition of frequency modulated pulse signals. In Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications. PDPTA'2000. CSREA Press, Athens, GA, USA, volume 1, pages 357-61.
  278. Ciampi, A. and Lechevallier, Y. (2000). Clustering large, multi-level data sets: an approach based on kohonen self-organizing maps. In Principles of Data Mining and Knowledge Discovery. 4th European Conference, PKDD 2000. Proceedings (Lecture Notes in Artificial Intelligence Vol.1910). Springer-Verlag, Berlin, Ger- many, pages 353-8.
  279. Cinque, L., Foresti, G. L., Gumina, A., and Levialdi, S. (2001). A modified fuzzy ART for image segmentation. In Proceedings 11th International Conference on Image Analysis and Processing. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 102-7.
  280. Cinque, L., Romangnoli, R., Levialdi, S., Nguyen, P. T. A., and Guan, L. (1998). Self-organizing map for segmenting 3D biological images. In Jain, A. K., Venkatesh, S., and Lovell, B. C., editors, Proceedings. Fourteenth International Conference on Pattern Recognition, volume 1, pages 471-3. IEEE Computer Society, Los Alamitos, CA, USA.
  281. Cires, J., Bertrand, F., and Zufiria, P. J. (1998). Two modeling approaches for navigation control of a Nomad 200 mobile robot. In Intelligent Autonomous Vehicles 1998 (IAV'98). Proceedings volume from 3rd IFAC Symposium, pages 363-8, Kidlington, UK. Elsevier Sci.
  282. Cires, J. and Zufiria, P. J. (1996). The self-organizing map as a perceptual level for mobile robot control. In Solving Engineering Problems with Neural Networks. Proceedings of the International Conference on Engi- neering Applications of Neural Networks (EANN'96), volume 1, pages 183-9. Systems Engineering Associa- tion, Turku, Finland.
  283. Cires, J. and Zufiria, P. J. (1997). Mobile robot motion control through topological space. In Neural Networks in Engineering Systems. Proceedings of the 1997 International Conference on Engineering Applications of Neural Networks, volume 1, pages 103-6. Systems Engineering Association, Turku, Finland.
  284. Cleva, C., Cachet, C., and Cabrolbass, D. (1999). Clustering of infrared-spectra with Kohonen networks. Analusis, 27(1):81-90.
  285. Cochrane, E. M. and Cochrane, J. C. (1999). Exploring competition and co-operation for solving the euclidean travelling salesman problem by using self-organizing map. In ICANN99. Ninth International Conference on Artificial Neural Networks (IEE Conf. Publ. No.470), volume 1, pages 180-185, London, UK. IEE.
  286. Congorto, S., Penna, S. D., and Erne, S. N. (1997). Tissue segmentation of MRI of the head by means of a Kohonen map. In Boom, H., Robinson, C., Rutten, W., Neuman, M., and Wijkstra, H., editors, Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Bridging Disciplines for Biomedicine', volume 3, pages 1087-8. IEEE, New York, NY, USA.
  287. Congxing, O., Zhenghu, F., Kangsheng, C., and Guangxin, Y. (1998). A novel feedforward artificial neural network based on self-organizing feature map: model and algorithms. Acta Electronica Sinica, 26(7):165-8.
  288. Coppini, G., Tamburini, E., L'Abbate, A., and Valli, G. (1997). A model of the topology of coronary perfusion based on self-organizing maps. In Computers in Cardiology 1997, pages 737-40. IEEE, New York, NY, USA.
  289. Corcoran, P. and Lowery, P. (1995). Neural network applications in multisensor systems. Sensor Review, 15(4):15-18.
  290. Corr, P. H., Milligan, P., and Purnell, V. (2001). A neural network based tool for semi-automatic code trans- formation. In Vector and Parallel Processing-VECPAR 2000. 4th International Conference. Selected Papers, and Invited Talks (Lecture Notes in Computer Science Vol.1981). Springer-Verlag, Berlin, Germany, pages 142-53.
  291. Corradini, A., Boehme, H. J., and Gross, H. M. (2000). A hybrid stochastic-connectionist approach to gesture recognition. International Journal on Artificial Intelligence Tools (Architectures, Languages, Algorithms), 9:177-203.
  292. Corradini, A. and Gross, H. M. (1999a). Gesture recognition using hybrid SOM/DHMM. In Neural Nets WIRN Vietri-99. Proceedings of the 11th Italian Workshop on Neural Nets. Springer-Verlag London, London, UK, pages 317-22.
  293. Corradini, A. and Gross, H. M. (1999b). A hybrid stochastic-connectionist architecture for gesture recognition. In Proceedings 1999 International Conference on Information Intelligence and Systems, pages 336-41, Los Alamitos, CA, USA. IEEE Computer Society Press.
  294. Corradini, A. and Gross, H.-M. (2000). Implementation and comparison of three architectures for ges- ture recognition. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing- Proceedings, volume 4, pages 2361-2364, Piscataway, NJ. Technical Univ of Ilmenau, IEEE.
  295. Cortiglioni, F., Mahonen, P., Hakala, P., and Frantti, T. (2001). Automated star-galaxy discrimination for large surveys. Astrophysical Journal, 556(2):937-943.
  296. Cosi, P., Frasconi, P., Gori, M., Lastrucci, L., and Soda, G. (2000). Competitive radial basis functions training for phone classification. Neurocomputing, 34:117-129.
  297. Costa, J. A. F. (1999). Classifica cão automática e análise de dados por redes neurais auto-ogranizáveis.
  298. Costa, J. A. F. and de Andrade Netto, M. L. (1999a). Automatic data classification by a hierarchy of self-organizing maps. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics., volume 5, pages 419-24, Piscataway, NJ. IEEE Service Center.
  299. Costa, J. A. F. and de Andrade Netto, M. L. (1999b). Cluster analysis using self-organizing maps and image processing techniques. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics., volume 5, pages 367-72, Piscataway, NJ. IEEE Service Center.
  300. Costa, J. A. F. and De Andrade Netto, M. L. (2001a). Clustering of complex shaped data sets via kohonen maps and mathematical morphology. In Dasarathy, B. V., editor, Proceedings of SPIE-The International Society for Optical Engineering, volume 4384, pages 16-27. Dept. of Comp. Eng./Indust. Automat., Sch. of Elec. and Comp. Engineering, Universidade Estadual de Campinas.
  301. Costa, J. A. F. and De Andrade Netto, M. L. (2001b). A new tree-structured self-organizing map for data analysis. In Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 1931- 1936. Dept. of Comp. Eng. Indust. Automat., Sch. of Elec. and Comp. Engineering, Universidade Estadual de Campinas.
  302. Costa, J. A. F. and Netto, M. L. A. (1999). Estimating the number of clusters in multivariate data by self-organizing maps. International Journal of Neural Systems, 9:195-202.
  303. Cottrell, M., de Bodt, E., and Grégoire, P. (1998a). Financial applications of the self-organizing map. In Proc. EUFIT'98, 6th European Congress on Intelligent Techniques & Soft Computing, volume 1, pages 205-209. ELITE Foundation, Aachen, Germany.
  304. Cottrell, M., de Bodt, E., and Grégoire, P. (1996a). The relation between interest rate shocks and the initial interest rate structure : An empirical study using a Kohonen map. In Congress of the Association française de Finance Internationale. Genève.
  305. Cottrell, M., de Bodt, E., and Grégoire, P. (1996b). . In Troisiéme Rencontre Internationale ACSEG, pages 27-36.
  306. Cottrell, M., de Bodt, E., Henrion, E. F., and Gregoire, P. (1997a). Simulating interest rate structure evolution on a long term horizon. In Weigend, A. S., Abu-Mostafa, Y., and Refenes, A. P. N., editors, Progress in Neural Processing-Decision Technologies for Financial Engineering. World Scientific.
  307. Cottrell, M., De Bodt, E., Henrion, E. F., and Gregoire, P. (1997b). Simulating interest rate structure evolution on a long term horizon. A Kohonen map application. In Weigend, A. S., Abu-Mostafa, Y., and Refenes, A. P. N., editors, Decision Technologies for Financial Engineering. Proceedings of the Fourth International Con- ference on Neural Networks in the Capital Markets (NNCM'96), pages 162-74. World Scientific, Singapore.
  308. Cottrell, M., De Bodt, E., and Verleysen, M. (2001). A statistical tool to assess the reliability of self-organising maps. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 7-14. Springer.
  309. Cottrell, M., Fort, J. C., and Pagès, G. (1998b). Theoretical aspects of the SOM algorithm. Neurocomputing, 21(1-3):119-138.
  310. Cottrell, M. and Gaubert, P. (1999a). Classification of recurring unemployed workers and unemployment exits. European Journal of Economics and Social Systems.
  311. Cottrell, M. and Gaubert, P. (1999b). Neural network and segmented labour market. European Journal of Economics and Social Systems.
  312. Cottrell, M., Gaubert, P., Letremy, P., and Rousset, P. (1999). Analyzing and representing multidimensional quantitative and qualitative data : Demographic study of the rhône valley. the domestic consumption of the canadian families. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 1-14. Elsevier, Amsterdam.
  313. Cottrell, M., Girard, B., and Rousset, P. (1998c). Forecasting of curves using a Kohonen classification. Journal of Forecasting, 17:429-439.
  314. Cottrell, M. and Ibbou, S. (1995). Multiple correspondence analysis of a crosstabulation matrix using the Kohonen algorithm. In Proceedings of ESANN'95, pages 27-32. Editions D Facto, Bruxelles.
  315. Cottrell, M. and Letremy, P. (1994). Classification et analyse des correspondances au moyen de l'algorithme de Kohonen: application à l'étude de données socio-économiques. In Proceedings of Neuro-Nîmes 94, pages 74-83.
  316. Cottrell, M. and Rousset, P. (1997a). The Kohonen algorithm: A powerful tool for analysing and representing multidimensional quantitative and qualitative data. In Mira, J., Moreno-Diaz, R., and Cabestany, J., editors, Lecture Notes in Computer Science, volume 1240, pages 861-871. Springer.
  317. Cottrell, M. and Rousset, P. (1997b). The Kohonen algorithm: a powerful tool for analyzing and representing multidimensional quantitative and qualitative data. Prépublication du SAMOS 76, Universite Paris 1, Paris.
  318. Couquin, D., Bolon, P., and Onea, A. (2000). Objective metric for colour image comparison. In Signal Processing X Theories and Applications. Proceedings of EUSIPCO 2000. Tenth European Signal Processing Conference. Tampere Univ. Technology, Tampere, Finland, volume 1, pages 119-22.
  319. Coventry, T. E. J. and Gouws, J. (2000). Coal segregation by a self-organising feature map. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Department of Electrical & Electronic Engineering, Rand Afrikaans University, ICSC Academic Press.
  320. Cox, E. (2000a). Distributed intelligence in the b2b universe: Fuzzy and neural connections in web-centric knowledge management. PC AI, 14(3):16-19.
  321. Cox, E. (2000b). Free-form text data mining integrating fuzzy systems, self-organizing neural nets and rule- based knowledge bases. PC-AI, 14:22-6.
  322. Cristea, P. and Valsan, Z. (1999). New cepstrum frequency scale for neural network speaker verification. In ICECS'99. Proceedings of ICECS '99. 6th IEEE International Conference on Electronics, Circuits and Systems., volume 3, pages 1573-6, Piscataway, NJ. IEEE Service Center.
  323. Cser, L., Korhonen, A., Simula, O., Larkiola, J., and Ahola, J. (1998). The SOM based data mining in hot rolling. In Proceedings of 4th International Symposium on Measurement Technology and Intelligent Instru- ments (ISMTII'98). Miskolc, Hungary.
  324. Cser, L., Korhonen, A. S., Gulyas, J., Mantyla, P., Simula, O., Reiss, G., and Ruha, P. (1999). Data mining and state monitoring in hot rolling. In Proceedings of the Second International Conference on Intelligent Pro- cessing and Manufacturing of Materials. IPMM'99., volume 1, pages 529-36, Piscataway, NJ. IEEE Service Center.
  325. Curry, B., Davies, F., Phillips, P., Evans, M., and Moutinho, L. (2001). The kohonen self-organizing map: an application to the study of strategic groups in the UK hotel industry. Expert Systems, 18(1):19-31.
  326. Czyewski, A. and Krolikowski, R. (2001). Neuro-rough control of masking thresholds for audio signal en- hancement. Neurocomputing, 36:5-27.
  327. Dadios, E. P. and Gunay, N. S. (2000). A fuzzy logic based neural network controller for highly nonlinear systems. International Journal of Knowledge Based Intelligent Engineering Systems, 4:254-62.
  328. Dahbur, K. and Muscarello, T. (2001). Hybrid kohonen neural network in data mining. In Proceedings of the IASTED International Conference. Artificial Intelligence and Applications. ACTA Press, Anaheim, CA, USA, pages 30-3.
  329. Damper, R. I. and Gilson, S. J. (1998). Neural techniques for path linking, with applications to image pro- cessing. In Proceedings of NC 1998. International ICSC/IFAC Symposium on Neural Computation. ICSC Academic Press, Zurich, Switzerland, pages 488-94.
  330. De, A. and Chatterjee, N. (2001). Impulse fault diagnosis in power transformers using self-organising map and learning vector quantisation. IEE Proceedings: Generation, Transmission and Distribution, 148(5):397-405.
  331. De, A. and Chatterjee, N. (2002). Recognition of impulse fault patterns in transformers using kohonen's self-organizing feature map. IEE Transactions on Power Delivery, 17(2):489-494.
  332. de A. Barreto, G. and Araújo, A. F. R. (2001). Time in self-organizing maps: An overview of models. Interna- tional Journal of Computer Research, Special Issue: Past, Present and Future of Neural Networks, 10(2):139- 79. Guest Editors: P.G. Anderson and G. Antoniou and V. Mladenov and E. Oja and M. Paprzycki and N. C. Steele.
  333. de Bodt, E. and Cottrell, M. (2000). Bootstrapping self-organising maps to assess the statistical significance of local proximity. In 8th European Symposium on Artificial Neural Networks. ESANN"2000. Proceedings. D-Facto, Brussels, Belgium, pages 245-54.
  334. de Bodt, E., Cottrell, M., and Verleysen, M. (1999). Using the Kohonen algorithm for quick initialization of simple competitive learning. In Verleysen, M., editor, Proceedings of ESANN'99, pages 19-26, Bruxelles. Editions D Facto.
  335. de Bodt, E., Gregoire, P., and Cottrell, M. (1997). A powerful tool for fitting and forecasting deterministic and stochastic processes: the Kohonen classification. In Gerstner, W., Germond, A., Hasler, M., and Nicoud, J. D., editors, Artificial Neural Networks-ICANN '97. 7th International Conference Proceedings, pages 981- 6.
  336. de Bodt, E., Gregoire, P., and Cottrell, M. (1998a). Projection of long-term interest rates with maps. In Deboeck, G. and Kohonen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 24- 38. Springer, London.
  337. de Bodt, E., Henrion, E., Cottrell, M., and Wymeersch, C. V. (1998b). Self-organizing maps for data analysis: An application to the belgian leasing market. Journal of Computational Intelligence in Finance, 6(6):5-23.
  338. de Bodt, E., Henrion, E., Ibbou, S., Wolfs, A., Cottrell, M., and Van Wymeersch, C. (1995). Comprendre la décision de leasing à l'aide d'une carte de Kohonen une étude empirique. Deuxième rencontre ANSEG, pages 19-32.
  339. de Bodt, E., Henrion, E., Ibbou, S., Wolfs, A., and Van Wymeersch, C. (1996). Comprendre la décision de leasing à l'aide d'une carte de Kohonen. une étude empirique. Cahiers Economiques de Bruxelles, 151(3):279- 297.
  340. De Castro, L. N. and Von Zuben, F. J. (2001). Immune and neural network models: theoretical and empirical comparisons. International Journal of Computational Intelligence and Applications, 1:239-57.
  341. de Castro Santa Rosa, A. N., Weigang, L., Correia da Silva, N., and Meneses, P. R. (2000). Filtering and classification of SAR images using parallel-SOM. In Proceedings of SPIE-The International Society for Optical Engineering, volume 4055, pages 469-475. Univ of Brasilia, Society of Photo-Optical Instrumentation Engineers.
  342. De Rajat, K., Basak, J., and Pal Sankar, K. (2002). Unsupervised feature extraction using neuro-fuzzy ap- proach. Fuzzy Sets and Systems, 126(3):277-291.
  343. De Stefano, C., Sansone, C., and Vento, M. (1994). Evaluating competitive learning strategies for handwritten character recognition. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics., 1:759-764.
  344. De Stefano, C., Sansone, C., and Vento, M. (2000). To reject or not to reject: that is the question-an answer in case of neural classifiers. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 30:84-94.
  345. Debeljak, Z., Strapac, M., and Medic-Saric, M. (2001). Application of self-organizing maps for the clas- sification of chromatographic systems and prediction of values of chromatographic quantities. Journal of Chromatography A, 925(1-2):31-40.
  346. Deboeck, G. (1994). Trading on the Edge: Neural Genetic and Fuzzy Systems for Chaotic Financial Markets. John Wiley and Sons, New York. 377 p.
  347. Deboeck, G. (1998a). Best practices in data mining using self-organizing maps. In Deboeck, G. and Kohonen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 203-229. Springer, London.
  348. Deboeck, G. (1998b). Financial applications of self-organizing maps. Electronic newsletter American Heuris- tics Inc.
  349. Deboeck, G. (1998c). Financial applications of self-organzing maps. Neural Network World, 8(2):213-241.
  350. Deboeck, G. (1998d). Investment maps of emerging markets. In Deboeck, G. and Kohonen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 83-105. Springer, London.
  351. Deboeck, G. (1998e). Pattern recognition and prediction made simpler with viscovery(TM). Neural Network World, 8(4):463-470.
  352. Deboeck, G. (1998f). Picking mutual funds with self-organizing maps. In Deboeck, G. and Kohonen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 39-58. Springer, London.
  353. Deboeck, G. (1998g). Software tools for self-organizing maps. In Deboeck, G. and Kohonen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 179-194. Springer, London.
  354. Deboeck, G. (1999a). Data mining with self-organizing maps: Best practices in finance, economics, and modeling. PC AI, 13:33-6.
  355. Deboeck, G. (1999b). Public domain vs commercial tools for creating neural self-organizing maps. PC AI Magazine, pages 27-30.
  356. Deboeck, G. (1999c). Self-organizing maps facilitate knowledge discovery in finance. Financial Engineering News, 1:1-6.
  357. Deboeck, G. (2000a). Self-organizing patterns in world poverty using multiple indicators of poverty, repression and corruption. Neural Network World, 10(1-2):239-254.
  358. Deboeck, G. and Kohonen, T. (1998). Visual Explorations in Finance with Self-Organizing Maps. Springer- Verlag, London. 258 p.
  359. Deboeck, G. and Kohonen, T. (2001). Visual Explorations in Finance with Self-Organizing Maps (Translated into Russian). Albina, Moscow.
  360. Deboeck, G. J. (1999d). For finding value in markets that are expensive. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 15-32. Elsevier, Amsterdam.
  361. Deboeck, G. J. (2000b). Modeling non-linear market dynamics for intra-day trading. Neural Network World, 10:3-27.
  362. Dehghan, M., Faez, K., and Ahmadi, M. (2000a). Hybrid handwritten word recognition using self-organizing feature map, discrete HMM, and evolutionary programming. In Proceedings of the International Joint Confer- ence on Neural Networks, volume 5, pages 515-520, Piscataway, NJ. Amirkabir Univ of Technology, IEEE.
  363. Dehghan, M., Faez, K., Ahmadi, M., and Shridhar, M. (2000b). Holistic handwritten word recognition us- ing discrete HMM and self-organizing feature map. Proceedings of IEEE Int. Conf. on Systems, Man and Cybernetics, 4:2735-2739.
  364. Dehghan, M., Faez, K., Ahmadi, M., and Shridhar, M. (2001). Handwritten farsi (arabic) word recognition: a holistic approach using discrete HMM. Pattern Recognition, 34(5):1057-1065.
  365. del Coz, J. J., Luaces, O., Quevedo, J. R., Alonso, J., Ranilla, J., and Bahamonde, A. (1999). Self-organizing cases to find paradigms. In FOUNDATIONS and TOOLS FOR NEURAL MODELING, Proceedings, VOL I, pages 527-536.
  366. Notario C., B. P. and Malanda Trigueros, A. (2000). Kohonen-GLA algorithms for efficient vector quan- tization. In ICECS 2000. 7th IEEE International Conference on Electronics, Circuits and Systems. IEEE, Piscataway, NJ, USA, volume 2, pages 671-4.
  367. del Solar, J. R. (1998). TEXSOM: texture segmentation using self-organizing maps. Neurocomputing, 21(1- 3):7-18.
  368. Delgado, A. (2000). Control of nonlinear systems using a self-organising neural network. Neural Computating & Applications, 9(2):113-123.
  369. Delibasis, K. K., Mouravliansky, N., Matsopoulos, G. K., Nikita, K. S., and Marsh, A. (1999). MR functional cardiac imaging: Segmentation, measurement and WWW based visualization of 4D data. Future Generation Computer Systems, 15(2):185-193.
  370. Demiros, I., Antonopoulos, V., Georgantopoulos, B., Triantafyllou, Y., and Piperidis, S. (2001). Connectionist models for sentence-based text extracts. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 4, pages 2648-2653. Inst. for Language and Speech Proc.
  371. Deng, D. and Kasabov, N. (2000). ESOM: An algorithm to evolve self-organizing maps from on-line data streams. In Proceedings of the International Joint Conference on Neural Networks, volume 6, pages 3-8, Piscataway, NJ. Univ of Otago, IEEE.
  372. Denoeux, T. (1995). Evidence-theoretic neural network classifier. Proceedings of IEEE International Confer- ence on Systems, Man, and Cybernetics., 1:712-717.
  373. Der, R. and Herrmann, M. (1999). Second-order learning in self-organizing maps. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 293-302. Elsevier, Amsterdam.
  374. Desmet, P. (2001). Buying behavior study with basket analysis: pre-clustering with a kohonen map. European Journal of Economic and Social Systems, 15:17-30.
  375. Di, L., Yonglun, S., and Feng, Y. (2000). On line monitoring of weld defects for short-circuit gas metal arc welding based on the self-organize feature map neural networks. In Proceedings of the International Joint Conference on Neural Networks, volume 5, pages 239-244, Piscataway, NJ. South-China Univ of Technology, IEEE.
  376. Di Bona, S., Huwer, S., Niemann, H., and Salvetti, O. (1999). Nonlinear neural enhancement of anatomical differences in deformed brain MR images. Pattern Recognition and Image Analysis, 9:554-65.
  377. di Natale, C., Paolesse, R., Macagnano, A., Mantini, A., and d'Amico, A. (1998). Self-organizing map analysis of the selectivity properties of QMB sensors coated by porphyrin films. In Eurosensors XII. Proceedings of the 12th European Conference on Solid-State Tranducers and the 9th UK Conference on Sensors and their Applications, volume 2, pages 1145-8, Bristol, UK. IOP Publishing.
  378. Di Natale, C., Salimbeni, D., Paolesse, R., Macagnano, A., and D'Amico, A. (2000). Porphyrins-based opto- electronic nose for volatile compounds detection. Sensors and Actuators, B: Chemical, 65(1):220-226.
  379. di Pietro, G. N. (1991). How artificial neurons recognise natural speech. Bull. des Schweizerischen Elek- trotechnischen Vereins & des Verbandes Schweizerischer Elektrizitätswerke, 82(21):17-22. (in German).
  380. Diao, Q., Wang, Y., and Zhang, H. (2000). A neural network approach to constructing concept association of chinese information. Journal of the China Society for Scientific and Technical Information, 19:170-5.
  381. Dias, J. M. and Dourado, A. (1999). A self organizing fuzzy controller with a fixed maximum number of rules and an adaptive similarity factor. Fuzzy Sets and Systems, 103:27-48.
  382. Diaz, I., Diez, A. B., and Vega, A. A. C. (2001). Complex process visualization through continuous feature maps using radial basis functions. In Artificial Neural Networks-ICANN 2001, Proceedings, pages 443-449.
  383. Dimakov, V. and Golovko, V. (2000). Self-organizing path planning control system for a vehicle. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Department of Computers and Mechanics, Brest polytechnic institute, ICSC Academic Press.
  384. Dirk, K., Rainer, M., and von Wangenheim, A. (2000). Parallel implementation of a MR-mammography matching algorithm. In Proceedings of the IEEE Symposium on Computer-Based Medical Systems, pages 135-140, Los Alamitos, CA. Univ Kaiserslautern, IEEE.
  385. Dittenbach, M., Merkl, D., and Rauber, A. (2000). Growing hierarchical self-organizing map. In Proceedings of the International Joint Conference on Neural Networks, volume 6, pages 15-19, Piscataway, NJ. Technische Universitat Wien, IEEE.
  386. Dittenbach, M., Merkl, D., and Rauber, A. (2001a). Hierarchical clustering of document archives with the growing hierarchical self-organizing map. In Artificial Neural Networks-ICANN 2001, Proceedings, pages 500-505.
  387. Dittenbach, M., Rauber, A., and Merkl, D. (2001b). Business, culture, politics, and sports-how to find your way through a bulk of news? on content-based hierarchical structuring and organization of large document archives. In Database and Expert Systems Applications. 12th International Conference, DEXA 2001. Proceed- ings (Lecture Notes in Computer Science Vol.2113). Springer-Verlag, Berlin, Germany, pages 200-10.
  388. Dittenbach, M., Rauber, A., and Merkl, D. (2001c). Recent advances with the growing hierarchical self- organising map. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 140-5. Springer.
  389. Dollhopf, S. L., Hashsham, S. A., and Tiedje, J. M. (2001). Interpreting 16s rDNA t-RFLP data: Application of self-organizing maps and principal component analysis to describe community dynamics and convergence. Microbial Ecology, 42(4):495-505.
  390. Dong, J.-X., Krzyzak, A., and Suen, C. Y. (2001). A multi-net local learning framework for pattern recognition. In Proceedings of Sixth International Conference on Document Analysis and Recognition. IEEE Comput. Soc, Los Aalmitos, CA, USA, pages 328-32.
  391. Doniere, T. F. and Dhawan, A. P. (1994). Space shuttle main engine sensor modeling using vector quantization. AIAA Journal, 32(10):2126-2128.
  392. Dopazo, J. and Carazo, J. M. (1997). Phylogenetic reconstruction using an unsupervised growing neural network that adopts the topology of a phylogenetic tree. Journal of Molecular Evolution, 44(2):226-233.
  393. Dopazo, J., Huaichun, W., and Carazo, J. M. (1997). A new type of unsupervised growing neural network for biological sequence classification that adopts the topology of a phylogenetic tree. Lecture Notes in Computer Science, 1240:932-941.
  394. Doschner, C. (1998). Neural network for nonlinear dynamic system modeling based on experimental data. In ISMCR '98. Proceedings of the Eighth International Symposium on Measurement and Control in Robotics. Czech Tech. Univ. Prague, Prague, Czech Republic, pages 213-18.
  395. Doucette, P., Agouris, P., Musavi, M., and Stefanidis, A. (1999). Automated extraction of linear features from aerial imagery using kohonen learning and GIS data. In Integrated Spatial Databases: Digital Images and GIS, pages 20-33.
  396. Doucette, P., Agouris, P., Stefanidis, A., and Musavi, M. (2001). Self-organised clustering for road extraction in classified imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 55(5-6):347-358.
  397. Douzono, H., Hara, S., Eishima, S., and Noguchi, Y. (1999). A clustering method of chromosome fluorescence profiles by modified self organizing map. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings, volume 5, pages 3614-17, Piscataway, NJ. IEEE Service Center.
  398. Douzono, H., Hara, S., and Noguchi, Y. (2000). Clustering method of chromosome fluorescence profiles using modified self organizing map controlled by simulated annealing. In Proceedings of the International Joint Conference on Neural Networks, volume 4, pages 103-106, Piscataway, NJ. Saga Univ, IEEE.
  399. Douzono, H., Hara, S., and Noguchi, Y. (2001a). A design method of DNA chips for SNP analysis using self organizing maps. In Proceedings of the International Joint Conference on Neural Networks, volume 4, pages 2467-2471. Faculty of Science and Engineering, Saga University.
  400. Douzono, H., Hara, S., and Noguchi, Y. (2001b). A design method of DNA chips using self-organising maps. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 152- 160. Springer.
  401. Draghici, S. (2001). The constraint based decomposition (CBD) training architecture. Neural Networks, 14(4-5):527-550.
  402. Draghici, S., Cumberland, L., and Kovari, L. C. (2000). Correlation of HIV protease structure with indinavir resistance: a data mining and neural networks approach. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.4057, volume 4057, pages 319-29.
  403. Dragutoiu, D. D. and Vasilievici, A. (2000). Diagnosing active systems using neural networks. In OPTIM 2000. Proceedings of the 7th International Conference on Optimization of Electrical and Electronic Equip- ments. Transilvania Univ. Press, Brasov, Romania, volume 3, pages 637-40.
  404. Drimbarean, A. and Whelan, P. F. (2001). Experiments in colour texture analysis. Pattern Recognition Letters, 22(10):1161-1167.
  405. Drobics, M., Bodenhofer, U., Winiwarter, W., and EP, K. (2001). Data mining using synergies between self- organizing maps and inductive learning of fuzzy rules. In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference. IEEE, Piscataway, NJ, USA, volume 3, pages 1780-5.
  406. Drobics, M., Winiwater, W., and Bodenhofer, U. (2000). Interpretation of self-organizing maps with fuzzy rules. In Proceedings 12th IEEE Internationals Conference on Tools with Artificial Intelligence. ICTAI 2000. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 304-11.
  407. Du, H., Inui, M., Ohkita, M., Obu-Cann, K., K.Fujimura, and Tokutaka, H. (2000). Prediction of oil temper- ature change of substation transformer by application of self-organizing map (SOM). In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 293-98.
  408. Dubrovin, V. I. and Subbotin, S. A. (2000). Neural network diagnosis software. Programmnye Produkty i Sistemy. no.3; 2000; p.21-3, pages 21-3.
  409. Duch, W., Adamczak, R., and Diercksen, G. H. F. (2000). Classification, association and pattern completion using neural similarity based methods. International Journal of Applied Mathematics and Computer Science, 10:747-66.
  410. Dujardin, A. S., Amarger, V., and Madani, K. (1999a). Multi-neural networks approaches for biomedical appli- cations: classification of brainstem auditory evoked potentials. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings, volume 5, pages 3609-13, Piscataway, NJ. IEEE Service Center.
  411. Dujardin, A. S., Amarger, V., Madani, K., Adam, O., and Motsch, J. F. (1999b). Multi-neural network approach for classification of brainstem evoked response auditory. In Engineering Applications of Bio-Inspired Artificial Neural Networks. International Work-Conference on Artificial and Natural Neural Networks, IWANN'99. Pro- ceedings, (Lecture Notes in Computer Science Vol.1607), volume 2, pages 255-64, Berlin, Germany. Springer- Verlag.
  412. Duller, A. W. G. (1998). Self-organising neural networks: their application to "real-world" problems. Aus- tralian Journal of Intelligent Information Processing Systems, 5:175-80.
  413. Dutt, T., Sin, K. C., and Marshall, C. L. (1999). Determination of a superior set of k-factors for a multi- factor stock returns model through feature selection and clustering using neural networks. In Proceedings of the International ICSC Congress on Computational Intelligence Methods and Applications. ICSC Academic Press, Zurich, Switzerland.
  414. Dyck, D., Lowther, D. A., Mai, W., and Henneberger, G. (1999). Three-dimensional mesh improvement using self organizing feature maps. IEEE Transactions on Magnetics, 35:1334-7.
  415. Dzemyda, G. (2001). Visualization of a set of parameters characterized by their correlation matrix. Computa- tional Statistics and Data Analysis, 36(1):15-30.
  416. Dzemyda, G. and Tiesis, V. (2001). Visualisation of multidimensional objects and the socio-economical impact to activity in EC RTD databases. Informatica, 12:239-62.
  417. Dzung, T. P. (1997). Applications of Unsupervised Clustering Algorithms to Aircraft Identification Using High Range Resolution Radar.
  418. Eikens, B. and Karim, M. N. (1998). Identification of a fermentation with SOM. In Computer Applications in Biotechnology 1998. (CAB7) Horizon of BioProcess Systems Engineering in 21st Century. Proceedings volume from the 7th IFAC International Conference, pages 239-46, Kidlington, UK. Elsevier Sci.
  419. Eklund, T., Back, B., Vanharanta, H., and Visa, A. (2001). Benchmarking global pulp and paper companies using self-organizing maps. Paperi ja Puu/Paper and Timber, 83(4):304-316.
  420. El-Beltagy, M. and Keane, A. (1999). Using self organizing maps and genetic algorithms for model selection in multilevel optimization. In Multiple Approaches to Intelligent Systems, Proceedings, pages 137-144.
  421. El Beltagy, M. and Keane, A. (1999). Using self organizing maps and genetic algorithms for model selection in multilevel optimization. In Multiple Approaches to Intelligent Systems. 12th International Conference on In- dustrial and Engineering Applications of Artificial Intelligence and Expert Systems. IEA/AIE-99. Proceedings, pages 137-44, Berlin, Germany. Springer-Verlag.
  422. El Gamal, M. A. and Abu El Yazeed, M. F. (1999). A new classification technique for neural network-based analog hard fault diagnosis. Journal of Engineering and Applied Science, 46:537-53.
  423. El Gamal, M. A. and El Yazeedt, M. F. A. (1999). A combined clustering and neural network approach for analog multiple hard fault classification. Journal of Electronic Testing: Theory and Applications, 14:207-17.
  424. El Tobely, T., Yoshiki, Y., and Tsuda, R. (2001). SOM competition for complex image scene with variant object position. In 9th European Symposium on Artificial Neural Networks. ESANN'2001. Proceedings. D- Facto, Evere, Belgium, pages 353-8.
  425. El Tobely, T., Yoshiki, Y., Tsuda, R., Tsuruta, N., and Amamiy, M. (2000). Dynamic hand gesture recognition based on randomized self-organizing map algorithm. In Algorithmic Learning Theory, Proceedings, pages 252-263.
  426. El-Tobely, T., Yoshiki, Y., Tsuda, R., Tsuruta, N., and Amamiya, M. (2000). Randomized self-organizing maps and its application. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 207-14.
  427. Elfadil, N., Hani, M. K., Nor, S. M., and Hussein, S. (2001a). An approach for automating knowledge ac- quisition process by using kohonen self-organizing neural networks and expert system. In First International Conference on Mechatronics. Mechatronics-An Integrated Engineering for the New Millennium. Conference Proceedings. Int. Islamic Univ. Malaysia, Kuala Lumpar, Malaysia, volume 2, pages 550-61.
  428. Elfadil, N., Hani, M. K., Nor, S. M., and Hussein, S. (2001b). Kohonen self organizing maps and expert system for blood classification. In Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001. IEEE, Piscataway, NJ, USA, volume 1, pages 174-80.
  429. Eltn, S. D. (1998). An adaptive learning vector quantisation algorithm for cluster analysis and radar pulse train deinterleaving. In Proceedings of the Ninth Australian Conference on Neural Networks (ACNN'98). Univ. Queensland, Brisbane, Qld.,Australia, pages 31-5.
  430. Emamian, V., Kaveh, M., and Tewfik, A. H. (2000a). Acoustic emission classification for failure prediction due to mechanical fatigue. Proceedings of SPIE-The International Society for Optical Engineering, 3986:78-84.
  431. Emamian, V., Kaveh, M., and Tewfik, A. H. (2000b). Robust clustering of acoustic emission signals using the kohonen network. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing- Proceedings, volume 6, pages 3891-3894, Piscataway, NJ. Univ of Minnesota, IEEE.
  432. Emamian, V., Shi, Z., Kaveh, M., and Tewfik, A. H. (2001). Acoustic emission classification using signal sub- space projections. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing- Proceedings, volume 5, pages 3321-3324. Dept. of Elec. and Computer Eng., University of Minnesota.
  433. Endo, M., Ueno, M., Tanabe, T., and Yamamoto, M. (2000a). Clustering method using self-organizing map. Neural Networks for Signal Processing-Proceedings of the IEEE Workshop, 1:261-270.
  434. Endo, M., Ueno, M., Tanabe, T., and Yamamoto, M. (2000b). Experimental analysis of image CLustering method using self-organizing maps. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 272-7.
  435. Eppler, W. and Bottger, T. (2001). Optimization of piecewise linear networks (PLN) by pruning. In Proceed- ings Joint 9th IFSA World Congress and 20th NAFIPS International Conference. IEEE, Piscataway, NJ, USA, volume 1, pages 185-90.
  436. Eppler, W., Fischer, T., Gemmeke, H., Chilingarian, A., and Vardanyan, A. (2000). Neural chip SAND in online data processing of extensive air showers. Computer Physics Communications, 126(1):63-66.
  437. Erberich, S. G., Dietrich, T., Kemeny, S., Krings, T., K., W., A., T., and W., O. (2000a). Analysis of short single rest/activation epoch fMRI by self-organizing map neural network. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.3978, volume 3978, pages 258-64.
  438. Erberich, S. G., Dietrich, T., Kemeny, S., Krings, T., Willmes, K., Thron, A., and Oberschelp, W. (2000b). Analysis of short single rest/activation epoch fMRI by self-organizing map neural network. Proceedings of SPIE-The International Society for Optical Engineering, 3978:258-264.
  439. Erberich, S. G., Fellenberg, M., Krings, T., Kemeny, S., Reith, W., Willmes, K., and Oberschelp, W. (1999). Unsupervised time course analysis of functional magnetic resonance imaging (fMRI) using self-organizing maps (SOM). In Proceedings of SPIE-The International Society for Optical Engineering, volume 3660, pages 19-26.
  440. Erberich, S. G., Liebert, M., Willmes, K., Thron, A., and Oberschelp, W. (2001). Analysis of event-related fMRI using a non-linear regression self-organizing map neural network. In Chen, C. and Clough, A. V., editors, Proceedings of SPIE-The International Society for Optical Engineering, volume 4321, pages 327- 335. Neurofunctional Imaging Laboratory, Univ. of Technology RWTH, Univ. Hospital.
  441. Eriksson, L., Sebelius, F., and Balkenius, C. (1998). Neural control of a virtual prosthesis. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of ICANN98, the 8th International Conference on Artificial Neural Networks, volume 2, pages 905-910. Springer, London.
  442. Esp, D. G. and McGrail, A. J. (2000). Advances in data mining for dissolved gas analysis. In Conference Record of IEEE International Symposium on Electrical Insulation, pages 456-459, Piscataway, NJ. Natl Grid Co plc, IEEE.
  443. Espinosa, G., Arenas, A., and Giralt, F. (2002). An integrated SOM-fuzzy ARTMAP neural system for the evaluation of toxicity. Journal of Chemical Information and Computer Sciences, 42(2):343-359.
  444. Essenreiter, R., Karrenbach, M., and Treitel, S. (2001). Identification and classification of multiple reflections with self-organizing maps. Geophysical Prospecting, 49(3):341-352.
  445. Esteves, S. R. R., Wilcox, S. J., Hawkes, D. L., C., O., and R., H. F. (2001). The development of a neural network based monitoring and control system for biological wastewater treatment systems. International Journal of COMADEM, 4:22-8.
  446. Estévez, P. A. and Caballero, R. E. (1998). A niching genetic algorithm for selecting features for neural network classifiers. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of ICANN98, the 8th International Conference on Artificial Neural Networks, volume 1, pages 311-316. Springer, London.
  447. Euliano, N. R. and Principe, J. C. (1999). A spatio-temporal memory based on SOMs with activity diffusion. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 253-266. Elsevier, Amsterdam.
  448. Fan, Y. and Wang, R.-s. (2002). Self-organizing technique for categorizing image database. Mini Micro Systems, 23:482-5.
  449. Fang, G., Gao, W., and Ma, J. (2001). Signer-independent sign language recognition based on SOFM/HMM. In Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real- Time Systems. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 90-5.
  450. Fang, G. L., Gao, W., Wang, C. L., and Chen, Y. Q. (2002). A signer-independent sign language recognition system based on SOFM/HMM. Chinese Journal of Computers, 25:16-21.
  451. Farkas, I. and Miikkulainen, R. (1999). Modeling the self-organization of directional selectivity in the primary visual cortex. In Proceedings of the International Conference on Artificial Neural Networks (ICANN-99), pages 251-256, New York. Springer.
  452. Fatehi, A. and Abe, K. (1999a). Convergence of SOM multiple models identifier. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics., volume 4, pages 1074- 7, Piscataway, NJ. IEEE Service Center.
  453. Fatehi, A. and Abe, K. (1999b). Multilinear modeling of nonlinear continuously variable transmission (CVT) gear-box plant by SOM neural networks. In Proceedings of International Workshop on Soft Computing in Industry '99 (IWSCI'99). Muroran Inst. of Technol, Muroran, Japan, pages 31-5.
  454. Favalli, L., Pizzi, R., and Mecocci, A. (1997). Non linear mobile-radio channel estimation using neural networks. International Conference on Digital Signal Processing. DSP, 1:287-290.
  455. Feng, B. B., Jin, G. L., and Jun, C. X. (2001a). The technology and theory of online recognition of gas-liquid two-phase flow regime. In Proceedings of the CSEE. vol.21, no.7, volume 21, pages 46-50.
  456. Feng, M., Shao-Wei, X., Xin, T., and Ze-Sheng, T. (1998a). A SOM-PNN classifier for probabilistic segmen- tation and visualization of volume data. Chinese Journal of Computers, 21(9):819-24.
  457. Feng, M. and Shaowei, X. (1998). A multiscale approach to automatic medical image segmentation using self-organizing map. Journal of Computer Science and Technology (English Language Edition), 13(5):402-9.
  458. Feng, M., Shaowei, X., Zesheng, T., Wenping, W., and Tsang, W. W. (1998b). Probabilistic classification of medical images using a hybrid neural network. In Joint Conference on Intelligent Systems 1999 (JCIS'98), volume 4, pages 222-5. Association for Intelligent Machinery.
  459. Feng, R.-M., Tia, X.-H., and Huan, K.-D. (2002). Modifying the legacy simulation/simulation facility to be a system compliant with high level architecture. Journal of System Simulation, 14:293-6.
  460. Feng, Y., Kubo, M., Aghbari, Z., and Makinouchi, A. (2001b). A new SOM-based r*-tree: Building and re- trieving. Research Reports on Information Science and Electrical Engineering of Kyushu University, 6(2):209- 214.
  461. Ferguson, K. L. and Allinson, N. M. (1999). Rate-constrained self-organizing neural maps and efficient psy- chovisual methods for low bit rate video coding. Neural Networks Signal Process Proc IEEE, pages 390-399.
  462. Fernandez, E., Echave, I., and Grana, M. (2000a). Competitive neural networks for robust computation of optical flow. In 8th European Symposium on Artificial Neural Networks. ESANN"2000. Proceedings. D-Facto, Brussels, Belgium, pages 89-94.
  463. Fernandez, E., Echave, I., and Grana, M. (2000b). Increased robustness in visual processing with SOM-based filtering. In Proceedings of the International Joint Conference on Neural Networks, volume 6, pages 131-134, Piscataway, NJ. UPV/EHU, IEEE.
  464. Fernandez, E. A., Presedo, J., and Barro, S. (1999). An ECG ischemic detection system based on self-organizing maps and a sigmoid function pre-processing stage. In Artificial Intelligence in Medicine. Joint European Conference on Artificial Intelligence in Medicine and Medical Decision Making, AIMDM'99. Pro- ceedings (Lecture Notes in Artificial Intelligence Vol. 1620), volume 1620, pages 207-16, Berlin, Germany. Springer-Verlag.
  465. Fernandez, E. A., Willshaw, P., Perazzo, C. A., Presedo, R. J., and Barro, S. (2001). Detection of abnormality in the electrocardiogram without prior knowledge by using the quantisation error of a self-organising map, tested on the european ischaemia database. Medical & Biological Engineering & Computing, 39(3):330-337.
  466. Ferran, E. A. (1994). Self-organized neural maps of human protein sequences. Protein Science, 3(3):507-521.
  467. Fessant, F., Aknin, P., Oukhellou, L., and Midenet, S. (2001). Comparison of supervised self-organizing maps using euclidian or mahalanobis distance in classification context. In Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001. Proceedings, Part I (Lecture Notes in Computer Science Vol. 2084). Springer- Verlag, Berlin, Germany, pages 637-44.
  468. Figueiredo, F. L. and Violaro, F. (1998). An isolated word speech recognition system based on Kohonen neural network. In de Padua Braga, A. and Ludermir, T. B., editors, Proceedings 5th Brazilian Symposium on Neural Networks, pages 151-6. IEEE Computer Society, Los Alamitos, CA, USA.
  469. Filho, T. E. F., Messina, R. O., and Cabral, J. E. F. (1998). Learning vector quantization in text-independent automatic speaker recognition. In de Padua Braga, A. and Ludermir, T. B., editors, Proceedings 5th Brazilian Symposium on Neural Networks, pages 135-9. IEEE Computer Society, Los Alamitos, CA, USA.
  470. Firenze, F. and Morasso, P. (1994). Adaptive modulation of receptive fields in self-organizing networks. In Marinaro, M. and Morasso, P., editors, International Conference on Artificial Neural Networks, volume 1, pages 314-317. Springer-Verlag, London.
  471. Firenze, F., Morasso, P., Ottonello, G., , and Morandi, A. (1995a). A RBF-based neural network which imple- ments adaptive resolution function approximation. In Fogelman, F., editor, Proceedings of the International Conference on Artificial Neural Networks (ICANN'95-Paris October 9-13), volume 2, pages 93-97.
  472. Firenze, F., Schenone, A., Acquarone, F., and Morasso, P. (1995b). An interactive neural network based approach to the segmentation of multimodal medical images. In Proceedings of the VII Italian Workshop on Neural Nets (WIRN'95, Vietri sul Mare, Italy, MAY 18-20), pages 251-259.
  473. Fischer, I. and Zell, A. (2000). String averages and self-organizing maps for strings. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Universität Tübingen, Wilhelm-Schickard-Institut für Informatik, ICSC Academic Press.
  474. Flanagan, J. A. (1998a). The self-organising map, robustness, self-organising criticality and power laws. In Proceedings of the European Symposium on Artificial Neural Networks (ESANN'98), pages 209-214. Bruges, Belgium.
  475. Flanagan, J. A. (1998b). Sufficient conditions for self-organisation in the one-dimensional SOM with a reduced width neighbourhood. Neurocomputing, 21(1-3):51-60.
  476. Flanagan, J. A. (1999). Self-organization in the SOM with a decreasing neighborhood function of any width. In ICANN99. Ninth International Conference on Artificial Neural Networks (IEE Conf. Publ. No.470), volume 1, pages 156-161, London, UK. IEE.
  477. Flanagan, J. A. (2000a). Neuron weight dynamics in the SOM and self-organized criticality. In Proceedings of the International Joint Conference on Neural Networks, volume 5, pages 39-44, Piscataway, NJ. Helsinki Univ of Technology, IEEE.
  478. Flanagan, J. A. (2000b). Self-organisation in the SOM with a finite number of possible inputs. In 8th European Symposium on Artificial Neural Networks. ESANN"2000. Proceedings. D-Facto, Brussels, Belgium, pages 261-6.
  479. Flanagan, J. A. (2000c). Self-organization in the SOM and lebesque continuity of the input distribution. In Proceedings of the International Joint Conference on Neural Networks, volume 6, pages 26-31, Piscataway, NJ. Helsinki Univ of Technology, IEEE.
  480. Flanagan, J. A. (2001a). Self-organization in the one-dimensional SOM with a decreasing neighborhood. Neural Networks, 14(10):1405-1417.
  481. Flanagan, J. A. (2001b). Self-organized criticality and the self-organizing map. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 63(3 II):361301-361306.
  482. Flanagan, J. A. (2001c). Self-organized criticality and the self-organizing map. Physical Review E, 6303(3):art. no.-036130.
  483. Flanagan, J. A. (2001d). Topologically Ordered Neural Networks, volume 4 of Handbook of Biological Physics, chapter 16, pages 685-729. Elsevier Science.
  484. Flexer, A. (1999). On the use of self-organizing maps for clustering and visualization. In Principles of Data Mining and Knowledge Discovery, pages 80-88.
  485. Flexer, A. (2001). On the use of self-organizing maps for clustering and visualization. Intelligent Data Analysis, 5:373-84.
  486. Foody, G. M. (1999). Applications of the self-organizing feature map neural-network in community data- analysis. Ecological Modelling, 120(2-3):97-107.
  487. Fort, J. C., Cottrell, M., and Letremy, P. (2001). Stochastic on-line algorithm versus batch algorithm for quantization and self organizing maps. In Neural Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Workshop. IEEE, Piscataway, NJ, USA, pages 43-52.
  488. Frauel, Y., Pauliat, G., Villing, A., and Roosen, G. (2000). Photorefractive neural network performing a topo- logical map. In Proceedings of SPIE-The International Society for Optical Engineering, volume 4089, pages 668-675, Bellingham, WA. Cent Natl de la Recherche Scientifique, Society of Photo-Optical Instrumentation Engineers.
  489. Frauel, Y., Pauliat, G., Villing, A., and Roosen, G. (2001). High-capacity photorefractive neural network implementing a kohonen topological map. Applied-Optics, 40:5162-9.
  490. Frauel, Y., Villing, A., Pauliat, G., and Roosen, G. (1999). Automatic classification of images with a pho- torefractive crystal. Advances in Photorefractive Materials, Effects, and Devices. Seventh Topical Meeting. OSA Trends in Optics and Photonics Series Vol.27. Opt. Soc. America, Washington, DC, USA; 1999; xii+673 pp.p.631-6, pages 631-6.
  491. Frick, K. L. and Starrett, S. K. (2000). Classification of disturbance characteristics using a kohonen neural network. In LESCOPE'00. 2000 Large Engineering Systems Conference on Power Engineering Conference Proceedings. Theme: Navigating the New Power Challenge. Large Engineering Systems, Halifax, NS, Canada, pages 124-8.
  492. Frietman, E. E. E., Hill, M. T., and Khoe, G. D. (2001). A kohonen neural network controlled all-optical router system. International Journal of Computer Research, Special Issue: Past, Present and Future of Neural Networks, 10(2):251-67. Guest Editors: P.G. Anderson and G. Antoniou and V. Mladenov and E. Oja and M. Paprzycki and N. C. Steele.
  493. Frisone, F., Firenze, F., Morasso, P., and Ricciardiello, L. (1995). Application of topology representing net- works to the estimation of the intrinsic dimensionality of data. In Fogelman, F., editor, Proceedings of the International Conference on Artificial Neural Networks (ICANN'95-Paris October 9-13), volume 1, pages 323-327.
  494. Frisone, F., Morasso, P., Iannò, G., Marongiu, M., Vitali, P., and Rodriguez, G. (1999a). Spatio-temporal cortical activity patterns in cognitive tasks using fMRI. In Marinaro, M. and Tagliaferri, R., editors, Neural Nets, pages 126-131. Springer-Verlag, London.
  495. Frisone, F., Morasso, P., and Perico, L. (1998a). Self-organization in cortical maps & EM learning. Journal of Advanced Computational Intelligence, 2:178-184.
  496. Frisone, F. and Morasso, P. G. (1999). Soft-competitive versus EM learning in cortical map modeling. In Marinaro, M. and Tagliaferri, R., editors, Neural Nets WIRN VIETRI-98. Proceedings of the 10th Italian Workshop on Neural Nets, pages 120-5, London, UK. Springer-Verlag London.
  497. Frisone, F., Perico, L., and Morasso, P. (1997a). Extending the TRN model in a biologically plausible way. In W. Gerstner, M. H. and Nicoud, J. D., editors, Artificial Neural Networks-ICANN'97, pages 201-206, Berlin, Germany. Springer Verlag.
  498. Frisone, F., Sanguineti, V., and Morasso, P. G. (1997b). A novel hypothesis on cortical map: Topological continuity. In Marinaro, M. and Tagliaferri, R., editors, Neural Net-WIRN96. Proceedings of the 8th Italian Workshop on Neural Nets., pages 194-198. Springer, London, UK.
  499. Frisone, F., Vitali, P., Iannò, G., Marongiu, M., Morasso, P., Pilot, A., Rodriguez, G., Rosa, M., and Sardanelli, F. (1999b). Can the synchronization of cortical areas be evidenced by fMRI? Journal of Neurocomputing, 26:1019-24.
  500. Frisone, F., Vitali, P., and Morasso, P. (1998b). Cortical activity pattern in complex tasks. In Bower, J. M., editor, Computational Neuroscience: Trends in Research, pages 13-18. Plenum Press.
  501. Fritzke, B. (1994). Growing cell structures-a self-organizing network for unsupervised and supervised learn- ing. Neural Networks, 7(9):1441-1460.
  502. Fritzke, B. (1999). Kohonen self-organizing map with quantized weights. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 131-44. Elsevier, Amsterdam.
  503. Fujimura, K., Fujiwaki, S., and Tokutaka, H. (2001a). Optimization of high speed chip-mounter using SOM- TSP method. Transactions of the Institute of Electronics, Information and Communication Engineers D II, pages 1194-202.
  504. Fujimura, K., Fujiwaki, S. I., Kwaw, O. C., and Tokutaka, H. (2001b). Optimisation of electronic parts mounting machines usin SOM-TSP method with 5 dimensional data. In Allison, N., Yin, H., Allison, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 246-52. Springer.
  505. Fujimura, K., Obu-Cann, K., and Tokutaka, H. (1999a). Optimization of surface component mounting on the printed circuit board using SOM-TSP method. In ICANN99. Ninth International Conference on Artificial Neural Networks (IEE Conf. Publ. No.470), volume 2, pages 643-648, London, UK. IEE.
  506. Fujimura, K., Tokutaka, H., Kishida, S., and Ishikawa, M. (1997a). Visualization for probability density function of multi-dimensional data by self-organizing map (in japanese). Technical report, IEICE.
  507. Fujimura, K., Tokutaka, H., and Masumi, I. (1999b). Performance of improved SOM-TSP algorithm for traveling salesman problem of many cities. Transactions of IEE Japan, 119(7). (in Japanese).
  508. Fujimura, K., Tokutaka, H., Obu-Cann, K., and Hatano, S. (2000). Visualizing winning frequencies and color classification map using modified counter-propagation. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 278-85.
  509. Fujimura, K., Tokutaka, H., Tanaka, S., Maeno, T., and Kishida, S. (1997b). The optimization for TSP using SOM method of many cities, for example 532 cities in USA. In Proceedings of Workshop on the Self- Organizing Maps (WSOM'97), pages 80-85.
  510. Fujinaga, S. and Hagiwara, M. (1997). Procedural knowledge processing based on area representation using a neural networks. In 1997 IEEE International Conference on Systems, Man, and Cybernetics, volume 5, pages 4519-4524.
  511. Fukayama, A., Ida, M., and Katai, O. (1999). Behavior-based fuzzy control system for a mobile robot with environment recognition by sensory-motor coordination. In FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings., volume 1, pages 105-10, Piscataway, NJ. IEEE Service Center.
  512. Fulantelli, G., Rizzo, R., Arrigo, M., and Corrao, R. (2000). An adaptive open hypermedia system on the web. In Adaptive Hypermedia and Adaptive Web-Based Systems. International Conference, AH 2000. Proceedings (Lecture Notes in Computer Science Vol.1892). Springer-Verlag, Berlin, Germany, pages 305-10.
  513. Furukawa, S. and Middlebrooks, J. C. (2002). Cortical representation of auditory space: Information-bearing features of spike patterns. Journal of Neurophysiology, 87(4):1749-1762.
  514. Gabor, A. J. (1998). Seizure detection using a self-organizing neural network: validation and comparison with other detection strategies. EEG Clinical Neurophysiology, 107(1):27-32.
  515. Gajewski, P. (2001). Channel assignment in CDMA systems with walsh and PN coding. In IEEE Vehicular Technology Conference, volume 2, pages 982-986. Military University of Technology.
  516. Gale, T., Peters, L., Frank, R., and Davey, N. (2000). Visual categorisation in a modified self organising map: implications for category-spesific agnosia. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Department of Com- puter Science; Department of Psychology, University of Hertfordshire; Hertfordshire Neurosciences Research Group (HNRG), QEII Hospital, Howlands, Welwyn-Garden-City, Herts, UK, ICSC Academic Press.
  517. Galliat, T., Huisinga, W., and Deuflhard, P. (2000). Self-organizing maps combined with eigenmode analysis for automated cluster identication. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Konrad-Zuse-Zentrum Berlin; Freie Universi at Berlin, Fachbereich Mathematik und Informatik, ICSC Academic Press.
  518. Ganslmeier, B., Schels, A., and Lang, E. W. (2000). PCA and ICA analysis of process control data obtained during si-wafer manufacturing. In Proceedings of the IASTED International Conference. Signal Processing and Communications. IASTED/ACTA Press, Anaheim, CA, USA, pages 72-7.
  519. Gao, X. Z. and Ovaska, S. J. (1999). A new fuzzy filter with application in motion control systems. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics., volume 3, pages 280-5, Piscataway, NJ. IEEE Service Center.
  520. Garani, S. and Principe, J. C. (2001). Dynamic vector quantisation of speech. In Allison, N., Yin, H., Allison, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 238-45. Springer.
  521. Garavaglia, S. (1996). Determination of systematic risk in US businesses using Sammon's mapping and self-organizing maps. In WCNN'96. World Congress on Neural Networks. International Neural Network Society 1996 Annual Meeting, pages 831-40. Lawrence Erlbaum Associates, Mahwah, NJ, USA.
  522. Garavaglia, S. (1998). A heuristic self-organizing map trained using the Tanimoto coefficient. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 1, pages 289-94. IEEE, New York, NY, USA.
  523. Garavaglia, S. B. (2000). Health care customer satisfaction survey analysis using self-organizing maps and 'ex- ponentially smeared' data vectors. In Proceedings of the International Joint Conference on Neural Networks, volume 4, pages 119-124, Piscataway, NJ. Schering-Plough Corp, IEEE.
  524. Garavaglia, S. B. (2001). Statistical analysis of the tanimoto coefficient self-organizing map (TCSOM) applied to health behavioral survey data. In Proceedings of the International Joint Conference on Neural Networks, volume 4, pages 2483-2488. Integrated Therapeutics Group, Schering-Plough Corporation.
  525. Garcia Lagos, F., Joya, G., Marin, F. J., and Sandoval, F. (2001). Neural networks for contingency evaluation and monitoring in power systems. In Bio-Inspired Applications of Connectionism. 6th International Work- Conference on Artificial and Natural Neural Networks, IWANN 2001. Proceedings, Part II. (Lecture Notes in Computer Science Vol.2085). Springer-Verlag, Berlin, Germany, pages 711-18.
  526. Gardner, J. W., Shin, H. W., Hines, E. L., and Dow, C. S. (2000). Electronic nose system for monitoring the quality of potable water. Sensors and Actuators, B: Chemical, 69(3):336-341.
  527. Gardner, M. and Bieker, J. (2000). Data mining solves tough semiconductor manufacturing problems. In Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, USA, pages 376-83.
  528. Gardner, R. D. and Harle, D. A. (1997). Alarm correlation and network fault resolution using the Kohonen self-organising map. In GLOBECOM 97. IEEE Global Telecommunications Conference. Conference Record, volume 3, pages 1398-402. IEEE, New York, NY, USA.
  529. Gardon, A. P., Vazquez, C. R., and Illarramendi, A. A. (1999). Spanish phoneme classification by means of a hierarchy of kohonen self-organizing maps. In Text, Speech and Dialogue, pages 181-186.
  530. Gasteiger, J., Li, X., and Uschold, A. (1994). The beauty of molecular surfaces as revealed by self-organizing neural networks. Journal of Molecular Graphics, 12:90-97.
  531. Gautama, T. and van Hulle, M. M. (1999). Self-organized feature extraction achieved with a parametrized filterbank. Neural Processing Letters, 10(2):131-137.
  532. Gautreaux, M. M. (1995). Hyperspectral Imagery Analysis Using Neural Network Techniques. Master's thesis.
  533. Gavrilas, M., Sfintes, V. C., and Filimon, M. N. (2001). Identifying typical load profiles using neural-fuzzy models. In Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, volume 1, pages 421-426. Department of Power Engineering, Gh. Asachi Technical Univ. of Iasi.
  534. Ge, M., Chiu, M. S., and Wang, Q. G. (1999). Extended self-organizing map for nonlinear system identifica- tion. In Proceedings of the IEEE Conference on Decision and Control, volume 1, pages 1065-1070.
  535. Ge, M., Chiu, M.-S., and Wang, Q.-G. (2000). Extended self-organizing map for nonlinear system identifica- tion. Industrial and Engineering Chemistry Research, 39(10):3778-3788.
  536. George, S. E. (2000a). Spatio-temporal analysis with the self-organizing feature map. Knowledge and Infor- mation Systems, 2:359-72.
  537. George, S. E. (2000b). A visualization and design tool (AVID) for data mining with the self-organizing feature map. International Journal on Artificial Intelligence Tools (Architectures, Languages, Algorithms), 9:369-75.
  538. Gerecke, U. and Sharkey, N. (1999). Quick and dirty localization for a lost robot. In Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99., pages 262-7, Piscataway, NJ. IEEE Service Center.
  539. Geva, S. and Buckingham, L. (2000). VQTree: Vector quantization for decision tree induction. In Knowledge Discovery and Data Mining, Proceedings, pages 349-359.
  540. Giacomini, M., Ruggiero, C., Caneva, F., and Bertone, S. (2000a). Application of artificial neural network for the identification of fresh water bacteria. In Medical Infobahn for Europe. Proceedings of MIE2000 and GMDS2000. IOS Press, Amsterdam, Netherlands, pages 106-10.
  541. Giacomini, M., Ruggiero, C., and Mansi, C. (2000b). Application of kohonen neural network for the elabora- tion of electrogastrograms. In Medical Infobahn for Europe. Proceedings of MIE2000 and GMDS2000. IOS Press, Amsterdam, Netherlands, pages 185-9.
  542. Giles, C. L., Lawrence, S., and Tsoi, A. C. (2001). Noisy time series prediction using recurrent neural networks and grammatical inference. Machine Learning, 44(1-2):161-183.
  543. Girardin, L. (1999). An eye on network intruder-administrator shootouts. In Proceedings of the Workshop on Intrusion Detection and Network Monitoring (ID'99), pages 19-28, Berkeley, CA, USA. USENIX Associa- tion.
  544. Giraudel, J. L. and Lek, S. (2001). A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. Ecological Modelling, 146(1-3):329-339.
  545. Girolami, M. (2000). A generative model for sparse discrete binary data with non-uniform categorical priors. In 8th European Symposium on Artificial Neural Networks. ESANN"2000. Proceedings. D-Facto, Brussels, Belgium, pages 1-6.
  546. Girolami, M. (2001). The topographic organization and visualization of binary data using multivariate- bernoulli latent variable models. IEEE Transactions on Neural Networks, 12(6):1367-1374.
  547. Giron, A., Vilain, J., Serruys, C., Brahmi, D., Deschavanne, P., and Fertil, B. (1999). Analysis of parametric images derived from genomic sequences using neural network based approaches. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 5, pages 3604-8, Piscataway, NJ. IEEE Service Center.
  548. Glass, J. O., Reddick, W. E., Goloubeva, O., Yo, V., and Steen, R. G. (2000). Hybrid artificial neural network segmentation of precise and accurate inversion recovery (PAIR) images from normal human brain. Magnetic Resonance Imaging, 18(10):1245-1253.
  549. Glass, J. O., Reddick, W. E., and Steen, R. G. (2001). Validation of a semi-automated segmentation algorithm with partial volume redistribution. In Sonka, M. and Hanson, K. M., editors, Proceedings of SPIE-The Inter- national Society for Optical Engineering, volume 4322, pages 226-235. Department of Diagnostic Imaging, St. Jude Children's Res. Hospital.
  550. Goddard, J., Martinez, A. E., Martinez, F. M., and Aljama, T. (2000). A comparison of different clustering algorithms for speech recognition. In Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems. IEEE, Piscataway, NJ, USA, volume 3, pages 1222-5.
  551. Godino-Llorente, J. I., Aguilera-Navarro, S., and Gomez-Vilda, P. (2000). Non supervised neural net applied to the detection of voice impairment. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, volume 6, pages 3594-3597, Piscataway, NJ. Universidad Politecnica de Madrid, IEEE.
  552. Goerke, N., Kintzler, F., and Eckmiller, R. (2001a). Self organized classification of chaotic domains from a nonlinear attractor. In Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 1637-1641. Department of Computer Science VI, Neuroinformatik, University of Bonn.
  553. Goerke, N., Kintzler, F., and Eckmiller, R. (2001b). Self organized partitioning of chaotic attractors for control. In Artificial Neural Networks-ICANN 2001. International Conference. Proceedings (Lecture Notes in Computer Science Vol.2130). Springer-Verlag, Berlin, Germany, pages 851-6.
  554. Gokcay, D., Harris, J. G., Leonard, C. M., and Briggs, R. (2001). Self-organizing features for regularized standardization of brain images. In Sonka, M. and Hanson, K. M., editors, Proceedings of SPIE-The Interna- tional Society for Optical Engineering, volume 4322, pages 1645-1653. University of Florida, Computer and Information Sciences.
  555. Golbraikh, A., Bernard, P., and Chretien, J. R. (2000). Validation of protein-based alignment in 3d quantitative structure-activity relationships with coMFA models. European Journal of Medicinal Chemistry, 35(1):123- 136.
  556. Golz, M., Sommer, D., Lembcke, T., and Kurella, B. (1998). Classification of pre-stimulus EEG of k- complexes using competitive learning networks. In 6th European Congress on Intelligent Techniques and Soft Computing. EUFIT '98, volume 3, pages 1767-71, Aachen, Germany. Verlag Mainz.
  557. Gomez-Ruiz, J. A., Lopez-Rubio, E., and noz Perez, J. M. (2000). Expansive competitive learning for colour image compression. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Com- putation (NC'2000) May 23-26, 2000 in Berlin, Germany. Dpto. de Lenguajes y Ciencias de la Computacion E.T.S. Ingenieria Informatica. Universidad de Malaga, ICSC Academic Press.
  558. Gomolka, Z., Pekala, R., and Pyzik, L. (1996). The pre-processing of the diagnostics signals using LVQ method. In Solving Engineering Problems with Neural Networks. Proceedings of the International Conference on Engineering Applications of Neural Networks (EANN'96), volume 1, pages 257-60. Systems Engineering Association, Turku, Finland.
  559. Goodacre, R., Kaderbhai, N., McGovern, A. C., and Goodacre, E. A. (1999). Chemometric analyses with self organising feature maps: A worked example of the analysis of cosmetics using raman spectroscopy. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 335-348. Elsevier, Amsterdam.
  560. Goren-Bar, D., Kuflik, T., Lev, D., and Shoval, P. (2001). Automating personal categorization using artificial neural networks. In User Modeling 2001, Proceedings, pages 188-198.
  561. Graepel, T., Burger, M., and Obermayer, K. (1998). Self-organizing maps: generalizations and new optimiza- tion techniques. Neurocomputing, 21(1-3):173-90.
  562. Graepel, T. and Obermayer, K. (1999). A stochastic self organizing map for proximity data. Neural Compu- tation, 11:139-155.
  563. Grana, M. and Echave, I. (1999). Real time optical flow computation based on adaptive color quantization by competitive neural networks. In Proceedings of SPIE-The International Society for Optical Engineering, volume 3837, pages 165-174.
  564. Graupe, D. and Kordylewski, H. (1997). A large scale memory (LAMSTAR) neural network for medical diag- nosis. In Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering'., volume 3, pages 1332-5, Piscataway, NJ. IEEE Service Center.
  565. Gray, R. M., Perlmutter, K. O., and Olshen, R. A. (1998). Quantization, classification, and density estimation for Kohonen's gaussian mixture. Data Compression Conference, pages 63-72.
  566. Greaves, A. J. and Gasteiger, J. (2001). The use of self-organising neural networks in dye design. Dyes and Pigments, 49(1):51-63.
  567. Gregory, J. S., Junold, R. M., Undrill, P. E., and Aspen, R. M. (1999). Analysis of trabecular bone structure using Fourier transforms and neural networks. IEEE Transactions on Information Technology in Biomedicine, 3:289-94.
  568. Grigore, O., Grigore, O., and Florescu, A. (2000). The control of a nonlinear system using competitive neural networks. In OPTIM 2000. Proceedings of the 7th International Conference on Optimization of Electrical and Electronic Equipments. Transilvania Univ. Press, Brasov, Romania, volume 3, pages 671-4.
  569. Grigull, J., Alexandrova, R., and Paterson, A. D. (2001). Clustering of pedigrees using marker allele frequen- cies: Implact on linkage analysis. Genetic epidemiology, 21:S61-S66.
  570. Grim, J. (2000). Self-organizing maps and probabilistic neural networks. Neural Network World, 10:407-15.
  571. Grim, J., Pudil, P., and Somol, P. (2000). Recognition of handwritten numerals by structural probalistic neural networks. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Institute of Information Theory and Automation, ICSC Academic Press.
  572. Grimaldi, V. (1994). Perspective d'utilisation des reseaux de neurones non supervises en discrimination des signatures courants de Foucault. (Using unsupervised neural networks for eddy currents signature discrimi- nation: a prospective study).
  573. Groenen, P. J. F. and Jajuga, K. (2001). Fuzzy clustering with squared minkowski distances. Fuzzy Sets and Systems, 120(3):227-237.
  574. Grohn, M., Nieminen, M., Haho, P., and Smeds, R. (2000). Experiences in using discus for visualizing human communication. In Proceedings of SPIE-The International Society for Optical Engineering, volume 3960, pages 302-311.
  575. Grossberg, S. and Williamson, J. R. (1999). A self organizing neural system for learning to recognize textured scenes. Vision Research, 39:1385-1406.
  576. Grozinger, M., Uhl, T., and Roschke, J. (1996). Kohonen feature maps in the online detection of REM sleep from single channel sleep EEG data. In WCNN'96. World Congress on Neural Networks. International Neural Network Society 1996 Annual Meeting, page 885. Lawrence Erlbaum Associates, Mahwah, NJ, USA.
  577. Gruen, R. and Kubota, T. (2002). A neural network approach to system performance analysis. In Proceedings IEEE SoutheastCon 2002. IEEE, Piscataway, NJ, USA, pages 349-54.
  578. Guerrero, V. P. and De Moya Anegon, F. (2001). Reduction of the dimension of a document space using the fuzzified output of a kohonen network. Journal of the American Society for Information Science and Technology, 52(14):1234-1241.
  579. Guerrero Bote, V. P., De Moya Anegon, F., and Herrero Solana, V. (2002). Document organization using kohonen's algorithm. Information Processing and Management, 38(1):79-89.
  580. Guillaume, D. and Murtagh, F. (1999). An application of XML and XLink using a graph-partitioning method and a density map for information retrieval and knowledge discovery. In Astronomical Society of the Pacific Conference Series, volume 172, pages 278-82.
  581. Guimaraes, G. (2000). Temporal knowledge discovery for multivariate time series with enhanced self- organizing maps. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Net- works. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 6, pages 165-70.
  582. Guimarães, G. and Moura-Pires, F. (2001). An essay in classifying self-organising maps for temporal sequence processing. In Allison, N., Yin, H., Allison, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 259-67. Springer.
  583. Gunter, S. and Bunke, H. (2002). Self-organizing map for clustering in the graph domain. Pattern Recognition Letters, 23(4):405-417.
  584. Guo, Y. and Forster, B. (1994). Unsupervised classification of high spectral resolution images using the Kohonen self-organization neural network. Journal of Infrared and Millimeter Waves, 13(6):409-417.
  585. Gursoy, A. and Atun, M. (2000). Neighbourhood preserving load balancing: a self-organizing approach. In Euro-Par 2000 Parallel Processing. 6th International Euro-Par Conference. Proceedings (Lecture Notes in Computer Science Vol.1900). Springer-Verlag, Berlin, Germany, pages 234-41.
  586. H. Tokutaka, K. Fujimura, K. Y. (1999). Application of self-organizing maps (SOM) to the round-robin CoNi alloy spectra data: By that, is it possible to see the characteristics of the measurement instruments? Journal of the Surface Science Society of Japan, 20(3):52-59. (in Japanese).
  587. Ha, S. W., Kang, D. S., Kwan, K. H., and Kim, D. (1999). N-rule genetic self-organizing map using genetic algorithm. In FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings., volume 3, pages 1781-4, Piscataway, NJ. IEEE Service Center.
  588. Hadjitodorov, S. and Nikolova, N. (2000). Generalized net model of the self-organizing map of kohonen classical training procedure. Advances in Modeling and Analysis B, 43(1-2):51-60.
  589. Hadley, R. F. and Cardei, V. C. (1997). Acquisition of the active-passive distinction from sparse input and no error feedback. Technical report no. CSS-IS TR97-01.
  590. Haese, K. (1998a). Automatic learning parameters for self-organizing feature maps. In 1998 IEEE Interna- tional Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelli- gence, volume 2, pages 1007-12. IEEE, New York, NY, USA.
  591. Haese, K. (1998b). Self-organizing feature maps with self-adjusting learning parameters. IEEE Transactions on Neural Networks, 9(6):1270-8.
  592. Haese, K. (1999). Kalman filter implementation of self-organizing feature maps. Neural Computation, 11:1211-33.
  593. Haese, K. and Goodhill, G. J. (2001). Auto-SOM: Recursive parameter estimation for guidance of self- organizing feature maps. Neural Computation, 13(3):595-619.
  594. Haese, K. and Vom Stein, H. D. (1996). Neural recognition of flat objects from perspective images based on the contour. In Solving Engineering Problems with Neural Networks. Proceedings of the International Conference on Engineering Applications of Neural Networks (EANN'96), volume 1, pages 367-70. Systems Engineering Association, Turku, Finland.
  595. Haessly, A., Sirosh, J., and Miikkulainen, R. (1995). A model of visually guided plasticity of the auditory spatial map in the barn owl. In Proceedings of the Seventeenth Annual Meeting of the Cognitive Science Society (COGSCI-95), pages 154-158, Hillsdale, NJ. Erlbaum.
  596. Hagenbuchner, M., Tsoi, A. C., and Sperduti, A. (2001). A suprevised self-organising map for structured data. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 21-28.
  597. Haikonen, P. O. A. (1998). Machine cognition via associative neural networks. In Engineering Benefits from Neural Networks. Proceedings of the International Conference EANN '98, pages 350-7. Systems Engineering Association, Turku, Finland.
  598. Hakkinen, P. M. H. (2000). Neural network used to analyze multiple perspectives concerning computer-based learning environments. Quality & Quantity, 34(3):237-258.
  599. Hämälainen, T. D. (2002). Self-Organizing Neural Networks-Recent Advances and Applications, volume 78 of Studies in Fuzziness and Soft Computing, chapter Parallel Implementations of Self-Organizing Maps, pages 245-78. Physica-Verlag Heidelberg.
  600. Hamdi, M. S. and Kaiser, K. (1998a). Learning intelligent behavior. In Advanced Topics in Artificial Intel- ligence. 11th Australian Joint Conference on Artificial Intelligence, AI'98, pages 143-54, Berlin, Germany. Springer-Verlag.
  601. Hamdi, M. S. and Kaiser, K. (1998b). Learning to coordinate behaviors. In ECAI 98. 13th European Confer- ence on Artificial Intelligence. Proceedings, pages 440-4, Chichester, UK. Wiley.
  602. Hamey, L. G. C., Yeh, J. C. H., Westcott, T., and Sung, S. K. Y. (1998). Pre-processing colour images with a self-organising map: baking curve identification and bake image segmentation. In Jain, A. K., Venkatesh, S., and Lovell, B. C., editors, Proceedings. Fourteenth International Conference on Pattern Recognition, vol- ume 2, pages 1771-5. IEEE Computer Society, Los Alamitos, CA, USA.
  603. Hammami, O. (1998). Performance impacts of superscalar microarchitecture on SOM execution. In Proceed- ings 31st Annual Simulation Symposium, pages 202-9. IEEE Computer Society, Los Alamitos, CA, USA.
  604. Hammer, B. and Villmann, T. (2001). Estimationg relevant input dimensions for self-organising algorithms. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 173-80.
  605. Hammond, P., Hutton, T. J., Nelson Moon, Z. L., Hunt, N. P., and AJA, M. (2001). Classifying vertical facial deformity using supervised and unsupervised learning. Methods of Information in Medicine, 40:365-72.
  606. Handmann, U. and Kalinke, T. (1997). Fusion of texture and contour based methods for object recognition. IEEE Intelligent Transport Systems Conference ITSC. Proceedings, pages 876-881.
  607. Hani, M. K., Nor, S. M., Hussein, S., and Elfadil, N. (2001). Machine learning: the automation of knowledge acquisition using kohonen self-organising map neural network. Malaysian Journal of Computer Science, 14:68-82.
  608. Hannah, P., Stonier, R., and Cole, C. (1999). Approximating rail locomotive dynamics using the SOCM network. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 3, pages 1934-8, Piscataway, NJ. IEEE Service Center.
  609. Hara, S., Douzono, H., Eishima, S., Tokushima, H., and Noguchi, Y. (1998). Clustering of chromosome flu- orescence profiles by self-organising map using chromosome physical models. In Proceedings of the IEEE International Joint Symposia on Intelligence and Systems, pages 99-102. IEEE Computer Society, Los Alami- tos, CA, USA.
  610. Hara, Y., Atkins, R. G., Shin, R. T., Kong, J. A., Yueh, S. H., and Kwok, R. (1995). Application of neural networks for sea ice classification in polarimetric SAR images. IEEE Transactions on Geoscience and Remote Sensing, 33(3):740-748.
  611. Hara, Y., Ono, M., and Fujimura, S. (1993). Analysis of jERS-1 SAR imagery. DIG International Geoscience and Remote Sensing Symposium (IGARSS), 3:1191-1193.
  612. Haritopoulos, M., Yin, H., and Allinson, N. M. (2001). Nonlinear blind source separation using SOMs and applications to image denoising. In Allison, N., Yin, H., Allison, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 275-82. Springer.
  613. Hasenauer, H., Merkl, D., and Weingartner, M. (2001). Estimating tree mortality of norway spruce stands with neural networks. Advances in Environmental Research, 5(4):405-414.
  614. Hasenjäger, M., Ritter, H., and Obermayer, K. (1999). Active learning in self-organizing maps. In Proceedings of WSOM '99.
  615. Hashemi, R. R., Danley, J. M., Tyler, A. A., Slikker, W., and Paule, M. (1998). Quality of information granulation: Kohonen self-organizing map vs. neighborhood system. In Wang, P. P., editor, Proc. JCIS'98, volume II, pages 294-297. Association for Intelligent Machinery, Inc.
  616. Hashemi, R. R., Slikker, W. J., Tyler, A. A., and Paule, M. G. (1999). Profiling through Kohonen self-organizing map: The effect of birth weight on the performance measures of an operant test battery. Intel- ligent Engineering Systems Through Artificial Neural Networks, 9:941-946.
  617. Hatano, K., Kamei, T., and Tanaka, K. (1998). Authoring and retrieval of video scenes by multi-level self-organizing maps. Transactions of the Information Processing Society of Japan, 39(4):933-42.
  618. Hatano, K., Qian, Q., and Tanaka, K. (1997). A SOM-based information organizer for text and video data. In Topor, R. and Tanaka, K., editors, Database Systems for Advanced Applications '97. Proceedings of the Fifth International Conference, pages 205-14. World Scientific, Singapore.
  619. Hattori, M., Arisumi, H., and Ito, H. (2001). Sequential learning for SOM associative memory with map reconstruction. In Artificial Neural Networks-ICANN 2001, Proceedings, pages 477-484.
  620. Hauck, R. V., Sewell, R. R., Ng, T. D., and Chen, H. (2001). Concept-based searching and browsing: A geoscience experiment. Journal of Information Science, 27(4):199-210.
  621. Hauta-Kasari, M., Parkkinen, J., Jääskelainen, T., and Lenz, R. (1999). Multi-spectral texture segmentation based on the spectral co-occurrence matrix. Pattern Analysis and Applications, 2:275-84.
  622. Hayakawa, Y., Kira, Y., Ogata, T., and Sugano, S. (1999). Extraction of human intention for human co- operating systems-prototype assembling work support robot system according to human intention. In Pro- ceedings of the Ninth International Conference on Advanced Robotics. 99 ICAR. Japan Robot Assoc, Tokyo, Japan, pages 199-204.
  623. He, C., Xu, L.-X., Dong, N., and Zhang, Y.-H. (2001). New structural self-organizing fuzzy CMAC with basis functions. Journal of Beijing Institute of Technology (English Edition), 10(3):298-305.
  624. He, Y. and Hui, S. C. (2000). Mining citation database for the retrieval of scientific publications over the WWW. In 16th World Computer Congress 2000. Proceedings of Conference on Intelligent Information Pro- cessing. Publishing House of Electron. Ind, Beijing, China, pages 64-72.
  625. He, Y., Hui, S. C., and Fong, A. C. M. (2002). Mining a web citation database for document clustering. Applied artificial intelligence, 16(4):283-302.
  626. Hebert, J. F., Marizeau, M., and Ghazzali, N. (1999a). An hybrid architecture for active and incremental learning: the self-organizing perceptron (SOP) network. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 3, pages 1646-51, Piscataway, NJ. IEEE Service Center.
  627. Hebert, J. F., Parizeau, M., and Ghazzali, N. (1999b). Cursive character detection using incremental learning. In Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR '99, pages 808-11, Los Alamitos, CA, USA. IEEE Computer Society.
  628. Heikkilä, J. and Silven, O. (1999). A real-time system for monitoring of cyclists and pedestrians. In Proceed- ings Second IEEE Workshop on Visual Surveillance (VS'99), pages 74-81, Los Alamitos, CA, USA. IEEE Computer Society.
  629. Heikkonen, J., Varfis, A., Wilkinson, G., Kanellopoulos, I., Fullerton, K., and Steel, A. (1997). Satellite image-based land cover/land use classification of urban areas. In Neural Networks in Engineering Systems. Proceedings of the 1997 International Conference on Engineering Applications of Neural Networks, volume 1, pages 9-16. Systems Engineering Association, Turku, Finland.
  630. Heikkonen, J., Varjo, J., and Varfis, A. (1996). Applying self-organizing map to select Landsat TM difference features for forest change analysis. In Solving Engineering Problems with Neural Networks. Proceedings of the International Conference on Engineering Applications of Neural Networks (EANN'96), volume 1, pages 329-32. Systems Engineering Association, Turku, Finland.
  631. Heimel, J. A. F. and Sompolinksy, H. (2001). Stable orientation tuning in the visual cortex. Neurocomputing, 38:1261-1266.
  632. Heine, S., Land, T., and Neumann, I. (1996). NEUPRO. Neuronale Systeme zur Analyse und Bedienerhilfe von komplexen technischen Echtzeitprozessen. Teilprojekt: Prognose elektrischer Belastungen. Abschlussbericht. (NEUPRO. Neural networks for analysis and operation of complex technological real time processes. Subpro- ject: electrical load forecast. Final report).
  633. Heinz, G. K. (2000). Space-time relations in wave interference systems with attention to nerve networks. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Gesellschaft zur Förderung angewandter Informatik e.V., ICSC Academic Press.
  634. Hemani, A. and Postula, A. (1999). Self-organising maps in computer aided design of electronic circuits. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 231-242. Elsevier, Amsterdam.
  635. Henseler, J. and Braspenning, P. J. (1992). Membrain: A cellular neural network model based on a vibrating membrane. International Journal of Circuit Theory and Applications, 20(5):483-496.
  636. Herrmann, M. and Villmann, T. (1997). Vector quantization by optimal neural gas. In Gerstener, W., Ger- mond, A., Hasler, M., and Nicoud, J.-D., editors, Artificial Neural Networks -Proceedings of International Conference on Artificial Neural Networks (ICANN'97) Lausanne, pages 625-630. Lecture Notes in Computer Science 1327, Springer Verlag Berlin Heidelberg.
  637. Heskes, T. (1999). Energy functions for self-organizing maps. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 303-316. Elsevier, Amsterdam.
  638. Heskes, T. (2001). Self-organizing maps, vector quantization, and mixture modeling. IEEE Transactions on Neural Networks, 12(6):1299-1305.
  639. Heskes, T., Spanjers, J.-J., and Wiegerinck, W. (2000). EM algorithms for self-organizing maps. In Proceed- ings of the International Joint Conference on Neural Networks, volume 6, pages 9-14, Piscataway, NJ. SNN Univ of Nijmegen, IEEE.
  640. Heuser, U., Goppert, J., Rosenstiel, W., and Stevens, A. (1997). Classification of human brain waves using self-organizing maps. In Lavrac, N., Keravnou, E. T., and Zupan, B., editors, Intelligent Data Analysis in Medicine and Pharmacology, pages 279-94. Kluwer Academic Publishers, Dordrecht, Netherlands.
  641. Higuchi, I. and Eguchi, S. (1998). The influence function of principal component analysis by self organizing rule. Neural Computation, 10:1434-1444.
  642. Himberg, J. (1998). Enhancing the SOM-based data visualization by linking different data projections. In Pro- ceedings of 1st International Symposium IDEAL'98, Intelligent Data Engineering and Learning-Perspectives on Financial Engineering and Data Mining, pages 427-434. Springer, Hong Kong.
  643. Himberg, J. (2000). SOM based cluster visualization and its application for false coloring. In Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 587-592, Piscataway, NJ. Helsinki Univ of Technology, IEEE.
  644. Hines, E. L., Llobet, E., and Gardner, J. W. (1999). Neural network based electronic nose for apple ripeness determination. Electronics Letters, 35:821-3.
  645. Hoang, D. and Williamson, G. (1998). A mixture of global and local gated experts for the prediction of high frequency foreign exchange rates. In PRICAI'98: Topics in artificial intelligenece, pages 329-340.
  646. Hoehn, F., Lindner, E., Mayer, H. A., Hermle, T., and Rosenstiel, W. (2002). Neural networks evaluating NMR data: An approach to visualize similarities and relationships of sol-gel derived inorganic-organic and organometallic hybrid polymers. Journal of Chemical Information and Computer Sciences, 42(1):36-45.
  647. Hoffman, A. J., Van Der Merwe, N. T., Stander, C., and P., H. S. (2001). A comparative evaluation of neural classification techniques for identifying multiple fault conditions. In Proceedings of the International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. IDAACS'2001. IEEE, Piscataway, NJ, USA, pages 16-20.
  648. Höglund, A. J. and Hätönen, K. (1998). Computer network user behaviour visualization using self organizing maps. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of ICANN98, the 8th International Conference on Artificial Neural Networks, volume 2, pages 899-904. Springer, London.
  649. Hoglund, A. J., Hatonen, K., and Sorvari, A. S. (2000). Computer host-based user anomaly detection system using the self-organizing map. In Proceedings of the International Joint Conference on Neural Networks, volume 5, pages 411-416, Piscataway, NJ. Nokia Research Cent, IEEE.
  650. Hollmén, J., Tresp, V., and Simula, O. (1999). Self-organizing map for clustering probabilistic models. In ICANN99. Ninth International Conference on Artificial Neural Networks (IEE Conf. Publ. No.470), volume 2, pages 946-951, London, UK. IEE.
  651. Hollmen, J., Tresp, V., and Simula, O. (2000). A learning vector quantization algorithm for probabilistic models. In Signal Processing X Theories and Applications. Proceedings of EUSIPCO 2000. Tenth European Signal Processing Conference. Tampere Univ. Technology, Tampere, Finland, volume 2, pages 721-4.
  652. Holubar, P., Zani, L., Hager, M., Froschl, W., Radak, Z., and Braun, R. (2000). Modelling of anaerobic diges- tion using self-organizing maps and artificial neural networks. Water Science and Technology, 41(12):149-156.
  653. Hong, E. and Jung, M. (2000). Criticality prediction with unsupervised neural networks. In Proceedings of the International Conference on Artificial Intelligence. IC-AI'2000. CSREA Press, Athens, GA, USA, volume 2, pages 899-903.
  654. Hong, L. and Yulong, M. (2000). Modified sampling frequency-sensitive network based on evolutionary pro- gramming for pattern clustering. In Proceedings of SPIE-The International Society for Optical Engineering, volume 4120, pages 229-237, Bellingham, WA. Shanghai Univ, Society of Photo-Optical Instrumentation Engineers.
  655. Hong, L. C. and Lin, L. S. (2001). Auto-map reading based on kohonen neural network. Mini Micro Systems, 22:1464-6.
  656. Honkela, T. (1998). Learning to understand-general aspects of using self-organizing maps in natural language processing. In AIP Conference Proceedings, number 437, pages 563-76.
  657. Honkela, T. (1999). Connectionist analysis and creation of context for natural language understanding and knowledge management. In Modeling and Using Context. Second International and Interdisciplinary Con- ference, CONTEXT'99. Proceedings (Lecture Notes in Artificial Intelligence Vol.1688), pages 479-82, Berlin, Germany. Springer-Verlag.
  658. Honkela, T. (2000). Adaptive and holistic knowledge representations using self-organizing maps. In 16th World Computer Congress 2000. Proceedings of Conference on Intelligent Information Processing. Publishing House of Electron. Ind, Beijing, China, pages 81-6.
  659. Honkela, T., Kaski, S., Lagus, K., and Kohonen, T. (1996). Newsgroup Exploration with WEBSOM Method and Browsing Interface. Research rept.
  660. Honkela, T., Lagus, K., and Kaski, S. (1998). Self-organizing maps of large document collections. In Deboeck, G. and Kohonen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 168-178. Springer, London.
  661. Horio, K., Haraguchi, T., and Yamakawa, T. (1999a). Image enhancement employing subjectivity based self- organizing relationship (SOR) network. Biomedical Fuffy Systems, 1(1):79-86. in Japanese.
  662. Horio, K., Haraguchi, T., and Yamakawa, T. (1999b). An intuitive contrast enchantmet of an image data employing the self-organizing relationship (SOR). In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., Piscataway, NJ. IEEE Service Center.
  663. Horio, K., Haragushi, T., and Yamakawa, T. (1999c). Intensity transformation employing self-organizing relationship network. In Proceedings of the 1st SOFT Kyushu Branch Annual Conference, pages 81-86. in Japanese.
  664. Horio, K., Masui, I., Yamakawa, T., and Honda, T. (1999d). Self-organising map considering correlation between elements in the input vector and its application to the clasiification of facial profile. In Proseedings of the 12th Annual Meeting of Biomedical Fuzzy Systems Association, pages 91-94.
  665. Horio, K. and Yamakawa, T. (1999a). A recurrent self-organizing map and its applications to a spatio-temporal pattern regognition. In Misra, J. C. and Sihna, S. B., editors, Mathematical Modeling of Nonlinear Systems, volume 2, pages 11-14.
  666. Horio, K. and Yamakawa, T. (1999b). A recurrent self-organizing map including feedback loops for classifi- cation of spatio-temporal patterns. In Kasabov, N. and Ko, K., editors, Emerging Knowledge Engineering and Connectionist-Based Information Systems. Proceedings of the ICONIP/ANZIIS/ANNES'99, pages 13-16.
  667. Horio, K. and Yamakawa, T. (1999c). Self-oraganizing realtionship (SOR) network-equivalent to a fuzzy inference with automatically extracted fuzzy if-then rules. In 1999 International Symposium on Nonlinear Theory and its Applications (NOLTA'99) (Hawaii, USA, Nov. 28-Dec. 2, 1999), pages 53-6.
  668. Horio, K. and Yamakawa, T. (2000). Adaptive self-organizing relationship network and its application to adaptive control. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 299-304.
  669. Horio, K. and Yamakawa, T. (2001). Feedback self-organizing map and its application to spatio-temporal pattern classification. International Journal of Computational Intelligence and Applications, 1:1-18.
  670. Hortos, W. S. (1998a). Self-organizing feature maps for dynamic control of radio resources in CDMA micro- cellular networks. Proceedings of the SPIE-The International Society for Optical Engineering, 3390:378-91.
  671. Hortos, W. S. (1998b). Self-organizing feature maps for dynamic control of radio resources in CDMA PCS networks. In Proceedings of Virginia Tech's Eighth Symposium on Wireless Personal Communications, pages 129-42. Virginia Tech, Blacksburg, VA, USA.
  672. Hortos, W. S. (1999a). Adaptive radio resource control via cascaded neural networks for sequenced prop- agation estimation and multi-user detection in third-generation wireless networks. In Virginia Tech's Ninth Symposium on Wireless Personal Communications. Proceedings. Virginia Tech, Blacksburg, VA, USA, pages 113-33.
  673. Hortos, W. S. (1999b). Cascaded neural networks for sequenced propagation estimation, multiuser detec- tion, and adaptive radio resource control of third-generation wireless networks for multimedia services. In Proceedings of the SPIE-The International Society for Optical Engineering, volume 3722, pages 261-75.
  674. Hortos, W. S. (2001). Hybrid evolutionary computing model for mobile agents of wireless internet multimedia. In Priddy, K. L., Keller, P. E., and Angeline, P. J., editors, Proceedings of SPIE-The International Society for Optical Engineering, volume 4390, pages 62-76. Florida Institute of Technology, Orlando Graduate Center.
  675. Hosaka, K., Goya, T., Umehara, D., and Kawai, M. (2002). An efficient method for network topology iden- tification based on SOM algorithm. Transactions of the Institute of Electrical Engineers of Japan, Part C, 122:208-16.
  676. Hosokawa, M. and Hoshi, T. (2001). Landform classification method using self-organizing map and its ap- plication to earthquake damage evaluation. In International Geoscience and Remote Sensing Symposium (IGARSS), volume 4, pages 1684-1686. Earthquake Disaster Section, Natl. Res. Inst. of Fire/Disaster, Insti- tute of Electrical and Electronics Engineers Inc.
  677. Hosokawa, M., Ito, Y., and Hoshi, T. (1999). Remote sensing data classification method using self-organizing map. In IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99., volume 3, pages 1606-1608, Piscataway, NJ. IEEE Service Center.
  678. Hosokawa, M., Ito, Y., and Hoshi, T. (2001). Extraction of urban characteristics using polarimetric SAR data and self-organizing map. Transactions of the Institute of Electronics, Information and Communication Engineers B, pages 1043-51.
  679. Howard, D., Roberts, S. C., and Brankin, R. (1998). Evolution of ship detectors for satellite SAR imagery. In Genetic Programming. Second European Workshop, EuroGP'99. Proceedings, pages 135-48, Berlin, Ger- many. Springer-Verlag.
  680. Hsieh, C.-T., Chin, C.-C., and Shen, K.-M. (1998). Generalized fuzzy Kohonen clustering networks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E81-A(10):2144-50.
  681. Hsieh, C. T., Su, M. C., Chen, U. J., and Lee, H. J. (2000). A new generalized learning vector quantization algorithm. In IEEE APCCAS 2000. 2000 IEEE Asia-Pacific Conference on Circuits and Systems. Electronic Communication Systems. IEEE, Piscataway, NJ, USA, pages 339-44.
  682. Hsu, A. L. and Halgarmuge, S. K. (2001). Enhanced topology preservation of dynamic self-organising maps for data visualisation. In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Confer- ence. IEEE, Piscataway, NJ, USA, volume 3, pages 1786-91.
  683. Hsu, A. L. C., Alahakoon, D., Halgamunge, S., and Srinivasan, B. (2000). Visualizing cluster with dynamic SOM tree. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 257-263.
  684. Hu, H. and Gu, D. (2000). Landmark-based navigation of industrial mobile robots. Industrial Robot, 27:458- 67.
  685. Hu, J. Q. and Rose, E. (1997). Fuzzy model using a modified LVQ network for sinter strand process. In Gertler, J. J., Cruz, J. J. B., Peshkin, M., Kummel, M., McAvoy, T., and Niemi, A., editors, Proceedings of the 13th World Congress, International Federation of Automatic Control. Vol.M. Chemical Process Control, Mineral, Mining, Metals, pages 397-402. Pergamon, Oxford, UK.
  686. Hu, Z. and Zhang, M. (1998). Self-organizing neural network-based discrete optical flow model for face recognition. In International Conference on Computational Intelligence and Multimedia Applications 1998. ICCIMA 1998. World Scientific, Singapore, pages 372-7.
  687. Huaichun, W., Dopazo, J., and Carazo, J. M. (1998a). Self-organizing tree growing network for classifying amino acids. Bioinformatics, 14(4):376-377.
  688. Huaichun, W., Dopazo, J., de la Fraga, L. G., Zhu, Y. P., and Carazo, J. M. (1998b). Self-organizing tree- growing network for the classification of protein sequences. Protein Science, 7(12):2613-2622.
  689. Huang, H. Y., Chen, Y. S., and Hsu, W. H. (2001a). Primary-view perception on a gray image: Region segmentation and association. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 24(2):221-235.
  690. Huang, H. Y., Chen, Y. S., and Hsu, W. H. (2001b). Primary-view perception on a gray image: region segmentation and association. Journal of the Chinese Institute of Engineers, 24:221-35.
  691. Huang, H. Y., Chen, Y. S., and Hsu, W. H. (2002a). Color image segmentation using a self-organizing map algorithm. Journal of Electronic Imaging, 11(2):136-148.
  692. Huang, H. Y., Chen, Y. S., and Hsu, W. H. (2002b). Color image segmentation using a self-organizing map algorithm. Journal of Electronic Imaging, 11:136-48.
  693. Huang, J. S., Negnevitsky, M., and Nguyen, D. T. (2002c). A neural-fuzzy classifier for recognition of power quality disturbances. IEE Transactions on Power Delivery, 17(2):609-616.
  694. Huang, J. S., Negnevitsky, M., and Nguyen, N. T. (2001c). An information system for monitoring of power quality disturbances. In Managing Information Technology in a Global Environment. 2001 Information Re- sources Management Association International Conference. Idea Group Publishing, Hershey, PA, USA, pages 1019-23.
  695. Huang, Y., Suganthan, P. N., Krishnan, S. M., and Cao, X. (2001d). Evaluation of distance measures for partial image retrieval using self-organizing map. In Artificial Neural Networks-ICANN 2001. International Conference. Proceedings (Lecture Notes in Computer Science Vol.2130). Springer-Verlag, Berlin, Germany, pages 1042-7.
  696. Huhse, J. and Zell, A. (2000). Evolution strategy with neighborhood attraction. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Ger- many. Lehrstuhl Rechnerarchitektur, Wilhelm-Schickard-Institut für Informatik, Ebehard-Karls-Universität Tübingen, ICSC Academic Press.
  697. Huhse, J. and Zell, A. (2001). Investigating the influence of the neighborhood attraction factor to evolu- tion strategies with neighborhood attraction. In 9th European Symposium on Artificial Neural Networks. ESANN'2001. Proceedings. D-Facto, Evere, Belgium, pages 179-84.
  698. Hujun, Y. and Allinson, N. M. (1999). Averaging ensembles of self-organising mixture networks for density estimation. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 2, pages 1456-60, Piscataway, NJ. IEEE Service Center.
  699. Hung, J. and Wang, J.-H. (2000). Topology preserving using harmonic competitive neural networks. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 4, pages 2597- 2600, Piscataway, NJ. IEEE.
  700. Husheng, Y., Lewis, I. R., and Griffiths, P. R. (1999). Raman spectrometry and neural networks for the classification of wood types. 2. Kohonen self-organizing maps. Spectrochimica Acta, Part A (Molecular and Biomolecular Spectroscopy), 55:2783-91.
  701. Hwang, W. J., Lin, F. J., Liao, S. C., and Huang, J. H. (2001). A novel fuzzy entropy-constrained competitive learning algorithm for image coding. Neurocomputing, 37:197-208.
  702. Hwang, W.-J., Ye, B.-Y., and Lin, C.-T. (2000). Novel competitive learning algorithm for the parametric classification with gaussian distributions. Pattern Recognition Letters, 21(5):375-380.
  703. Hyötyniemi, H. (1996). Constructing non-orthogonal feature bases. IEEE International Conference on Neural Networks, 3:1759-1764.
  704. Hyotyniemi, H. and Ylinen, R. (2000). Modeling of visual flotation froth data. Control Engineering Practice, 8(3):313-318.
  705. Hyvärinen, A. and Hoyer, P. (2000). Emergence of phase-and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural Computation, 12(7):1705-1720.
  706. Hyvonen, M. T., Hiltunen, Y., El-Deredy, W., Ojala, T., Vaara, J., Kovanen, P. T., and Ala-Korpela, M. (2001). Application of self-organizing maps in conformational analysis of lipids. Journal of THE American Chemical Society, 123(5):810-816.
  707. Ibbou, S. (1998). Treatment of qualitative variables by Kohonen algorithm. Simultaneous classification of modalities and individuals. Technical report, SAMOS, University of Paris.
  708. Ibnkahla, M. (2000). Applications of neural networks to digital communications -a survey. Signal Process- ing, 80(7):1185-1215.
  709. Iftekharuddin, K. M. and Dani, A. (2000). An efficient target recognition system for rotated synthetic aperture radar images. In Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Program- ming, Data Mining, and Complex Systems. Vol.10. Proceedings of the Artificial Neural Networks in Engineer- ing Conference (ANNIE 2000). ASME, New York, NY, USA, pages 689-96.
  710. Iftekharuddin, K. M. and Razzaque, M. A. (2000). Constraints in distortion-invariant target recognition system simulation. In Proceedings of SPIE-The International Society for Optical Engineering, volume 4114, pages 20-31, Bellingham, WA. North Dakota State Univ, Society of Photo-Optical Instrumentation Engineers.
  711. Iglesias, R. and Barro, S. (1999). SOAN: self-organizing with adaptive neighborhood neural network. In Foundations and Tools for Neural Modeling. International Work-Conference on Artificial and Natural Neural Networks, IWANN'99. Proceedings, (Lecture Notes in Computer Science Vol.1606), volume 1, pages 591-600, Berlin, Germany. Springer-Verlag.
  712. Iivarinen, J. (1998). Texture Segmentation and Shape Classification with Histogram Techniques and Self- Organizing Maps. PhD thesis, Helsinki University of Technology, Espoo.
  713. Iivarinen, J. (2000). Surface defect detection with histogram-based texture features. In Proceedings of SPIE- The International Society for Optical Engineering, volume 4197, pages 140-145, Bellingham, WA. Helsinki Univ of Technology, Society of Photo-Optical Instrumentation Engineers.
  714. Iivarinen, J., Heikkinen, K., Rauhamaa, J., Vuorimaa, P., and Visa, A. (2000). Defect detection scheme for web surface inspection. International Journal of Pattern Recognition and Artificial Intelligence, 14(6):735-755.
  715. Iivarinen, J. and Rauhamaa, J. (1998). Surface inspection of web materials using the self-organizing map. In Casasent, D. P., editor, Intelligent Robots and Computer Vision XVII: Algorithms, Techniques, and Active Vision, Proc. SPIE 3522, pages 96-103.
  716. Iivarinen, J. and Visa, A. (1998). Unsupervised image segmentation with the self-organizing map and statistical methods. In Casasent, D. P., editor, Intelligent Robots and Computer Vision XVII: Algorithms, Techniques, and Active Vision, Proc. SPIE 3522, pages 516-526.
  717. Ikeda, N. and Hagiwara, M. (1996). A proposal of novel knowledge representation (area representation) and the implementation by neural network. Technical Report 598, IEICE.
  718. Ikeda, N. and Hagiwara, M. (1997). A proposal of novel knowledge representation (area representation) and the implementation by neural network. In International Conference on Computational Intelligence and Neuroscience, volume III, pages 430-433.
  719. Ikeda, N. and Hagiwara, M. (1999). A novel knowledge representation (area representation) and its imple- mentation by neural network. Systems and Computers in Japan, 30:34-42.
  720. Ilvesmaeki, M. and Luoma, M. (1999). Performance analysis of multi-class internet traffic classifier in a connection-oriented router environment. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.3842, volume 3842, pages 70-81.
  721. Ilvesmäki, M., Kantola, R., and Luoma, M. (1998a). Adaptive flow classification in IP switching-the mea- surement based approach. In Proceedings of the SPIE-The International Society for Optical Engineering, volume 3529, pages 277-88.
  722. Ilvesmäki, M., Luoma, M., and Kantola, R. (1998b). Learning vector quantization in flow classification of IP switched networks. IEEE GLOBECOM 1998., 5:3017-22.
  723. Indrayanto, A. and Allinson, N. M. (2001). An investigation into catastrophic interference on a SOM network. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 216-23.
  724. Inggs, M. R. and Robinson, A. D. (1999). Ship target recognition using low resolution radar and neural networks. IEEE Transactions on Aerospace and Electronic Systems, 35:386-93.
  725. Ishikawa, H., Kato, K., Ono, M., Yoshizawa, N., Kubota, K., and Kanaya, A. (1998). Extended object-oriented database approach to networked multimedia applications. Proceedings of International Conference on Data Engineering, pages 259-266.
  726. Ishikawa, H., Kubota, K., Noguchi, Y., Kato, K., Ono, M., Yoshizawa, N., and Kanemasa, Y. (1999). Docu- ment warehousing based on a multimedia database system. Proceedings of International Conference on Data Engineering, pages 168-173.
  727. Ishikawa, H., Ohta, M., and Kato, K. (2000). A multimedia database support for document warehousing. In Proceedings of the IASTED International Conference. Internet and Multimedia Systems and Applications. IASTED, Anaheim, CA, USA, pages 418-23.
  728. Ishikawa, H., Ohta, M., and Kato, K. (2001). Document warehousing: A document-intensive application of a multimedia database. In Aberer, K. and Liu, L., editors, Proceedings of the International Workshop on Research Issues in Data Engineering-Distributed Object Management -RIDE-DOM, pages 25-31. Tokyo Metropolitan University.
  729. Ishikawa, M. (2000). Recognition of hand-gestures based on self-organization using a dataglove. Australian Journal of Intelligent Information Processing Systems, 6(2):65-71.
  730. Iske, B., Ruckert, U., Malmstrom, K., and Sitte, J. (2000). A bootstrapping method for autonomous and in site learning of generic navigation behaviour. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 4, pages 656-9.
  731. Ito, M., Miyoshi, T., and Masuyama, H. (2000). The characteristics of the torus self-organizing map. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 239-44.
  732. Ito, Y. and Omatu, S. (1999). Extended LVQ neural network approach to land cover mapping. IEEE Transac- tions on Geoscience and Remote Sensing, 37:313-317.
  733. Iwamoto, K., Obu-Cann, K., Tokutaka, H., and Fujimura, K. (1999). Clustering by SOM (self-organizing maps) and MST (minimal spanning tree). Technical report, IEICE. (in Japanese).
  734. Iwamoto, K., Tokutaka, H., Yoshihara, K., Fujimura, K., Watanabe, T., and Kishida, S. (1998a). Application of SOM to quantitative chemical data analysis. In Proceedings of the Fifth International Conference on Neural Information Processing, pages 1122-1125, Kitakyushu, Japan.
  735. Iwamoto, K., Tokutaka, H., Yoshihara, K., Fujimura, K., Watanabe, T., and Kishida, S. (1998b). Application of SOM to quantitative chemical data analysis. In Proceedings of the Fifth International Conference on Neural Information Processing, pages 1122-1125, Kitakyushu, Japan.
  736. Jacquet, W., Corne, C., Gresser, J., and Kihl, H. (2000). Parallelized growing-pruning hyperplan-based self- organising maps for function approximation. In Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems. Vol.10. Proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE 2000). ASME, New York, NY, USA, pages 69-75.
  737. Jacquet, W., Corne, C., Kihl, H., and Gresser, J. (2001). Parallelized growing-pruning hyperplane-based self- organizing maps for function approximation. International Journal of Smart Engineering System Design, 3(4):257-264.
  738. Jalkanen, J. P. (1999). Monitoring a gas turbine with a self organising map. In Engineering Applications of Neural Networks. Proceedings of the 5th International Conference on Engineering Applications of Neural Networks (EANN'99), pages 153-8, Torun, Poland. Wydawnictwo Adam Marszalek.
  739. James, C., Fraser, D., and Lowe, D. (2000a). Clustering epileptiform discharges with an adaptive subspace self-organizing feature map: A simulation study. IEE Conference Publication, (476):238-243.
  740. James, C., Kobayashi, K., and Gotman, J. (2000b). Seizure detection with self-organising feature map. In Malmgren, H., Boga, M., and Niklasson, L., editors, Artificial Neural Networks in Medicine and Biology, Prodeedings of the ANNIMAB-1 Conference, Göteborg, Sweden, 13-16 May 2000, pages 143-148.
  741. James, C. J., Jones, R. D., Bones, P. J., and Carroll, G. J. (1997). The self-organising feature map in the detection of epileptiform transients in the EEG. In Boom, H., Robinson, C., Rutten, W., Neuman, M., and Wijkstra, H., editors, Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Bridging Disciplines for Biomedicine', volume 3, pages 913-14. IEEE, New York, NY, USA.
  742. James, C. J., Jones, R. D., Bones, P. J., and Carroll, G. J. (1999). Detection of epileptiform discharges in the EEG by a hybrid system comprising mimetic, self-organized artificial neural network, and fuzzy logic stages. Clinical Neurophysiology, 110:2049-63.
  743. Jamsa-Jounela, S. L., Vermasvuori, M., Haavisto, S., and Kampe, J. (2001). Industrial application of the intelligent fault diagnosis system. In Proceedings of the American Control Conference, volume 6, pages 4437-4442. Helsinki University of Technology, Department of Chemical Technology.
  744. Janet, J. A., White, M. W., Kay, M. G., III, J. C. S., and Brickley, J. J. (1998). Fusing a hyper-ellipsoid cluster- ing Kohonen network with the Julier-Uhlmann-Kalman filter for autonomous mobile robot map building and tracking. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation, volume 2, pages 1405-10. IEEE, New York, NY, USA.
  745. Jang, G. S., Dowla, F., and Vemuri, V. (1993). Performance comparison of SOM neural network paradigms for solving the seismic phase identification problem. Proc. SPIE-The International Society for Optical Engi- neering, Society of photo-optical instrumentation engineers., 1721:265-276.
  746. Jang, I. and Rhee, J. (1997). Generalized machine cell formation considering material flow and plant layout using modified self-organizing feature maps. Computers & Industrial Engineering, 33(3-4):457-60.
  747. Jeney, G., Levendovszky, J., and Kovas, L. (2001). Blind adaptive stochastic neural network for multiuser detection. In IEEE Vehicular Technology Conference, volume 3, pages 1868-1872. Budapest Univ. of Technol. and Econ., Department of Telecommunications.
  748. Jeng, J. Y., Mau, T. F., and Leu, S. M. (2000). Prediction of laser butt joint welding parameters using back prop- agation and learning vector quantization networks. Journal of Materials Processing Technology, 99(1):207- 218.
  749. Jeon, Y. J. and Kim, J. C. (2000). Application of LVQ3 for dissolved gas analysis for power transformer. Transactions of the Korean Institute of Electrical Engineers, A, 49:31-6.
  750. Ji, C. Y. (2000). Land-use classification of remotely sensed data using kohonen self-organizing feature map neural networks. Photogrammetric Engineering and Remote Sensing, 66(12):1451-1460.
  751. Ji, P. S., Lee, J. P., and Lim, J. Y. (2001). Grouping method of loads to verify the aggregation of component load models. Transactions of the Korean Institute of Electrical Engineers, A, 50:172-9.
  752. Ji, P.-S., Nam, S.-C., Lim, J.-Y., Kim, J.-H., and Chang, S.-C. (1997). Load pattern classification using Koho- nen self-organizing map and fuzzy. Transactions of the Korean Institute of Electrical Engineers, 46(9):1314- 18.
  753. Jialong, H., Li, L., and Palm, G. (1999). A discriminative training algorithm for vq-based speaker identifica- tion. IEEE Transactions on Speech and Audio Processing, 7:353-6.
  754. Jin, X. H., Wang, C. C., Cheng, T. C., Li, F. Q., Dong, X., Jiang, L., and Zhu, D. (2000). Comparison of PD classification capabilities for transformer failure and typical noise models with neural network applications. In Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Annual Report, volume 1, pages 288-291, Piscataway, NJ. Univ of Southern California, IEEE.
  755. Jing, H. and Lun, C. T. (2000). A kind of neural network model displaying self-organized criticality. Commu- nications in Theoretical Physics, 33:365-70.
  756. Jing, Z., Zhao, J., Jing, D., Xia, J., Li, H., and Li, G. (2000). New method for underwater target classification. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 18(3):392-395.
  757. Jirina, M. and Snorek, M. (2000). Dynamically constructed topological lattices for the SOFM. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Department of Cybernetics and Department of Computers, Faculty of Electrical Engineering, Czech Technical University Prague, ICSC Academic Press.
  758. Jirina, M. J. (1996). Neuro-fuzzy network using extended Kohonen's map. Neural Network World, 6(4):619- 624.
  759. Jiyong, M. and Wen, G. (1998). Supervised learning gaussian mixture model. Journal of Computer Science and Technology, 13(5):471-474.
  760. Jockusch, J. and Ritter, H. (1999). An instantaneous topological mapping model for correlated stimuli. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 1, pages 529-34, Pis- cataway, NJ. IEEE Service Center.
  761. Johnson, M. D. and Rokhsaz, K. (2001). Using artificial neural networks and self-organizing maps for detec- tion of airframe icing. Journal of Aircraft, 38(2):224-230.
  762. Jose del Coz, J., Luaces, O., Quevedo, J. R., Alonso, J., Ranilla, J., and Bahamonde, A. (1999). Self-organizing cases to find paradigms. In Foundations and Tools for Neural Modeling. International Work-Conference on Ar- tificial and Natural Neural Networks, IWANN'99. Proceedings, (Lecture Notes in Computer Science Vol.1606), volume 1, pages 527-36, Berlin, Germany. Springer-Verlag.
  763. Jossa, I. (1998). A short note about the application of self-organizing neural networks to clustering. In 6th European Congress on Intelligent Techniques and Soft Computing. EUFIT '98, volume 2, pages 1195-9, Aachen, Germany. Verlag Mainz.
  764. Jossa, I., Marschner, U., and Fischer, W. J. (2001). Signal-based feature extraction and SOM based dimension reduction in a vibration monitoring microsystem. In Allison, N., Yin, H., Allison, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 283-8. Springer.
  765. Joutsiniemi, S. L., Nurminen, J., and Kohonen, T. (2001). SOM in detecting states of sleep and wakefulness in polysomnographic data. In Papadourakis, G. M., editor, Proceedings of the Fourth International Conference on Neural Networks and Expert Systems in Medicine and Healthcare, Milos Island, Greece, 20-22 september 2001, pages 97-101.
  766. Juhola, M., Laurikkala, J., Viikki, K., Kentala, E., and Pyykko, I. (2001). Classification of patients on the basis of otoneurological data by using kohonen networks. ACTA OTO-LARYNGOLOGICA, pages 50-52.
  767. Jun, H. H., Sung, H. J., Jun, H. C., and Jung, H. L. (1999). A Bayesian neural network model for dynamic web document clustering. In Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure'., volume 2, pages 1415-18, Piscataway, NJ. IEEE Service Center.
  768. Junior, V. P. and Lopes, H. S. (2000). Pattern recognition in electroencephalographic signals using LVQ neural networks. In Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems. Vol.10. Proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE 2000). ASME, New York, NY, USA, pages 727-32.
  769. Kaarna, A. and Parkkinen, J. (2001). Wavelet filter selection based on spectral features in multispectral image compression. In Serpico, S. B., editor, Proceedings of SPIE-The International Society for Optical Engineer- ing, volume 4170, pages 194-202. Lappeenranta Univ. of Technology, Department of Information Technology.
  770. Kaartinen, J., Hiltunen, Y., Kovanen, P. T., and Ala-Korpela, M. (1998). Application of self-organizing maps for the detection and classification of human blood plasma lipoprotein lipid profiles on the basis of 1H NMR spectroscopy data. NMR in Biomedicine, 11(4-5):168-76.
  771. Kaban, A., Tino, P., and Girolami, M. (2001). Local geometric properties of the latent trait projection mani- folds. Computing and Information Systems Technical Report. no.18; Nov. 2001; p.1-11, pages 1-11.
  772. Kaipainen, M. and Karhu, P. (2000). Bringing knowing-when and knowing-what together: periodically tuned categorization and category-based timing modeled with the recurrent oscillatory self-organizing map (RO- SOM). Minds and Machines, 10(2):203-229.
  773. Kaipainen, M., Papadopoulos, P., and Karhu, P. (1997). Recurrent oscillatory self-organizing map: adapting to complex environmental periodicities. In Shyamasundar, R. K. and Ueda, K., editors, Proceedings of Advances in Computing Science-ASIAN '97, Third Asian Computing Science Conference, page 367. Springer-Verlag, Berlin, Germany.
  774. Kalarickal, G. J. and Marshall, J. A. (1999). Models of receptive-field dynamics in visual cortex. Visual Neuroscience, 16(6):1055-1081.
  775. Kallioniemi, I., Niinisto, A., Saarinen, J., and Friberg, A. T. (2001). Characterization of random rough surfaces from scattered intensities by neural networks. Journal of Modern Optics, 48(9):1447-1453.
  776. Kalmar, Z., Marczell, Z., Szepesvari, C., and Lorincz, A. (1999). Parallel and robust skeletonization built on self organizing elements. Neural Networks, 12:163-173.
  777. Kalviainen, H., Kukkonen, S., Hyvärinen, T., and Parkkinen, J. (1998). Quality control in tile production. In Proceedings of the SPIE-The International Society for Optical Engineering, volume 3522, pages 355-65.
  778. Kamel, M., Belkassim, S., Mendonca, A., and Campilho, A. (2001). A neural network approach for the automatic detection of microaneurysms in retinal angiograms. In Proceedings of the International Joint Con- ference on Neural Networks, volume 4, pages 2695-2699. Dept. of Systems Design Engineering, University of Waterloo.
  779. Kamimura, R., Kamimura, T., and Shultz, T. (2001). Cooperative information maximization to realize self- organizing maps. In International Joint Conference on Neural Networks, Washington, DC, USA, July 15-19.
  780. CD-ROM.
  781. Kampfe, T., Nattkemper, T. W., and Ritter, H. (2001). Combining independent component analysis and self- organizing maps for cell image classification. In Pattern Recognition. 23rd DAGM Symposium. Proceedings (Lecture Notes in Computer Science Vol.2191). Springer-Verlag, Berlin, Germany, pages 262-8.
  782. Kanaya, S., Kinouchi, M., Abe, T., Kudo, Y., Yamada, Y., Nishi, T., Mori, H., and Ikemura, T. (2001). Analysis of codon usage diversity of bacterial genes with a self-organizing map (SOM): characterization of horizontally transferred genes with emphasis on the e. coli o157 genome. GENE, 276(1-2):89-99.
  783. Kang, B. H., Yoo, J. H., Kim, H. G., Kim, J. S., and Cho, M. S. (1998). Improved schemes for self orga- nized feature map and generalized learning vector quantization for developing neural network building tool. In Proceedings of the 5th International Conference on Soft Computing and Information/Intelligent Systems. Methodologies for the Conception, Design and Application of Soft Computing, volume 2, pages 638-9, Sin- gapore. World Scientific.
  784. Kang, B. S., Lim, K. T., and Chien, S. I. (1999). SOM-MLP multi-layered neural network with false-alarming nodes for large scale pattern recognition. Journal of Electrical Engineering and Information Science, 4:232-8.
  785. Kang, D. S., Seo, S. B., and Kim, D. (2000). Fast VQ codebook design by successively bisectioning of principle axis. Journal of KISS: Software and Applications, 27:422-31.
  786. Kang, P. and Birtwhistle, D. (1999). Self-organizing map for fault detection. Intelligent Engineering Systems Through Artificial Neural Networks, 9:685-690.
  787. Kang, P. and Birtwhistle, D. (2001a). Condition monitoring of power transformer on-load tap-changers. part 1: Automatic condition diagnostics. In IEE Proceedings: Generation, Transmission and Distribution, volume 148, pages 301-306. United Technologies Research Center.
  788. Kang, P. and Birtwhistle, D. (2001b). Condition monitoring of power transformer on-load tap-changers. part 2: Detection of ageing from vibration signatures. In IEE Proceedings: Generation, Transmission and Distri- bution, volume 148, pages 307-311. United Technologies Research Center.
  789. Kaplan, L. M., Murenzi, R., Namuduri, K. R., and Cohen, M. (1998). Improved template-based SAR ATR performance using learning vector quantization. In Proceedings of the SPIE-The International Society for Optical Engineering, volume 3462, pages 296-307.
  790. Kapusta, M., Gajer, M., and Shomali, A. (2000a). Applying the neural network technique to transforming and recognition of speech signals. Pomiary Automatyka Kontrola. no.7; July 2000; p.16-18, pages 16-18.
  791. Kapusta, M., Gajer, M., and Shomali, A. (2000b). The usage of the kohonen neural networks for the patho- logical speech recognition. Pomiary Automatyka Kontrola. no.7; July 2000; p.10-15, pages 10-15.
  792. Karakitsos, P., Kyroudes, A., Pouliakis, A., Stergiou, E. B., Voulgaris, Z., and Kittas, C. (2002). Potential of the learning vector quantizer in the cell classification of endometrial lesions in postmenopausal women. Analytical and Quatitative Cytology and Histology, 24(1):30-38.
  793. Karayiannis, N. B. (1997). Learning vector quantization: A review. International Journal of Smart Engineer- ing System Design, 1(1):33-58.
  794. Karayiannis, N. B. (1998a). Ordered weighted learning vector quantization and clustering algorithms. In 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence, volume 2, pages 1388-93. IEEE, New York, NY, USA.
  795. Karayiannis, N. B. (1998b). Soft learning vector quantization and clustering algorithms based on reformu- lation. In 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence, volume 2, pages 1441-6. IEEE, New York, NY, USA.
  796. Karayiannis, N. B. (1999a). An axiomatic approach to soft learning vector quantization and clustering. IEEE Transactions on Neural Networks, 10(5):1153-1165.
  797. Karayiannis, N. B. (1999b). From aggregation operators to soft learning vector quatization and clustering algorithms. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 47-56. Elsevier, Amsterdam.
  798. Karayiannis, N. B. (1999c). Reformulating learning vector quantization and radial basis neural networks. Fundamenta Informaticae, IOS Press, 37(1):137-175.
  799. Karayiannis, N. B. (2000). Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators. IEEE Transactions on Neural Networks, 11(5):1093-1105.
  800. Karayiannis, N. B. and Pai, P. I. (1999a). Family of fuzzy algorithms for learning vector quantization. Interna- tional Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, 7(3):145- 155.
  801. Karayiannis, N. B. and Pai, P. I. (1999b). Segmentation of magnetic-resonance images using fuzzy algorithms for learning vector quantization. IEEE Transactions on Medical Imaging, 18(2):172-180.
  802. Karayiannis, N. B. and Zervos, N. (2000). Entropy-constrained learning vector quantization algorithms and their application in image compression. Journal of Electronic Imaging, 9(4):495-508.
  803. Karkimo, K. (2001). Sisältökartta järjestää tekstiarkiston. Tietokone.
  804. Karras, D. A., Karkanis, S. A., and Mertzios, B. G. (1998). Supervised and unsupervised neural network meth- ods applied to textile quality control based on improved wavelet feature extraction techniques. International Journal of Computer Mathematics, 67(1):169-181.
  805. Kasabov, N. (2001). Artificial neural networks for intelligent information processing. Chemical Engineer (London), (720):27-28.
  806. Kasabov, N., Deng, D., Erzegovezi, L., Fedrizzi, M., and Beber, A. (2000). On-line decision making and prediction of financial and macroeconomic parameters on the case study of the european monetary union. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Department of Information Science, University of Otago, New Zealand; Department of Computer and Management Sciences, University of Trento, Italy, ICSC Academic Press.
  807. Kaski, S. (1999). Fast winner search for SOM-based monitoring and retrieval of high-dimensional data. In IEE Conference Publication, volume 2, pages 940-945.
  808. Kaski, S. (2001a). Learning metrics for exploratory data analysis. In Neural Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Workshop. IEEE, Piscataway, NJ, USA, pages 53-62.
  809. Kaski, S. (2001b). SOM-based exploratory analysis of gene expression data. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 124-31. Springer.
  810. Kaski, S., Honkela, T., Lagus, K., and Kohonen, T. (1996). Creating an order in digital libraries with self-organizing maps. In Proceedings of WCNN'96, World Congress on Neural Networks. International Neural Network Society 1996 Annual Meeting, pages 814-17. Lawrence Erlbaum Associates, Mahwah, NJ, USA.
  811. Kaski, S., Honkela, T., Lagus, K., and Kohonen, T. (1998a). WEBSOM-self-organizing maps of document collections. Neurocomputing, 21(1-3):101-17.
  812. Kaski, S., Kangas, J., and Kohonen, T. (1998b). Bibliography of self-organizing map (SOM) papers: 1981- 1997. Neural Computing Surveys, 1(3 & 4):1-176.
  813. Kaski, S. and Kohonen, T. (1998). Tips for processing and color-coding of self-organizing maps. In Deboeck, G. and Kohonen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 195-202. Springer, London.
  814. Kaski, S., Nikkilä, J., and Kohonen, T. Methods for exploratory cluster analysis. In Proc. SSGRR'2000, Int. Conf. on Advances in Infrastructure for Electronic Business, Science, and Education on the Internet, L'Aquila, Italy July 31-August 6. Proceedings on CD-ROM.
  815. Kaski, S., Nikkilä, J., Törönen, P., Castrén, E., and Wong, G. (2001a). Analysis and visualization of gene expression data using self-organizing maps. In In Proceedings of NSIP-01, IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing. Proceedings on CD-ROM.
  816. Kaski, S. and Sinkkonen, J. (1999). Metrics induced by maximizing mutual information. In Helsinki University of Technology, Publications in Computer and Information Science, Report A55. Espoo, Finland.
  817. Kaski, S. and Sinkkonen, J. (2001). A topography-preserving latent variable model with learning metrics. In Allison, N., Yin, H., Allison, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 224-9.
  818. Kaski, S., Sinkkonen, J., and Peltonen, J. (2001b). Bankruptcy analysis with self-organizing maps in learning metrics. IEEE Transactions on Neural Networks, 12(4):936-947.
  819. Kaski, S., Sinkkonen, J., and Peltonen, J. (2001c). Data visualization and analysis with self-organizing maps in learning metrics. In Data Warehousing and Knowledge Discovery. Third International Conference, DaWaK 2001. Proceedings (Lecture Notes in Computer Science Vol.2114). Springer-Verlag, Berlin, Germany, pages 162-73.
  820. Kaski, S., Sinkkonen, J., and Peltonen, J. (2001d). Learning metrics for self-organizing maps. In Proceedings of the International Joint Conference on Neural Networks, volume 2, pages 914-919. Helsinki University of Technology, Neural Networks Research Centre.
  821. Kaski, S., Venna, J., and Kohonen, T. (1999). Coloring that reveals high-dimensional structures in data. In Proc. of 6th International Conference on Neural Information Processing (ICONIP'99), Perth, Australia, November 16-20, volume 2, pages 729-734, Piscataway, NJ. IEEE Service Center.
  822. Kaski, S., Venna, J., and Kohonen, T. (2000). Coloring that reveals cluster structures in multivariate data. Australian Journal of Intelligent Information Processing Systems, 6:82-8.
  823. Kastberger, G. and Kranner, G. (2000). Visualization of multiple influences on ocellar flight control in gi- ant honeybees with the data-mining tool viscovery SOMine. Behavior Research Methods, Instruments, & Computers, 32:157-68.
  824. Katoh, A. and Fukui, Y. (1998). Classification of facial expressions using self-organizing maps. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond., volume 2, pages 986-9, Piscataway, NJ. IEEE Service Center.
  825. Kauko, T. (1997). Exploring the prices of residential apartments and locality features within an artificial neural network approach. Evidence from Finland. In AREUEA International Conference. UCLA: Berkeley, June 1997.
  826. Kauppinen, H. (1999). Development of a Color Machine Vision Method for Wood Surface Inspection. PhD thesis, Department of Electrical Engineering and Infotech, University of Oulu.
  827. Kauppinen, H., Rautio, H., and Silven, O. (1999a). Non-segmenting defect detection and SOM based clas- sification for surface inspection using color vision. In Proceedings of SPIE-The International Society for Optical Engineering, volume 3826, pages 270-280.
  828. Kauppinen, H., Silvén, O., and Piirainen, T. (1999b). Self-organizing map based user interface for visual surface inspection. In Proc. 11th Scandinavian Conference on Image Analysis (SCIA'99), June 7-11, Kanger- lussuaq, Greenland, volume 2, pages 801-808.
  829. Kaustubha, R., Chakraborty, B., Hegde, A., and Pereira, A. (2001). Acoustic seafloor sediment classification using self-organizing feature maps. IEEE Transactions on Geoscience and Remote Sensing, 39(12):2722- 2725.
  830. Kayama, M. and Okamoto, T. (1999). A semantic map approach to a navigation system for exploratory learning in hyperspace. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics., volume 3, pages 839-44, Piscataway, NJ. IEEE Service Center.
  831. Kayama, M. and Okamoto, T. (2000). A navigation system based on self organizing feature map for ex- ploratory learning in hyperspace. Transactions of the Institute of Electronics, Information and Communication Engineers D I, pages 561-8.
  832. Kayama, M. and Okamoto, T. (2001). A knowledge based navigation system with a semantic map approach. Educational Technology & Society, 4.
  833. Kayama, M., Okamoto, T., and Cristea, A. I. (2000). Exploratory activity support based on a semantic feature map. In Adaptive Hypermedia and Adaptive Web-Based Systems. International Conference, AH 2000. Pro- ceedings (Lecture Notes in Computer Science Vol.1892). Springer-Verlag, Berlin, Germany, pages 347-50.
  834. Kayama, M., Sugita, Y., Morooka, Y., and Kumayama, J. (1998). Adaptively changed winning number LVQ for constructing an accurate control model from enormous and low quality plant data. In 1998 IEEE Inter- national Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelli- gence, volume 1, pages 701-6. IEEE, New York, NY, USA.
  835. Keith Magee, R., Venkatesh, S., and Takatsuka, M. (1999a). Beyond the topological map: developing al- ternate mappings in self organisation. In Fifth International/National Biennial Conference on Digital Image Computing, Techniques, and Applications. DICTA99. Curtin Univ, Perth, WA, Australia, pages 88-93.
  836. Keith Magee, R., Venkatesh, S., and Takatsuka, M. (1999b). An empirical study of neighbourhood decay in Kohonen's self organising map. In IJCNN'99. International Joint Conference on Neural Networks. Proceed- ings., volume 3, pages 1953-8, Piscataway, NJ. IEEE Service Center.
  837. Kennedy, J. and Morasso, P. (1990). Self-organizing networks in handwriting analysis. In Caianiello, E., editor, Parallel Architectures and Neural Networks, pages 339-344. World Scientific Publishing, Singapore.
  838. Kestler, H. A., Schule, M., Schwenker, F., Neumann, H., and Mattfeldt, T. (1999). Neural classification of cytological smears from the cervix. Biomedizinische Technik, 44:17-24.
  839. Khan, I. and Card, H. C. (1998). Adaptive information agents using competitive learning. Journal of Network and Computer Applications, 21(2).
  840. Khunkay, S. and Paithoonwattanakij, K. (1997). Image segmentation by fuzzy rule and Kohonen-constraint satisfaction fuzzy c-mean. In Proceedings of ICICS, 1997 International Conference on Information, Commu- nications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications, volume 2, pages 713-17. IEEE, New York, NY, USA.
  841. Khuwaja, G. A. (2002). An adaptive combined classifier system for invariant face recognition. Digital Signal Processing: A Review Journal, 12(1):21-46.
  842. Khuwaja, G. A. and Laghari, M. S. (2002). A parameter-based combined classifier for invariant facial ex- pression and gender recognition. International Journal of Pattern Recognition and Artificial Intelligence, 16(1):27-51.
  843. Kiang, M. Y. (2001). Extending the kohonen self-organizing map networks for clustering analysis. Computa- tional Statistics & Data Analysis, 38(2):161-180.
  844. Kiang, M. Y., Kulkarni, U. R., Goul, M., Philippakis, A., Chi, R., and Turban, E. (1997). Improving the effectiveness of self-organizing map networks using a circular Kohonen layer. In Sprague, J. R. H., editor, Proceedings of the Thirtieth Hawaii International Conference on System Sciences, volume 5, pages 521-9. IEEE Computer Society Press, Los Alamitos, CA, USA.
  845. Kiang, M. Y., Kulkarni, U. R., and St Louis, R. (2001). Circular/wrap-around self-organizing map networks: an empirical study in clustering and classification. Journal of The Operational Research Society, 52(1):93- 101.
  846. Kiang, M. Y. and Kumar, A. (2001). An evaluation of self-organizing map networks as a robust alternative to factor analysis in data mining applications. Information Systems Research, 12:177-94.
  847. Kikuchi, T., Kishi, K., and Miyamichi, J. (1999). An automatic data classification algorithm adjusted by mutual information. Transactions of the Institute of Electronics, Information and Communication Engineers D II, pages 660-8.
  848. Kikuo, F., Heizo, T., and Masumi, I. (1999). Performance of improved SOM-TSP algorithm for traveling salesman problem of many cities. Transactions of the Institute of Electrical Engineers of Japan, Part C, 119:875-82.
  849. Kim, D., Ahn, S., and Kang, D.-S. (2000a). Co-adaptation of self-organizing maps by evolution and learning. Neurocomputing, 30(1):249-272.
  850. Kim, H.-D. and Cho, S.-B. (2000). Genetic optimization of structure-adaptive self-organizing map for efficient classification. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 227-32.
  851. Kim, H. D. and Cho, S. B. (2001). Improvement of classification rate of handwritten digits by combining multiple dynamic topology-preserving self-organizing maps. Journal of KISS: Software and Applications, 28:875-84.
  852. Kim, H. S., Mun, K. J., and Lee, H. S. (2000b). Electric load forecasting and classification using neural networks for the EMS. In Proceedings of the IASTED International Conference Power and Energy Systems. IASTED/ACTA Press, Anaheim, CA, USA, pages 171-5.
  853. Kim, J. and Chen, T. (2000a). An integrated approach to image sequence segmentation. In NORSIG2000. Nordic Signal Processing Symposium. Linkoping Univ, Linkoping, Sweden, pages 391-4.
  854. Kim, J. and Chen, T. (2000b). Low-complexity fusion of intensity, motion, texture, and edge for image sequence segmentation: A neural network approach. Neural Networks for Signal Processing-Proceedings of the IEEE Workshop, 2:497-506.
  855. Kim, J. and Chen, T. (2000c). Segmentation of image sequences using SOFM networks. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 3, pages 869-72.
  856. Kim, J. and Chen, T. (2001). Multiple feature clustering for image sequence segmentation. Pattern Recognition Letters, 22(11):1207-1217.
  857. Kim, J.-C., Yoon, Y.-H., Choi, D.-H., and Jeon, Y.-J. (1997). A Kohonen neural network approach for trans- former fault diagnosis using dissolved gas analysis. In Park, Y. M., Park, J. K., and Lee, K. Y., editors, ISAP '97 International Conference on Intelligent System Application to Power Systems. Proceedings, pages 336-40. Korean Inst. Electr. Eng, Seoul, South Korea.
  858. Kim, J. H. and Cho, H. S. (1995). Neural network-based inspection of solder joints using a circular illumina- tion. Image and Vision Computing, Proc., 13(6):479-490.
  859. Kim, J.-H., Lim, J.-Y., Ji, P.-S., Cho, S.-H., and Nam, S.-C. (1996). Load pattern classification using Kohonen network with fuzzy. In ICEE '96. Proceedings of the International Conference on Electrical Engineering, volume 1, pages 57-61. Int. Acad. Publishers, Beijing, China.
  860. Kim, J. S., Qin, X., and Hsu, Y. (1999). Memory characterization of a parallel data mining workload. Workload Characterization: Methodology and Case Studies. Based on the First Workshop on Workload Characteriza- tion. IEEE Computer Society, Los Alamitos, CA, USA, pages 60-8.
  861. Kim, K. S. and Han, I. (2001a). The cluster-indexing method for case-based reasoning using self-organizing maps and learning vector quantization for bond rating cases. Expert Systems with Applications, 21(3):147-156.
  862. Kim, K. S. and Han, I. (2001b). The cluster-indexing method for case-based reasoning using self-organizing maps and learning vector quantization for bond rating cases. Expert Systems with Applications, 21:147-56.
  863. Kim, K. S., Song, J. J., Golshani, F., and Panchanathan, S. (2000c). Automatic classification of cells using morphological shape in peripheral blood images. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.4210, volume 4210, pages 290-8.
  864. Kim, S. J., Kim, J. H., and Choi, H. M. (1993). Efficient algorithm for traveling salesman problems based on self-organizing feature maps. Second IEEE International Conference on Fuzzy Systems, pages 1085-1090.
  865. Kinouchi, Y. and Sasho, T. (2001). Structure of associative memory system with concept formation based on mutual feature reactions. In International Joint Conference on Neural Networks, Washington, DC, USA, July 15-19. CD-ROM.
  866. Kirk, J. S., Chang, D. J., and Zurada, J. M. (2001). A self-organizing map with dynamic architecture for effi- cient color quantization. In Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 2128-2132. University of Louisville, Comp. Sci. and Engineering Program.
  867. Kirk, J. S. and Zurada, J. M. (1999). Algorithms for improved topology preservation in self-organizing maps. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cyber- netics., volume 3, pages 396-400, Piscataway, NJ. IEEE Service Center.
  868. Kirk, J. S. and Zurada, J. M. (2000). Two-stage algorithm for improved topography preservation in self- organizing maps. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 4, pages 2527-2532, Piscataway, NJ. Univ of Louisville, IEEE.
  869. Kirk, J. S. and Zurada, J. M. (2001). An evolutionary method of training topography-preserving maps. In Pro- ceedings of the International Joint Conference on Neural Networks, volume 3, pages 2230-2234. University of Louisville, Comp. Sci. and Engineering Program.
  870. Kishida, K., Fukumoto, S., and Miyajima, H. (2001). A construction method of fuzzy systems using vector quantization. Transactions of the Institute of Electrical Engineers of Japan, Part C, 121:106-11.
  871. Kitajima, H. and Hagiwara, M. (2000). Human posture estimation method from a single image using genetic algorithm and fuzzy inference. Systems and Computers in Japan, 31(12):52-61.
  872. Kiviluoto, K. (1995). Topology Preservation in Self-Organizing Maps.
  873. Kiviluoto, K. (1998a). Comparing 2D and 3D self-organizing maps in financial data visualization. In Proceed- ings of the International Conference on Soft Computing and Information / Intelligent Systems (IIZUKA'98), pages 68-71. Iizuka, Japan.
  874. Kiviluoto, K. (1998b). Predicting bankruptcies with the self-organizing map. Neurocomputing, 21(1-3):191- 201.
  875. Kiviluoto, K. and Bergius, P. (1998a). Exploring corporate bankruptcy with two-level self-organizing maps. decision technologies for computational management science. In Proceedings of Fifth International Confer- ence on Computational Finance, pages 373-380. Kluwer Academic Publishers, Boston.
  876. Kiviluoto, K. and Bergius, P. (1998b). Maps for analyzing failures of small and medium-sized enterprises. In Deboeck, G. and Kohonen, T., editors, Visual Expolorations in Finance with Self-Organizing Maps, pages 59-71. Springer, London.
  877. Kiviluoto, K. and Bergius, P. (1998c). Two-level self-organizing maps for analysis of financial statements. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 1, pages 189-92. IEEE, New York, NY, USA.
  878. Klimek, L., Wooley, B., Bridges, S., Hodges, J., Watkins, A., and Smolensky, S. (1999). Comparison of the performances of a Bayesian algorithm and a Kohonen map for clustering texture data. Intelligent Engineering Systems Through Artificial Neural Networks, 9:777-784.
  879. Knopf, G. K. and Sangole, A. (2000a). Trinocular data registration using a three-dimensional self-organizing feature map. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol- ume 4, pages 2863-2868, Piscataway, NJ. Univ of Western Ontario, IEEE.
  880. Knopf, G. K. and Sangole, A. (2000b). Visualizing data association using self-organizing feature maps. In Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Min- ing, and Complex Systems. Vol.10. Proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE 2000). ASME, New York, NY, USA, pages 471-6.
  881. Knopf, G. K. and Sangole, A. (2001). Scientific data visualization using three-dimensional self-organizing feature maps. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol- ume 2, pages 759-764. Dept. of Mech. and Mat. Eng., Faculty of Engineering Science, University of Western Ontario.
  882. Kobayashi, Y., Ota, J., Inoue, K., and Arai, T. (2000). State and action space construction using vision information. Transactions of the Society of Instrument and Control Engineers, 36:1029-36.
  883. Kocjancic, R. and Zupan, J. (2000). Modelling of the river flowrate: the influence of the training set selection. Chemometrics and Intelligent Laboratory Systems, 54(1):21-34.
  884. Koenig, A. (2000). Interactive visualization and analysis of hierarchical neural projections for data mining. IEEE Transactions on Neural Networks, 11(3):615-624.
  885. Köhle, M. and Merkl, D. (1998). Experiments in gait pattern classification with neural networks of adap- tive architecture. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of ICANN98, the 8th International Conference on Artificial Neural Networks, volume 1, pages 293-298. Springer, London.
  886. Kohle, M., Merkl, D., and Kastner, J. (1997). Assessment of ground reaction force patterns for human gait malfunction identification. In Neural Networks in Engineering Systems. Proceedings of the 1997 International Conference on Engineering Applications of Neural Networks, volume 1, pages 195-8. Systems Engineering Association, Turku, Finland.
  887. Kohonen, T. (1997). Exploration of large document collections by self-organizing maps. In Grahne, G., editor, Proceedings of the Sixth Scandinavian Conference on Artificial Intelligence, pages 5-7. IOS Press, Amsterdam, Netherlands.
  888. Kohonen, T. (1998a). Computation of VQ and SOM point densities using the calculus of variations. Technical Report A52, Helsinki University of Technology, Laboratory of Computer and Information Science, Espoo, Finland.
  889. Kohonen, T. (1998b). The self-organizing map. Neurocomputing, 21(1-3):1-6.
  890. Kohonen, T. (1998c). Self-organization of very large document collections: State of the art. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of ICANN98, the 8th International Conference on Artificial Neural Networks, volume 1, pages 65-74. Springer, London.
  891. Kohonen, T. (1998d). The self-organizing map algorithms and their applications in science and technology. In Proceedings of 6th European Congress on Intelligent Techniques & Soft Computing (EUFIT'98), pages 193-194. Elite Foundation, Aachen, Germany.
  892. Kohonen, T. (1998e). The SOM methodology. In Deboeck, G. and Kohonen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 159-167. Springer-Verlag, London.
  893. Kohonen, T. (1999a). Analysis of processes and large data sets by a self-organizing method. In Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99., volume 1, pages 27-36, Piscataway, NJ. IEEE Service Center.
  894. Kohonen, T. (1999b). Comparison of SOM point densities based on different criteria. Neural Computation, 11:2081-95.
  895. Kohonen, T. (1999c). Data mining by the self-organizing map method. In Bouchon-Meunier, B., Yager, R., and Zadeh, L., editors, Uncertainty in Intelligent and Information Systems. World Scientific.
  896. Kohonen, T. (1999d). Exploration of statistical and textual information by means of self-organizing maps. In Proc. of 52nd Session of the International Statistical Institute (ISI'99), Helsinki, Finland, August 10-18.
  897. Kohonen, T. (1999e). Fast evolutionary learning with batch-type self-organizing maps. Neural Processing Letters, 9:153-62.
  898. Kohonen, T. (1999f). Spotting relevant information in extremely large document collections. In Computational Intelligence. Theory and Applications. International Conference, 6th Fuzzy Days. Proceedings, pages 59-61, Berlin, Germany. Springer-Verlag.
  899. Kohonen, T. (1999g). Uudet informaation käsittelyn menetelmät ja niiden tulevaisuusrelevanssi, pages 37-54. Tulevaisuuden tutkimuksen seura r.y., Helsinki.
  900. Kohonen, T. (2000a). Data mining by the self-organising map method. In Bouchon-Meunier, B., Yager, R. R., and Zadeh, L. A., editors, Uncertainty in Intelligent and Information Systems, volume 20 of Advances in Fuzzy Systems-Applications and Theory, pages 3-22. World Scientific.
  901. Kohonen, T. (2000b). Informaation käsittely ja sen rajat. Tietojenkäsittelytiede, pages 15-9. Tietojenkäsitte- lytieteen Seura ry.
  902. Kohonen, T. (2000c). A look into the self-organizing maps. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Helsinki University of Technology, Neural Networks Research Centre, ICSC Academic Press.
  903. Kohonen, T. (2000d). New lines in the study of self-organizing maps. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000. Proceedings in CD-ROM.
  904. Kohonen, T. (2000e). Self-organizing maps of massive document collections. In Proceedings of the In- ternational Joint Conference on Neural Networks, volume 2, pages 3-9, Piscataway, NJ. Helsinki Univ of Technology, IEEE.
  905. Kohonen, T. (2000f). An unsupervised learning method that produces organized representation from real information. In Malmgren, H., Boga, M., and Niklasson, L., editors, Artificial Neural Networks in Medicine and Biology, Prodeedings of the ANNIMAB-1 Conference, Göteborg, Sweden, 13-16 May 2000, pages 45-53.
  906. Kohonen, T. (2001a). Evolution of ideas for self-organizing neural networks. In Asian Pacific Symposium on Life Science and Systems Engineering, 25-26 July, 2001, pages 36-8.
  907. Kohonen, T. (2001b). Perspectives on the research of artificial neural networks. International Journal of Computer Research, Special Issue: Past, Present and Future of Neural Networks, 10(2):127-38. Guest Editors: P.G. Anderson and G. Antoniou and V. Mladenov and E. Oja and M. Paprzycki and N. C. Steele.
  908. Kohonen, T. (2001c). Self-organizing maps of massive databases. International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, 9(4):179-185.
  909. Kohonen, T. (2001d). Voivatko koneet oppia omaehtoisesti. In Studia Generalia 2000, Matematiikka, Kult- tuurimme perusta -ja trauma, pages 81-92. Helsingin vapaan sivistystyön toimikunta.
  910. Kohonen, T. (2002). Self-Organizing Neural Networks-Recent Advances and Applications, volume 78 of Studies in Fuzziness and Soft Computing, chapter Overture, pages 1-12. Physica-Verlag Heidelberg.
  911. Kohonen, T. and Hari, R. (1999). Where the abstract feature maps of the brain might come from. Trends in Neurosciences, 22:135-139.
  912. Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., and Saarela, A. (2000a). Self organization of a massive document collection. IEEE Transactions on Neural Networks, 11(3):574-585.
  913. Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., nad V. Paatero, J. H., and Saarela, A. (2000b). Self- organization of a massive document collection. IEEE Transactions on Neural Networks, 11:574-85.
  914. Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., J. Honkela, V. P., and Saarela, A. (1999). Self organization of a massive text document collection. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 171-182. Elsevier, Amsterdam.
  915. Kohonen, T., Kaski, S., and Venna, J. (1997). Automatic Coloring of Data According to Its Cluster Structure.
  916. Kohonen, T. and Oja, E. (1998). Visual feature analysis by the self-organising maps. Neural Computing & Applications, 7:273-286.
  917. Kohonen, T. and Somervuo, P. (1998). Self-organizing maps of symbol strings. Neurocomputing, 21:19-30.
  918. Koikkalainen, P. (1999). Tree structured self-organizing maps. In Oja, E. and Kaski, S., editors, Kohonen maps, pages 121-130. Elsevier, Amsterdam.
  919. Kolehmainen, M., Martikainen, H., Hiltunen, T., and Ruuskanen, J. (2000). Forecasting air quality parameters using hybrid neural network modelling. Environmental Monitoring and Assessment, 65(1-2):277-286.
  920. Kolehmainen, M., Martikainen, H., and Ruuskanen, J. (2001a). Neural networks and periodic components used in air quality forecasting. Atmospheric Environment, 35(5):815-825.
  921. Kolehmainen, M., Ruuskanen, J., Rissanen, E., and Raatikainen, O. (2001b). Monitoring odorous sulfur emissions using self-organizing maps for handling ion mobility spectrometry data. Journal of the Air and Waste Management Association, 51(7):966-971.
  922. Kolinummi, P., Hämälainen, P., Hämälainen, T., and Saarinen, J. (2000a). Parneu: general-purpose partial tree computer. Microprocessors and Microsystems, 24:23-42.
  923. Kolinummi, P., Pulkkinen, P., Hamalainen, T., and J., S. (1999). Programming environment for reconfigurable multiple DSP system. In Proceedings of the ISCA 12th International Conference. Parallel and Distributed Systems. ISCA, Cary, NC, USA, pages 546-51.
  924. Kolinummi, P., Pulkkinen, P., Hamalainen, T., and Saarinen, J. (2000b). Parallel implementation of self- organizing map on the partial tree shape neurocomputer. Neural Processing Letters, 12(2):171-182.
  925. Kong, H. and Guan, L. (1998). Self-organizing tree map for eliminating impulse noise with random intensity distributions. Journal of Electronic Imaging, 7(1):36-44.
  926. Kongkachandra, R., Tamee, K., and Kimpan, C. (1999). Improving thai isolated word recognition by using karhunen-loeve transformation and learning vector quantization. In 1999 IEEE International Symposium on Intelligent Signal Processing and Communication Systems. Signal Processing and Communications Beyond 2000. King Mongkuts Inst. Technol, Bangkok, Thailand, pages 777-80.
  927. Koprinska, I. and Carrato, S. (1998). Segmentation of compressed video by learning vector quantizer. In Engineering Benefits from Neural Networks. Proceedings of the International Conference EANN '98, pages 9-16. Systems Engineering Association, Turku, Finland.
  928. Koprinska, L. and Kasabov, N. (2000). Evolving fuzzy neural network for camera operations recognition. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 2, pages 523-6.
  929. Kordylewski, H., Graupe, D., and Liu, K. (2001). A novel large-memory neural network as an aid in medical diagnosis applications. IEEE Transactions on Information Technology in Biomedicine, 5(3):202-209.
  930. Kosaka, T. and Omatu, S. (1999a). Bill money classification by competitive learning. In SMCia/99 Proceed- ings of the 1999 IEEE Midnight-Sun Workshop on Soft Computing Methods in Industrial Applications, pages 5-9, Piscataway, NJ. IEEE Service Center.
  931. Kosaka, T. and Omatu, S. (1999b). Classification of the italian liras using the LVQ method. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics., volume 6, pages 845-50, Piscataway, NJ. IEEE Service Center.
  932. Kosaka, T. and Omatu, S. (2000). Classification of the italian liras using the LVQ method. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 4, pages 2769-2774, Piscataway, NJ. Glory Ltd, IEEE.
  933. Kosaka, T., Omatu, S., and Fujinaka, T. (2001). Bill classification by using the LVQ method. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 3, pages 1430-1435. Glory LTD Himeji.
  934. Kosaka, T., Taketani, N., and Omatu, S. (1999a). Classification of italian bills by a competitive neural network. Transactions of the Institute of Electrical Engineers of Japan, Part C, 119:948-54.
  935. Kosaka, T., Taketani, N., Omatu, S., and Ryo, K. (1999b). Discussion of reliability criterion for US dollar clas- sification by LVQ. In SMCia/99 Proceedings of the 1999 IEEE Midnight-Sun Workshop on Soft Computing Methods in Industrial Applications., pages 28-33, Piscataway, NJ. IEEE Service Center.
  936. Kosaka, T., Taketani, N., Omatu, S., and Ryo, K. (1999c). US dollar classifications by the LVQ method based on reliability criterion. Transactions of the Institute of Electrical Engineers of Japan, Part C, 119:1359-64.
  937. Koskela, T., Varsta, M., Heikkonen, J., and Kaski, K. (1998). Recurrent SOM with local linear models in time series prediction. In 6th European Symposium on Artificial Neural Networks. ESANN'98. Proceedings, pages 167-72, Brussels, Belgium. D-Facto.
  938. Kostiainen, T. and Lampinen, J. (2001). Self-organizing map as a probability density model. In Proceedings of the International Joint Conference on Neural Networks, volume 1, pages 394-399. Laboratory of Compu- tational Eng., Helsinki University of Technology.
  939. Kothari, R. and Bellando, J. (1997). Optical flow determination using topology preserving mappings. IEEE International Conference on Image Processing, 3:344-347.
  940. Kotropoulos, C., Nikolaidis, N., Bors, A. G., and Pitas, I. (1998). Robust and adaptive techniques in self-organizing neural networks. International Journal of Computer Mathematics, 67(1):183-200.
  941. Kottow, D. and Ruiz-Del-Solar, J. (1999). A new neural network model for automatic generation of gabor-like feature filters. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 3, pages 1947-52, Piscataway, NJ. IEEE Service Center.
  942. Kottow, D. and Ruiz-Del-Solar, J. (2000). Texture segmentation by bio-inspired use of self-organizing net- works. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Dept. of Electrical Eng., Universidad de Chile, ICSC Aca- demic Press.
  943. Kovacs, L. and Terstyanszky, G. (2000). Boundary region sensitive classification for the counterpropagation neural network. In Proceedings of the International Joint Conference on Neural Networks, volume 1, pages 90-94, Piscataway, NJ. Univ of Miskolc, IEEE.
  944. Kowalski, J., Strzelecki, M., and De Vos, A. (1999). Kohonen neural network chip: preliminary results of circuit test. In Proceedings of the 6th International Conference Mixed Design of Integrated Circuits and Systems. MIXDES'99. Tech. Univ. Poland, Lodz, Poland, pages 503-6.
  945. Kramer, A. A., Lee, D., and Axelrod, R. C. (2000). Use of a Kohonen neural network to characterize res- piratory patients for medical intervention. In Malmgren, H., Boga, M., and Niklasson, L., editors, Artificial Neural Networks in Medicine and Biology, Prodeedings of the ANNIMAB-1 Conference, Göteborg, Sweden, 13-16 May 2000, pages 192-196.
  946. Kraus, G., Hierlemann, A., Gauglitz, G., and Goepel, W. (1995). Analysis of complex gas mixtures by pattern recognition with polymer based quartz microbalance sensor arrays. International Conference on Solid-State Sensor and Actuator, Eurosensors IX. Proceedings, 1:675-678.
  947. Krishna, K. M. and Kalra, P. K. (2000a). Solving the local minima problem for a mobile robot by classification of spatio-temporal sensory sequences. Journal of Robotic Systems, 17(10):549-564.
  948. Krishna, K. M. and Kalra, P. K. (2000b). Spatial understanding and temporal correlation for a mobile robot. Spatial Cognition and Computation, 2:219-59.
  949. Krishna, K. M. and Kalra, P. K. (2001). Perception and remembrance of the environment during real-time navigation of a mobile robot. Robotics and Autonomous Systems, 37(1):25-51.
  950. Krolikowski, R. (2000). Exploitation of self-organising maps for the reduction of non-stationary noise in speech signals. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Sound Engineering Department, Technical University of Gdansk, ICSC Academic Press.
  951. Krumhansl, C. L. and Toiviainen, P. (2001). Tonal cognition. In Biological Foundations of Music, pages 77-91.
  952. Kuban Altinel, I., Aras, N., and Oommen, B. J. (2000). Fast, efficient and accurate solutions to the hamiltonian path problem using neural approaches. Computers & Operations Research, 27:461-94.
  953. Kukkonen, S., Kaelviaeinen, H., and Parkkinen, J. (2001). Color features for quality control in ceramic tile industry. Optical Engineering, 40(2):170-177.
  954. Kukkonen, S., Kalviainen, H., and Parkkinen, J. (1999). Visual inspection by spectral features in the ceramics industry. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.3826, volume 3826, pages 64-75.
  955. Kume, H., Osana, Y., and Hagiwara, M. (1999). Solving the binding problem with feature integration theory. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 1, pages 200-5, Piscataway, NJ. IEEE Service Center.
  956. Kuo, R. J., Chi, S. C., and Den, B. W. (1999). A fuzzy Kohonen's feature map neural network with appli- cation to group technology. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 5, pages 3098-101, Piscataway, NJ. IEEE Service Center.
  957. Kuo, R. J., Chi, S. C., and Teng, P. W. (2001). Generalized part family formation through fuzzy self-organizing feature map neural network. Computers and Industrial Engineering, 40(1-2):79-100.
  958. Kurata, K., Shirakura, J., Wada, K., and Kida, K. (2000). Self-organization model of information separation. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 286-92.
  959. Kurimo, M. (1996). Segmental LVQ3 training for phoneme-wise tied mixture density HMMs. In Ramponi, G., Sicuranza, G. L., Carrato, S., and Marsi, S., editors, Signal Processing VIII, Theories and Applications. Proceedings of EUSIPCO-96, Eighth European Signal Processing Conference, volume 3, pages 1599-602. Edizioni LINT Trieste, Trieste, Italy.
  960. Kurimo, M. (1998). Self-organization in mixture densities of HMM based speech recognition. In Deboeck, G. and Kohonen, T., editors, Proceedings of the European Symposium on Artificial Neural Networks (ESANN'98), pages 237-242. Springer-Verlag, Bruges, Belgium.
  961. Kurimo, M. (1999). Indexing audio documents by using latent semantic analysis and SOM. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 363-374. Elsevier, Amsterdam.
  962. Kurimo, M. (2000a). Fast latent semantic indexing of spoken documents by using self-organizing maps. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, volume 4, pages 2425-2428, Piscataway, NJ. IDIAP, IEEE.
  963. Kurimo, M. (2000b). Indexing spoken audio by LSA and SOMs. In Signal Processing X Theories and Applications. Proceedings of EUSIPCO 2000. Tenth European Signal Processing Conference. Tampere Univ. Technology, Tampere, Finland, volume 4, pages 2177-80.
  964. Kuroda, K., Harada, K., and Hagiwara, M. (1999). Large scale on-line handwritten chinese character recogni- tion using successor method based on stochastic regular grammar. Pattern Recognition, 32(8):1307-1315.
  965. Kurogi, S., Hachimaru, M., and Shougang, R. (1996). Two-layered LVQ net evaluating memorized vectors for tracking control. In Solving Engineering Problems with Neural Networks. Proceedings of the International Conference on Engineering Applications of Neural Networks (EANN'96), volume 1, pages 175-8. Systems Engineering Association, Turku, Finland.
  966. Kuroiwa, J., Inawashiro, S., Miyake, S., and Aso, H. (2000). Self-organization of orientation maps in a formal neuron model using a cluster learning rule. Neural Networks, 13(1):31-40.
  967. Kurth, C., Gillam, F., and Steinhoff, B. J. (2000). EEG spike detection with a kohonen feature map. Annals of Biomedical Engineering, 28(11):1362-1369.
  968. Kurth, C., Wegerer, V., Degner, D., Sperling, W., Kornhuber, J., Paulus, W., and Bleich, S. (2001). Risk assessment of alcohol withdrawal seizures with a kohonen feature map. Neuroreport, 12(6):1235-1238.
  969. Kusumoputro, B. (1999). Comparison of FA LVQ and modified backpropagation in artificial odor discrimi- nation system. In Proceedings of the Eighteenth IASTED International Conference Modelling, Identification and Control, pages 434-7, Anaheim, CA, USA. ACTA Press.
  970. Kusumoputro, B., Budiarto, H., and Jatmiko, W. (2000a). Fuzzy learning vector quantization neural network and its application for artificial odor recognition system. In Proceedings of SPIE-The International Society for Optical Engineering, volume 4055, pages 374-381. Univ of Indonesia, Society of Photo-Optical Instru- mentation Engineers.
  971. Kusumoputro, B., Fanany, I., and Indrawati, D. (2000b). Bispectrum analysis for speaker identification in noisy environment with karhunen-loeve transformation technique. In Proceedings of SPIE-The International Society for Optical Engineering, volume 4044, pages 143-149, Bellingham, WA. Univ of Indonesia, Society of Photo-Optical Instrumentation Engineers.
  972. Kusumoputro, B., Saptawijaya, A., and Murni, A. (2001a). Comparison of hybrid neural systems of KSOM- BP learning in artificial odor recognition system. In Proceedings Fourth International Conference on Com- putational Intelligence and Multimedia Applications. ICCIMA 2001. IEEE, Los Alamitos, CA, USA, pages 276-81.
  973. Kusumoputro, B., Triyanto, A., Fanany, M. I., and Jatmiko, W. (2001b). Speaker identification in noisy environment using bispectrum analysis and probabilistic neural network. In Proceedings Fourth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2001. IEEE, Los Alamitos, CA, USA, pages 282-7.
  974. Kusumoputro, B., Widyanto, M. R., Fanany, M. I., and Budiarto, H. (1999). Improvement of artificial odor discrimination system using fuzzy-LVQ neural network. In Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99, pages 474-8, Los Alamitos, CA, USA. IEEE Computer Society.
  975. Kwan, C., Xu, R., and Haynes, L. (2001). A new data clustering technique and its applications. In Dasarathy, B. V., editor, Proceedings of SPIE-The International Society for Optical Engineering, volume 4384, pages 1-5. Intelligent Automation, Inc.
  976. Kwan, H. K. and Li, T. X. (2000). ARMA lattice modeling for isolated word speech recognition. In Proceed- ings of the 43rd IEEE Midwest Symposium on Circuits and Systems. IEEE, Piscataway, NJ, USA, volume 3, pages 1186-90.
  977. Kwok, T. and Smith, K. A. (2000). A self-organizing neural network with attractor nodes for combinatorial op- timization. In Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems. Vol.10. Proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE 2000). ASME, New York, NY, USA, pages 209-16.
  978. Kyan, M. J., Guan, L., Arnison, M. R., and Cogswell, C. J. (1999). Feature extraction of chromosomes from 3D confocal microscope images. IEEE International Conference on Image Processing, 2:843-847.
  979. Kyan, M. J., Guan, L., Arnison, M. R., and Cogswell, C. J. (2001). Feature extraction of chromosomes from 3-d confocal microscope images. IEEE Transactions on Biomedical Engineering, 48(11):1306-1318.
  980. Kyriakou, K., Michaelidas, S. C., Pattichis, C., and Christodoulou, C. (1999). Cloud classification from satellite imagery with artificial neural networks. In Engineering Applications of Neural Networks. Proceedings of the 5th International Conference on Engineering Applications of Neural Networks (EANN'99), pages 253- 8, Torun, Poland. Wydawnictwo Adam Marszalek.
  981. Kyu, S. M., Murata, J., and Hirasawa, K. (2001). Behavior learning of autonomous robots by modified learning vector quantization. Transactions of the Society of Instrument and Control Engineers, 37:1162-8.
  982. Laakso, S., Laaksonen, J., Koskela, M., and Oja, E. (2001). Self-organising maps of web link information. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 146-151.
  983. Laaksonen, J., Hurri, J., Oja, E., and Kangas, J. (1998). Comparison of adaptive strategies for on-line char- acter recognition. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of ICANN98, the 8th International Conference on Artificial Neural Networks, volume 1, pages 245-250. Springer, London.
  984. Laaksonen, J., Koskela, M., Laakso, S., and Oja, E. (2000). PicSOM-content-based image retrieval with self-organizing maps. Pattern Recognition Letters, 21(13-14):1199-1207.
  985. Laaksonen, J., Koskela, M., Laakso, S., and Oja, E. (2001). Self-organising maps as a relevance feedback technique in content-based image retrieval. Pattern Analysis and Applications, 4(2-3):140-152.
  986. Laaksonen, J., Koskela, M., and Oja, E. (1999a). Application of tree structured self-organizing maps in content-based image retrieval. In ICANN99. Ninth International Conference on Artificial Neural Networks (IEE Conf. Publ. No.470), volume 1, pages 174-9, London, UK. IEE.
  987. Laaksonen, J., Koskela, M., and Oja, E. (1999b). Content-based image retrieval using self-organizing maps. In Visual Information and Information Systems. Third International Conference, VISUAL'99. Proceedings (Lecture Notes in Computer Science Vol.1614), pages 541-8, Berlin, Germany. Springer-Verlag.
  988. Laaksonen, J., Koskela, M., and Oja, E. (1999c). PicSOM-a framework for content-based image database retrieval using self-organizing maps. In Proc. of 11th Scandinavian Conference on Image Analysis (SCIA'99), Kangerlussuaq, Greenland, June 7-11, pages 151-156.
  989. Laaksonen, J., Koskela, M., and Oja, E. (1999d). PicSOM: self-organizing maps for content-based image retrieval. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 4, pages 2470-3, Piscataway, NJ. IEEE Service Center.
  990. Laaksonen, J., Koskela, M., and Oja, E. (1999e). PicSOM: Self-organizing maps for content-based image retrieval. In Proc. of International Joint Conference on Neural Networks (IJCNN'99), Washington, D.C., USA, July 10-16. CD-ROM.
  991. Labonte, G. (1998). A SOM neural network that reveals continuous displacement fields. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 2, pages 880-4. IEEE, New York, NY, USA.
  992. Labonte, G. (2000). On a neural network that performs an enhanced nearest-neighbour matching. Pattern Analysis and Applications, 3(3):267-278.
  993. Lagus, K. (1998). Generalizability of the WEBSOM method to document collections of various types. In Proceedings of 6th European Congress on Intelligent Techniques & Soft Computing (EUFIT'98), volume 1, pages 210-214. Aachen, Germany.
  994. Lagus, K. (2000). Text mining with the WEBSOM. Acta Polytechnica Scandinavica, Mathematics and Computing Series. no.Ma110; 2000; p.1-54, pages 1-54.
  995. Lagus, K. (2002). Text retrieval using self-organized document maps. Neural Processing Letters, 15(1):21-29.
  996. Lagus, K., Honkela, T., Kaski, S., and Kohonen, T. (1999). WEBSOM for textual data mining. Artificial- Intelligence-Review, 13:345-64.
  997. Lagus, K. and Kaski, S. (1999). Keyword selection method for characterizing text document maps. In ICANN99. Ninth International Conference on Artificial Neural Networks (IEE Conf. Publ. No.470), volume 1, pages 371-6, London, UK. IEE.
  998. Laha, A. and Pal, N. R. (2001a). Dynamic generation of prototypes with self-organizing feature maps for classifier design. Pattern Recognition, 34(2):315-321.
  999. Laha, A. and Pal, N. R. (2001b). Some novel classifiers designed using prototypes extracted by a new scheme based on self-organizing feature map. IEEE Transactions on Systems, Man and Cybernetics Part B-Cybernetics, 31(6):881-890.
  1000. Laine, S. J. (2001). Combining off-line and on-line information in process study using the self-organizing map (SOM). In SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications. IEEE, Piscataway, NJ, USA, pages 71-6.
  1001. Laitinen, N., Rantanen, J., Laine, S., Antikainen, O., Rasanen, E., Airaksinen, S., and Yliruusi, J. (2002). Visualization of particle size and shape distributions using self-organizing maps. Chemometrics and Intelligent Laboratory Systems, 62(1):47-60.
  1002. Lakany, H. M. (2000). Generic kinematic pattern for human walking. Neurocomputing, 35:27-54.
  1003. Lakany, H. M. (2001). Human gait analysis using SOM. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 29-38. Springer.
  1004. Lamar, M. V., Bhuiyan, M. S., and Iwata, A. (1999). Hand gesture recognition using morphological principal component analysis and an improved CombNET-II. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics., volume 4, pages 57-62, Piscataway, NJ. IEEE Service Center.
  1005. Lamar, M. V., Bhuiyan, S., and Iwata, A. (2000). Hand gesture recognition using t-combNET: a net neural network model. IEICE Transactions on Information and Systems, 383-D(11):1986-1995.
  1006. Lamirel, J. C. (2001). Using images for enhancing discovering task in a DL context. In Yeung, M., Li, C., and Lienhart, R. W., editors, Proceedings of SPIE-The International Society for Optical Engineering, volume 4315, pages 373-383. LORIA.
  1007. Lampinen, J. and Kostiainen, T. (1999). Overtraining and model selection with the self-organizing map. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 3, pages 1911-15, Piscataway, NJ. IEEE Service Center.
  1008. Lampinen, J. and Kostiainen, T. (2000). Self-organizing map in data analysis. notes on overfitting and overin- terpretation. In 8th European Symposium on Artificial Neural Networks. ESANN"2000. Proceedings. D-Facto, Brussels, Belgium, pages 239-44.
  1009. Lampinen, J. and Kostiainen, T. (2002). Self-Organizing Neural Networks-Recent Advances and Applica- tions, volume 78 of Studies in Fuzziness and Soft Computing, chapter Generative Probability Density Model in the Self-Organizing Map, pages 75-94. Physica-Verlag Heidelberg.
  1010. Lampinen, J., Laaksonen, J., and Oja, E. (1997). Neural Network Systems, Techniques and Applications in Pattern Recognition. Research rept.
  1011. Lang, M. J. (1998). Application of a Kohonen network classifier in TeV gamma ray astronomy. Journal of Physics G: Nuclear and Particle Physics, 24:2279-2287.
  1012. Lange, J. S., Fukunaga, C., Tanaka, M., and Bozek, A. (1999). Transputer self organizing map algorithm for beam background rejection at the belle silicon vertex detector. Nuclear Instruments & Methods in Physics Research, Section A, 420:288-309.
  1013. Lapidot (Voitovetsky), I. and Guterman, H. (2001). VQ-based clustering algorithm of piecewise-dependant- data. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 95-101. Springer.
  1014. Lau, K. T. and Lee, S. T. (1998). A CMOS winner takes all circuit for self organizing neural networks. International Journal of Electronics, 84:131-136.
  1015. Lau, K. T., Mcalernon, P., and Slater, J. M. (1999). Discrimination of chemically similar organic vapors and vapor mixtures using the Kohonen network. Analyst, 125(1):65-70.
  1016. Lawrence, R. D., Almasi, G. S., and Rushmeier, H. E. (1999). A scalable parallel algorithm for self-organizing maps with applications to sparse data mining problems. Data Mining and Knowledge Discovery, 3:171-95.
  1017. Le Blanc, L. A., Hashemi, R. R., and Rucks, C. T. (2001). Pattern development for vessel accidents: A comparison of statistical and neural computing techniques. Expert Systems with Applications, 20(2):163-171.
  1018. Leder, C. and Rehtanz, C. (2001). Electric power system's stability assessment and online-provision of control actions using self-organizing maps. In Bio-Inspired Applications of Connectionism. 6th International Work- Conference on Artificial and Natural Neural Networks, IWANN 2001. Proceedings, Part II. (Lecture Notes in Computer Science Vol.2085). Springer-Verlag, Berlin, Germany, pages 704-10.
  1019. Lee, C.-H. and Yang, H.-C. (2001a). Developing an adaptive search engine for e-commerce using a web mining approach. In Proceedings International Conference on Information Technology: Coding and Computing. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 604-8.
  1020. Lee, C.-H. and Yang, H.-C. (2001b). Text mining of bilingual parallel corpora with a measure of semantic similarity. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 1, pages 470-475. Dept. of Information Management, Chang Jung University.
  1021. Lee, H. S. and Younan, N. H. (2000). Investigation into unsupervised clustering techniques. In Conference Proceedings-IEEE SOUTHEASTCON, pages 124-130, Piscataway, NJ. Mississippi State Univ, IEEE.
  1022. Lee, J. A., Donckers, N., and Verleysen, M. (2001a). Recursive learning rules for SOMs. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 67-72. Springer.
  1023. Lee, J. H., You, S. J., and Park, S. C. (2001b). New intelligent SOFM-based sampling plan for advanced process control. Expert Systems with Applications, 20(2):133-151.
  1024. Lee, J. H., Yu, S. J., and Park, S. C. (2001c). Design of intelligent data sampling methodology based on data mining. IEEE Transactions on Robotics and Automation, 17(5):637-649.
  1025. Lee, K. H., Park, Y. M., Kim, G. W., and Park, J. H. (2000a). An application of kohonen neural networks to dynamic security assessment. Transactions of the Korean Institute of Electrical Engineers, A, 49:253-8.
  1026. Lee, K. Y., Lim, S. Y., and Cho, S. W. (2000b). Human iris recognition system using wavelet transform and LVQ. Transactions of the Korean Institute of Electrical Engineers, D, 49:389-98.
  1027. Lee, M., Ban, S. W., Cho, J. K., Seo, C. J., and Jung, S. K. (1999). Modeling of saccadic movements using neural networks. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 4, pages 2386-9, Piscataway, NJ. IEEE Service Center.
  1028. Lee, M. L. and Schneider, G. (2001). Scaffold architecture and pharmacophoric properties of natural prod- ucts and trade drugs: Application in the design of natural product-based combinatorial libraries. Journal of Combinatorial Chemistry, 3(3):284-289.
  1029. Lee, R. and Ozdamar, O. (1999). Analysis of wavelet preprocessed auditory brainstem responses with self-organizing feature maps. In Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engi- neering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society., volume 1, page 448, Piscataway, NJ. IEEE Service Center.
  1030. Leinonen, L. (1999). Self-organizing map in categorization of voice qualities. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 329-334. Elsevier, Amsterdam.
  1031. Lendasse, A., Lee, J., Wertz, V., and Verleysen, M. (2000). Time series forecasting using CCA and kohonen maps. application to electricity consumption. In 8th European Symposium on Artificial Neural Networks. ESANN"2000. Proceedings. D-Facto, Brussels, Belgium, pages 329-34.
  1032. Lendasse, A., Verleysen, M., de Bodt, E., Gregoire, P., and Cottrell, M. (1998). Forecasting time-series by Kohonen classification. In Verleysen, M., editor, Proceedings of ESANN'98, pages 221-226, Bruxelles. Editions D Facto.
  1033. Lensu, A. and Koikkalainen, P. (1998). Analysis of multi-choice questionnaires through self-organizing maps. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of ICANN98, the 8th International Confer- ence on Artificial Neural Networks, volume 1, pages 304-310. Springer, London.
  1034. Lensu, A. and Koikkalainen, P. (1999). Similar document detection using self-organizing maps. In 1999 Third International Conference on Knowledge-Based Intelligent Information Engineering Systems. Proceedings., pages 174-7, Piscataway, NJ. IEEE Service Center.
  1035. Lescure, P., Meas Yedid, V., Dupoisot, H., and Stamon, G. (1999). Color segmentation of biological micro- scopic images. In Proceedings of the SPIE-The International Society for Optical Engineering, volume 3647, pages 182-93.
  1036. Leung, C. S. and Chan, L. W. (1999). Design of trellis-coded vector quantizers using Kohonen maps. Neural Networks, 12(6):907-914.
  1037. Leung, T. S., White, P. R., Collis, W., Brown, E., and Salmon, A. (1999). Characterization of paediatric heart murmurs using self-organizing map. In Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings, volume 2, page 926.
  1038. Leung, W. K. (2001). Solving application problems involving large real type data sets by single layered backpropagation networks. Neural Network World, 11:249-57.
  1039. Levitan, S. and Reggia, J. A. (2000). A computational model of lateralization and asymmetries in cortical maps. Neural Computation, 12(9):2037-62.
  1040. Lewis, O. M., Ware, J. A., and Jenkins, D. H. (2001). Identification of residential property sub-markets using evolutionary and neural computing techniques. Neural Computating & Applications, 10(2):108-119.
  1041. Li, B., Chellappa, R., Zheng, Q., Der, S., Nasrabadi, N., Chan, L., and Wang, L. (2001a). Experimental evalua- tion of FLIR ATR approaches-a comparative study. Computer Vision and Image Understanding, 84(1):5-24.
  1042. Li, D., Song, Y., and Ye, F. (2001b). On line monitoring of burning through for short circuit CO<sub>2</sub> arc welding based on the self-organize feature map neural networks. Chinese Journal of Mechanical Engi- neering (English Edition), 14(2):106-110.
  1043. Li, F. and Chen, C. (2000). Sizing a flexible spinning reserve level with artificial neural networks. In 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings. IEEE, Piscataway, NJ, USA, volume 2, pages 1005-10.
  1044. Li, J., Najmi, A., and Gray, R. M. (2000a). Image classification by a two-dimensional hidden Markov model. IEEE Transactions on Signal Processing, 48(2):517-533.
  1045. Li, N. and Li, Y. F. (2001a). Feature encoding for color image segmentation. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.4550, volume 4550, pages 127-31.
  1046. Li, R. and Kim, J. (2000). Image compression using fast transformed vector quantization. In Proceedings 29th Applied Imagery Pattern Recognition Workshop. IEEE Comput. Soc, Los Alamitos, CA, USA.
  1047. Li, R. Y., Kim, J., and Al-Shamakhi, N. (2002a). Image compression using transformed vector quantization. Image and Vision Computing, 20(1):37-45.
  1048. Li, S. and Li, T. (2001b). Interoperable web-based data mining system by java distributed object computing. In Proceedings of the Hawaii International Conference on System Sciences, page 68.
  1049. Li, S. and Wang, Y. (2001). The segmentation of kiln flame image based on neural networks. Chinese Journal of Scientific Instrument, 22:10-12.
  1050. Li, S.-T. (2002). A web-aware interoperable data mining system. Expert Systems with Applications, 22(2):135- 146.
  1051. Li, S. T., Chou, S. W., and Pan, J. J. (2000b). Multi-resolution spatio-temporal data mining for the study of air pollutant regionalization. In Proceedings of the Hawaii International Conference on System Sciences, page 33.
  1052. Li, S. T. and Li, T. S. (2001c). Interoperable web-based data mining system by java distributed object comput- ing. In Proceedings of the 34th Annual Hawaii International Conference on System Sciences. IEEE Comput. Soc, Los Alamitos, CA, USA.
  1053. Li, W. (1999). Parallel self-organizing map. Transactions of Nonferrous Metals Society of China (English Edition), 9(1):172-180.
  1054. Li, W. and da Silva, N. C. (1999a). Implementation of parallel self-organizing map for the classification of images. In Proceedings of the SPIE-The International Society for Optical Engineering, volume 3722, pages 284-92.
  1055. Li, W. and da Silva, N. C. (1999b). A study of parallel neural networks. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 2, pages 1113-16, Piscataway, NJ. IEEE Service Cen- ter.
  1056. Li, W., Parkin, R. M., Coy, J., and Gu, F. (2002b). Acoustic based condition monitoring of a diesel engine using self-organising map networks. Applied Acoustics, 63(7):699-711.
  1057. Liassidou, F., Michaelides, S. C., Neocleous, S. C., and Schizas, C. N. (1999). Identification of synoptic patterns on weather charts by artificial neural networks. In Engineering Applications of Neural Networks. Proceedings of the 5th International Conference on Engineering Applications of Neural Networks (EANN'99), pages 247-52, Torun, Poland. Wydawnictwo Adam Marszalek.
  1058. Lighttowler, N., Allen, A. R., Grant, H., Hendry, D. C., and Spracklen, C. T. (1999). The modular map. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 2, pages 851-6, Piscataway, NJ. IEEE Service Center.
  1059. Likas, A. (1999). A reinforcement learning approach to online clustering. Neural Computation, 11:1915-32.
  1060. Lim, K.-T., Nam, Y.-S., Kim, H.-K., and Chien, S.-I. (2000). Classification of handwritten numerals us- ing modular neural networks. In Proceedings of the International Conference on Artificial Intelligence. IC- AI'2000. CSREA Press, Athens, GA, USA, volume 2, pages 875-81.
  1061. Limboonruang, P., Thipakorn, B., and Demeechai, T. (2000). Zero redundancy error protection of images using self-organizing-maps. In IEEE APCCAS 2000. 2000 IEEE Asia-Pacific Conference on Circuits and Systems. Electronic Communication Systems. IEEE, Piscataway, NJ, USA, pages 89-92.
  1062. Lin, C.-C., Duann, J.-R., Cheng, H.-C., and Chen, J.-H. (1997). A cascade algorithm combined Kohonen feature map with fuzzy c-means applied in MR brain image segmentation. In Boom, H., Robinson, C., Rutten, W., Neuman, M., and Wijkstra, H., editors, Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Bridging Disciplines for Biomedicine', volume 3, pages 1079-80. IEEE, New York, NY, USA.
  1063. Lin, C. T., Chen, H. C., and Nunamaker, J. F. (1999). Verifying the proximity and size hypothesis for self- organizing maps. Journal of Management Information Systems, 16(3):57-70.
  1064. Lin, C. T., Lee, Y. C., and Pu, H. C. (2000). Satellite sensor image classification using cascaded architecture of neural fuzzy network. IEEE Transactions on Geoscience and Remote Sensing, 38:1033-43.
  1065. Lin, C. W., Der, S., Nasrabadi, N. M., and Rizvi, S. A. (1998a). Automatic target recognition using neural networks. In Proceedings of the SPIE-The International Society for Optical Engineering, volume 3466, pages 278-89.
  1066. Lin, H., Wang, X., Lu, J., and Yahagi, T. (2001). Analysis of a neural detector based on self-organizing map in a 16 QAM system. IEICE Transactions on Communications, E84-B(9):2628-2634.
  1067. Lin, J. H. J., Chang, J. S., and Chiueh, T. D. (1998b). Heterogeneous recurrent neural networks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, (3):489-499.
  1068. Lin, P. and Jules, K. (2001). An intelligent system for monitoring the microgravity environment quality on-board the international space station. In Conference Record-IEEE Instrumentation and Measurement Technology Conference, volume 3, pages 2117-2122. Cleveland State University, Mechanical Engineering Dept.
  1069. Lin, S. and Si, J. (1997). Weight convergence and weight density of the multi-dimensional SOFM algorithm. In Proceedings of the 1997 American Control Conference, volume 4, pages 2404-8. American Autom. Control Council, Evanston, IL, USA.
  1070. Lin, S. and Si, J. (1998). Weight-value convergence of the SOM algorithm for discrete input. Neural Compu- tation, 10(4):807-14.
  1071. Lin, T. Y. and Tseng, C. H. (2000). Optimum design for artificial neural networks: An example in a bicycle derailleur system. Engineering Applications of Artificial Intelligence, 13(1):3-14.
  1072. Lin, W. S. and Tsai, C. H. (2001). Self-organizing fuzzy control of multi-variable systems using learning vector quantization network. Fuzzy Sets and Systems, 124(2):197-212.
  1073. Lindsey, C. S. and Stromberg, M. (2000). Image classification using the frequencies of simple features. Pattern Recognition Letters, 21(3):265-268.
  1074. Liong, S.-Y., Lim, W.-H., Kojiri, T., and Hori, T. (2000). Advance flood forecasting for flood stricken bangladesh with a fuzzy reasoning method. Hydrological Processes, 14(3):431-448.
  1075. Liou, C. Y. and Tai, W. P. (1999). Conformal self-organization for continuity on a feature map. Neural Networks, 12(6):893-905.
  1076. Lipponen, S., Mäkikallio, T., Tulppo, M., and Röning, J. (1998). Finding structure in fitness data. In Proc. 2nd International Conference on The Practical Application of Knowledge Discovery and Data Mining, March 25-27, London, UK, pages 101-109.
  1077. Lisogurski, D. and Birch, G. E. (1998). Identification of finger flexions from continuous EEG as a brain computer interface. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond., volume 4, pages 2004-7, Piscataway, NJ. IEEE Service Center.
  1078. Liszka Hackzell, J. J. (2001). Categorization of fetal heart rate patterns using neural networks. Journal of Medical Systems, 25:269-76.
  1079. Liu, C., Konq, L., Shen, P., and Xia, D. (2001a). Multi-source remote sensing data fusion using fuzzy self- organization mapping network and modified dempster-shafer evidential reasoning method to classification. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.4556, volume 4556, pages 71-9.
  1080. Liu, C.-L. and Nakagawa, M. (2001). Evaluation of prototype learning algorithms for nearest-neighbor clas- sifier in application to handwritten character recognition. Pattern Recognition, 34(3):601-615.
  1081. Liu, C.-L., Sako, H., and Fujisawa, H. (2002). Performance evaluation of pattern classifiers for handwritten character recognition. International Journal on Document Analysis and Recognition, 4:191-204.
  1082. Liu, C. T., Tai, P. L., Chen, A. Y. J., Peng, C. H., and Wang, J. S. (2000a). A content-based medical teaching file assistant for CT lung image retrieval. In ICECS 2000. 7th IEEE International Conference on Electronics, Circuits and Systems. IEEE, Piscataway, NJ, USA, volume 1, pages 361-5.
  1083. Liu, C. T., Tai, P. L., Chen, A. Y. J., Peng, C.-H., and Wang, J. S. (2000b). A content-based scheme for CT lung image retrieval. In IEEE International Conference on Multi-Media and Expo, pages 1203-1206. Department of Computer Science, National Tsing Hua University.
  1084. Liu, H. and Shao, Y. (1998). An improved learning vector quantization neural network for land cover classi- fication with multi-temporal radarsat images. In Stein, T. I., editor, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings, volume 4, pages 1787-9. IEEE, New York, NY, USA.
  1085. Liu, J. C. and Pok, G. (1999). Texture edge detection by feature encoding and predictive model. In 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99., volume 2, pages 1105-8, Piscataway, NJ. IEEE Service Center.
  1086. Liu, J. N. K. and Lee, R. S. T. (1999). Rainfall forecasting from multiple point sources using neural net- works. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics., volume 3, pages 429-34, Piscataway, NJ. IEEE Service Center.
  1087. Liu, Q., Levinson, S., Wu, Y., and Huang, T. (2001b). Robot speech learning via entropy guided LVQ and memory association. In Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 2176-2181. FX Palo Alto Laboratory.
  1088. Liu, Q., Levinson, S., Wu, Y., and Huang, T. (2001c). Robot speech learning via entropy guided LVQ and memory association. In IJCNN'01. International Joint Conference on Neural Networks. Proceedings. IEEE, Piscataway, NJ, USA, volume 3, pages 2176-81.
  1089. Liu, Q., Rui, Y., Huang, T., and Levinson, S. (1999). Video sequence learning and recognition via dynamic SOM. In IEEE International Conference on Image Processing (4 Oct 24-Oct 28 1999), pages 93-97.
  1090. Liu, X., Cheng, G., and Wu, J. (1996). Analysing visual field data by self-organising maps. In Fourth European Congress on Intelligent Techniques and Soft Computing Proceedings, EUFIT '96, volume 2, pages 1435-9. Verlag Mainz, Aachen, Germany.
  1091. Liu, X. and Zheng, Y. (2000). Analysis on the parameters to affect behavior of rock-socketed segment of piles. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 19(3):383-386.
  1092. Liu, Y., Zhao, B., and Xia, S. W. (2000c). Self-organizing network with fuzzy hyperellipsoidal classifying and its application in unconstrained handwritten numeral recognition. Qinghua Daxue Xuebao/Journal of Tsinghua University, 40(9):120-124.
  1093. Liu, Y.-H. and Huang, H.-P. (2001). Off-line recognition of a handwritten chinese zither score. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 4, pages 2632-2637. Robotics Laboratory, Department of Mechanical Engineering, National Taiwan University.
  1094. Liu, Z. Q. (2001). Retrieving faces using adaptive subspace self-organising map. In Proceedings of 2001 Inter- national Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP 2001. IEEE, Piscataway, NJ, USA, pages 377-80.
  1095. Llobet, E., Hines, E. L., Gardner, J. W., and Franco, S. (1999). Non-destructive banana ripeness determination using a neural network-based electronic nose. Measurement Science & Technology, 10:538-48.
  1096. Lo, Y. S. and Pei, S. C. (1999). Color image segmentation using local histogram and self-organization of Kohonen feature map. In IEEE International Conference on Image Processing, volume 3, pages 232-235.
  1097. Lobo, V. J., Bandeira, N., and Moura Pires, F. (1998a). Distributed Kohonen networks for passive sonar based classification. In Proceedings of the International Conference on Multisource-Multisensor Information Fusion. FUSION '98, volume 1, pages 403-9, Athens, GA, USA. CSREA Press.
  1098. Lobo, V. J., Bandeira, N., and Moura Pires, F. (1998b). Ship recognition using distributed self organizing maps. In Engineering Benefits from Neural Networks. Proceedings of the International Conference EANN '98, pages 326-9. Systems Engineering Association, Turku, Finland.
  1099. Lobo, V. J., Swiniarski, R., and Moura-Pires, F. (1998c). Pruning a classifier based on a self-organizing map using boolean function formalization. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 3, pages 1910-15. IEEE, New York, NY, USA.
  1100. Lopez-Rubio, E., Munoz-Perez, J., and Gomez-Ruiz, J. A. (2001). Invariant pattern identification by self- organising networks. Pattern Recognition Letters, 22(9):983-990.
  1101. Lossmann, E. and Meister, A. (1998). Investigation of phase coupling of harmonic signal components using third order statistics and classification based on learning vector quantization. In BEC '98. Proceedings. 6th Biennial Conference on Electronics and Microsystems Technology. Tallin Tech. Univ, Tallinn, Estonia, pages 143-6.
  1102. Lowther, D. A. and Mai, W. (1998). On automatic mesh generation using Kohonen maps. IEEE Transactions on Magnetics, 34(5, pt.1):3391-4.
  1103. Lozano, S., Guerrero, F., Onieva, L., and Larraneta, J. (1998). Kohonen maps for solving a class of location- allocation problems. European Journal of Operational Research, 108(1):106-17.
  1104. Lu, J., Srikanchana, R., McClain, M., Wang, Y., Xuan, J., Sesterhenn, I., Freedman, M., and Mun, S. (2000). Statistical volumetric model for characterization and visualization of prostate cancer. Proceedings of SPIE- The International Society for Optical Engineering, 3976:142-153.
  1105. Lubkin, J. and Cauwenberghs, G. (1998). A learning parallel analog-to-digital vector quantizer. Journal of Circuits, Systems and Computers, 8:605-14.
  1106. Lubkin, J. and Cauwenberghs, G. (1999). VLSI implementation of fuzzy adaptive resonance and learning vector quantization. In Proceedings of the Seventh International Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems, pages 147-54, Los Alamitos, CA, USA. IEEE Computer Society.
  1107. Lubkin, J. and Cauwenberghs, G. (2002). VLSI implementation of fuzzy adaptive resonance and learning vector quantization. Analog Integrated Circuits and Signal Processing, 30(2):149-157.
  1108. Luo, J.-H. and Tseng, D.-C. (2001). Land cover classification of SPOT image by local majority voting. In In- ternational Geoscience and Remote Sensing Symposium (IGARSS), volume 6, pages 2931-2933. Department of Electronic Engineering, Ming-Hsin Institute of Technology, Institute of Electrical and Electronics Engineers Inc.
  1109. Luo, X., Singh, C., and Patton, A. D. (1999a). Loss-of-load state identification using self-organizing map. In 1999 IEEE Power Engineering Society Summer Meeting. Conference Proceedings., volume 2, pages 670-5, Piscataway, NJ. IEEE Service Center.
  1110. Luo, X., Singh, C., and Patton, A. D. (1999b). Using self-organizing map in identification of load-loss state. PowerTech Budapest 99. Abstract Records., page 132.
  1111. Luo, X., Singh, C., and Patton, A. D. (2000a). Power system reliability evaluation using self organizing map. In 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings. IEEE, Piscataway, NJ, USA, volume 2, pages 1103-8.
  1112. Luo, X., Singh, C., and Zhao, Q. (2000b). Loss-of-load probability calculation using learning vector quanti- zation. In PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings. IEEE, Piscataway, NJ, USA, volume 3, pages 1707-12.
  1113. Luttrell, S. P. (2001). Adaptive subspave encoders using stochastic vector quantisers. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 102-9. Springer.
  1114. Ma, F., Wang, W., Tsang, W. W., Tang, Z., Xia, S., and Tong, X. (1998). Probabilistic segmentation of volume data for visualization using SOM-PNN classifier. In IEEE Symposium on Volume Visualization, pages 71-8. IEEE, New York, NY, USA.
  1115. Ma, Q., Kanzaki, K., Murata, M., Uchimoto, K., and H., I. (2001a). Self-organizing semantic map of japanese nouns. Transactions of the Information Processing Society of Japan, 42:2379-91.
  1116. Ma, Q., Kanzaki, K., Murata, M., Uchimoto, K., and Isahara, J. (2000a). Self-organizing japanese semantic maps. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 188-94.
  1117. Ma, Q., Kanzaki, K., Murata, M., Utiyama, M., Uchimoto, K., and Isahara, H. (2000b). Self-organizing se- mantic maps of japanese nouns in terms of adnominal constituents. In Proceedings of the International Joint Conference on Neural Networks, volume 6, pages 91-96, Piscataway, NJ. Ministry of Posts and Telecommu- nications, IEEE.
  1118. Ma, X., Li, C., and Zhang, X. (2001b). The modification of intelligent target detection in nonstationary clutter. In CIE International Conference of Radar Proceedings, pages 324-328. Tsinghua University.
  1119. Ma, Y. and Li, N. (2001). Simulation studies of analog circuits fault approach based on self-organizing feature map neural networks. Journal of System Simulation, 13:582-4.
  1120. Macda, M. and Miyajima, H. (2001). Properties of deletion methods in competitive learning. In Proceedings- IEEE International Symposium on Circuits and Systems, volume 3, pages 707-710. Kurume Natl. College of Technology.
  1121. MacDonald, D. and Fyfe, C. (2000). Kernel self organizing map. International Conference on Knowledge- Based Intelligent Electronic Systems, Proceedings, KES, 1:317-320.
  1122. MacDonald, D., McGlinchey, S., Kawala, J., and Fyfe, C. (1999). Comparison of Kohonen, scale-invariant and GTM self-organising maps for interpretation of spectral data. In 7th European Symposium on Artificial Neural Networks. ESANN'99. Proceedings, pages 117-22, Brussels, Belgium. D-Facto.
  1123. Macek, T. and Snorek, M. (1999). Web-based simulation of artificial neural nets. In Modelling and Simulation: A Tool for the Next Millennium. 13th European Simulation Multiconference 1999, volume 1, pages 320-3, San Diego, CA, USA. SCS.
  1124. Maeno, T., Fujimura, K., Tokutaka, H., and Kishida, K. (1997). Optimization of TSP by SOM method. In Pro- ceedings of the 1997 International Conference on Neural Information Processing and Intelligent Information Systems, pages 1013-1016.
  1125. Mahonen, P., Cortiglioni, F., and Frantti, T. (2000). Automated galaxy survey classification using SOM and hybrid algorithms. In Proceedings of the IASTED International Conference. Signal and Image Processing. IASTED/ACTA Press, Anaheim, CA, USA, pages 245-50.
  1126. Mähönen, P., Cortiglioni, F., and Hakala, P. (2000). Automated galaxy survey classications using self- organizing maps. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computa- tion (NC'2000) May 23-26, 2000 in Berlin, Germany. VTT, Networking Research, P.O. Box 1100, FIN-90570
  1127. Oulu, Finland; University of Oulu, Department of Physical Sciences, Oulu, Finland; Tuorola Observatory, University of Turku, Finland, ICSC Academic Press.
  1128. Mailachalam, B. and Srikanthan, T. (2000). A robust parallel architecture for adaptive color quantization. In Proceedings International Conference on Information Technology: Coding and Computing. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 164-9.
  1129. Maksimovic, R. and Popovic, M. (1999). Classification of tetraplegics through automatic movement evalua- tion. Medical Engineering & Physics, 21:313-27.
  1130. Maksoud, T. M. A., Ahmed, M. R., and Koura, M. (2001). Improving wheel-workpiece contact detection using a hybrid neural network. Proceedings of The Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 215(11):1595-1602.
  1131. Malhotra, R. and Malhotra, D. K. (2000). Identifying potential loan defaulters in the credit union environment: a comparative analysis of statistical and neural network models. Journal of Information Technology Cases and Applications (JITCA), 2:20-48.
  1132. Malmgren, B. A. and Winter, A. (1999). Climate zonation in Puerto Rico based on principal components analysis and an artificial neural network. Journal of Climate, 12:977-85.
  1133. Malmstrom, K., Sitte, J., and Iske, B. (2001). Perception stimulated generation of simple robot navigation behaviour. In Choset, H. M., Gage, D. W., and Stein, M. R., editors, Proceedings of SPIE-The International Society for Optical Engineering, volume 4195, pages 228-239. School of Computing Science, Queensland University of Technology.
  1134. Mancuso, S. (2001). Clustering of grapevine (vitis vinifera l.) genotypes with kohonen neural networks. VITIS, 40(2):59-63.
  1135. Manian, V., Hernandez, R., and Vasquez, R. (2000). Classifier performance for SAR image classification. In International Geoscience and Remote Sensing Symposium (IGARSS), volume 1, pages 156-158, Piscataway, NJ. Univ of Puerto Rico at Mayaguez, IEEE.
  1136. Manickam, S. and Abidi, S. S. R. (2000). Unsupervised case classification using kohonen "self-organizing feature map" in a case-based reasoning system. In 2000 TENCON Proceedings. Intelligent Systems and Tech- nologies for the New Millennium. IEEE, Piscataway, NJ, USA, volume 2, pages 524-7.
  1137. Manping, L., Yuying, W., and Xiurong, Z. (1998). An approach to generate membership function by using Kohonen's SOFM nets. In Mira, J., Pasqual del Pobil, A., and Ali, M., editors, Methodology and Tools in Knowledge-Based Systems. 11th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems. IEA-98-AIE. Proceedings, volume 1, pages 220-4. Springer-Verlag, Berlin, Germany.
  1138. Mantyla, V. M., Mantyjarvi, J., Seppanen, T., and Tuulari, E. (2000). Hand gesture recognition of a mobile device user. In IEEE International Conference on Multi-Media and Expo, pages 281-284. Technical Research Centre of Finland.
  1139. Maragoudakis, M., Kermanidis, K., Fakotakis, N., and G, K. (2001). Learning automatic acquisition of sub- categorization frames using bayesian inference and support vector machines. In Proceedings 2001 IEEE International Conference on Data Mining. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 623-5.
  1140. Marco, S., Ortega, A., Pardo, A., and Samitier, J. (1998). Gas identification with tin oxide sensor array and self-organizing maps: adaptive correction of sensor drifts. IEEE Transactions on Instrumentation and Measurement, 47(1):316-21.
  1141. Marengo, E., Aceto, M., and Maurino, V. (2002). Classification of nebbiolo-based wines from piedmont (italy) by means of solid-phase microextraction-gas chromatography-mass spectrometry of volatile compounds. Jour- nal of Chromatography A, 943(1):123-137.
  1142. Marin, J., Ragsdale, D., and Sirdu, J. (2001). A hybrid approach to the profile creation and intrusion detection. In Proceedings DARPA Information Survivability Conference and Exposition II. DISCEX'01. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 1, pages 69-76.
  1143. Marinelli, A. M. P., Kaplan, L. M., and Nasrabadi, N. M. (1999a). SAR ATR using a modified learning vector quantization algorithm. In Proceedings of SPIE-The International Society for Optical Engineering, volume 3721, pages 343-354.
  1144. Marinelli, A. M. P., Kaplan, L. M., and Nasrabadi, N. M. (1999b). SAR ATR using learning vector quanti- zation. In Proceedings of the SPIE-The International Society for Optical Engineering, volume 3647, pages 14-25.
  1145. Marsland, S., Nehmzow, U., and Shapiro, J. (2000a). Novelty detection for robot neotaxis. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Department of Computer Science, University of Manchester, ICSC Academic Press.
  1146. Marsland, S., Nehmzow, U., and Shapiro, J. (2000b). A real-time novelty detector for a mobile robot. 3rd Eurel Workshop and Masterclass. European Advanced Robotics Systems Development. Univ. Salford, Salford, UK; 2000; 2 vol. 312+344 pp.p.8 pp, 2:8.
  1147. Martin-Del-Brio, B., Medrano-Marques, N., and Hernandez Sanchez, S. (1998). A low-cost neuroprocessor board for emulating the SOFM neural model. In 1998 IEEE International Conference on Electronics, Circuits and Systems. Surfing the Waves of Science and Technology., volume 3, pages 297-300, Piscataway, NJ. IEEE Service Center.
  1148. Martin-Merino, M. and Munoz, A. (2001). Self organizing map and sammon mapping for asymmetric prox- imities. In Artificial Neural Networks-ICANN 2001, Proceedings, pages 429-435.
  1149. Martin-Merino, M., Munoz, A., and Dimitriadis, Y. (2001). Incorporating asymmetry into SOM and sam- mon algorithms for visual map generation. In Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 1908-1913. University Pontificia of Salamanca.
  1150. Martin-Smith, P., Pelayo, F. J., Ros, E., and Prieto, A. (1999). Supervised VQ learning based on temporal inhibition. In Foundations and Tools for Neural Modeling. International Work-Conference on Artificial and Natural Neural Networks, IWANN'99. Proceedings, (Lecture Notes in Computer Science Vol.1606), volume 1, pages 610-20, Berlin, Germany. Springer-Verlag.
  1151. Martinez, P., Aguilar, P. L., Perez, R. M., Linaje, M., C., P. J., and A., P. (2001). Self-organizing map for hyperspectral image analysis. In Bio-Inspired Applications of Connectionism. 6th International Work- Conference on Artificial and Natural Neural Networks, IWANN 2001. Proceedings, Part II. (Lecture Notes in Computer Science Vol.2085). Springer-Verlag, Berlin, Germany, pages 208-18.
  1152. Martinez Cabeza de Vaca Alajarin, J. and Tomas Balibrea, L. M. (1999a). Automatic classification system of marble slabs in production line according to texture and color using artificial neural networks. In Com- puter Analysis of Images and Patterns. 8th International Conference, CAIP'99. Proceedings (Lecture Notes in Computer Science Vol.1689), pages 167-74, Berlin, Germany. Springer-Verlag.
  1153. Martinez Cabeza de Vaca Alajarin, J. and Tomas Balibrea, L. M. (1999b). Marble slabs quality classification system using texture recognition and neural networks methodology. In 7th European Symposium on Artificial Neural Networks. ESANN'99. Proceedings, pages 75-80, Brussels, Belgium. D-Facto.
  1154. Martins, W. and Meira e Silva, J. C. (2001). Multidimensional data ranking using self-organising maps and genetic algorithms. In Proceedings of the International Joint Conference on Neural Networks, volume 4, pages 2382-2387. Federal University of Goias, School of Electrical Engineering, PIRENEUS Research Group.
  1155. Mas Ribes, J. M. and Macq, B. (1998). Speeding up fractal image coding by combined DCT and Kohonen neural net method. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98, volume 2, pages 1085-8. IEEE, New York, NY, USA.
  1156. Masaru, T., Sigeru, O., and Toshihisa, K. (2000). Classification of three fatigue levels for bills using acous- tic frequency band energy patterns. Transactions of the Institute of Electrical Engineers of Japan, Part C, 120:1602-8.
  1157. Mathis, G. and Mousset, E. (1996). Combining a NN-based feature extractor with a classifier-a case study. In Solving Engineering Problems with Neural Networks. Proceedings of the International Conference on Engi- neering Applications of Neural Networks (EANN'96), volume 1, pages 483-6. Systems Engineering Associa- tion, Turku, Finland.
  1158. Mattfeldt, T., Gottfried, H. W., Schmidt, V., and Kestler, H. A. (2000). Classification of spatial textures in benign and cancerous glandular tissues by stereology and stochastic geometry using artificial neural networks. Journal of Microscopy-Oxford, 198:143-158.
  1159. Mattfeldt, T., Kestler, H. A., Hautmann, R., and Gottfried, H. W. (2001a). Prediction of postoperative prostatic cancer stage on the basis of systematic biopsies using two types of artificial neural networks. European Urology, 39(5):530-536.
  1160. Mattfeldt, T., Wolter, H., Kemmerling, R., Gottfried, H. W., and Kestler, H. A. (2001b). Cluster analysis of comparative genomic hybridization (CGH) data using self-organizing maps: Application to prostate carcino- mas. Analytical Cellular Pathology, 23(1):29-37.
  1161. Mayberry, M. R. and Miikkulainen, R. (2000). Combining maps and distributed representations for shift- reduce parsing. In Hybrid Neural Systems, pages 144-157.
  1162. Mayberry III, M. R. and Miikkulainen, R. (1999a). Combining maps and distributed representations for shift- reduce parsing. In Wermter, S. and Sun, R., editors, Hybrid Neural Symbolic Integration. Springer, New York.
  1163. Mayberry III, M. R. and Miikkulainen, R. (1999b). SARDSRN: A neural network shift-reduce parser. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99), Stockholm, Sweden.
  1164. Mayberry III, M. R. and Miikkulainen, R. (1999c). Using a sequential SOM to parse long-term dependencies. In Proceedings of the 21st Annual Meeting of the Cognitive Science Society (COGSCI-98), Hillsdale, NJ.
  1165. Erlbaum.
  1166. Mayer, N., Herrmann, J. M., and Geisel, T. (2000). Retinotopy and spatial phase in topographic maps. Neuro- computing, 32:447-452.
  1167. Mayer, N., Herrmann, M., Bauer, H. U., and Geisel, T. (1998). A cortical interpretation of ASSOMs. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of ICANN98, the 8th International Conference on Artificial Neural Networks, volume 2, pages 961-966. Springer, London.
  1168. Mayol Cuevas, W. W., Juarez Guerrero, J., and Munoz Gutierrez, S. (1998). First approach to tactile texture recognition. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics., 5:4246-4250.
  1169. Mazaeva, N., Ntuen, C., and Lebby, G. (2001). Self-organizing map (SOM) model for mental workload classification. In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference. IEEE, Piscataway, NJ, USA, volume 3, pages 1822-5.
  1170. Mcalernon, P., Slater, J. M., and Lau, K. T. (1999). Mapping of chemical functionality using an array of quartz-crystal microbalances in conjunction with Kohonen self-organizing maps. Analyst, 124(6):851-857.
  1171. McDermott, E. and Katagiri, S. (1994). Prototype-based minimum classification error/generalized probabilis- tic descent training for various speech units. Computer Speech & Language, 8(4):351-368.
  1172. McGlinchey, S. and Fyfe, C. (1998). Invariant feature maps for analysis of orientations in image data. In 6th European Symposium on Artificial Neural Networks. ESANN'98. Proceedings, pages 215-20, Brussels, Belgium. D-Facto.
  1173. McMullen, P. R. (2001). A kohonen self-organizing map approach to addressing a multiple objective, mixed- model JIT sequencing problem. International Journal of Production Economics, 72(1):59-71.
  1174. Medrano-Marques, N. J. and Martin-del Brio, B. (1999). Topology preservation in SOFM: an euclidean versus manhattan distance comparison. In Foundations and Tools for Neural Modeling. International Work- Conference on Artificial and Natural Neural Networks, IWANN'99. Proceedings, (Lecture Notes in Computer Science Vol.1606), volume 1, pages 601-9, Berlin, Germany. Springer-Verlag.
  1175. Mei, S. Q. and Xin, W. Z. (2000). Identification of dynamical nonlinear systems using improved self- organization neural network. i. Electric Machines and Control, 4:168-70.
  1176. Meinicke, P. and Ritter, H. (2000). Topographic local PCA maps. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Neuroinformatics Group, University of Bielefeld, ICSC Academic Press.
  1177. Melo, S. L., Caloba, L. P., and Nadal, J. (2000). Arrhythmia analysis using artificial neural network and decimated electrocardiographic data. In Computers in Cardiology, pages 73-76, Los Alamitos, CA. Federal Univ of Rio de Janeiro, IEEE.
  1178. Memmi, D. and Meunier, J.-G. (2000). Using competitive networks for text mining. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. LEIBNIZ-IMAG-CNRS, LANCI-UQAM, ICSC Academic Press.
  1179. Mendelson, S. and Nelken, I. (2001). Recurrence methods in the analysis of learning processes. Neural Computation, 13:1839-61.
  1180. Meng, Z. and Pao, Y.-H. (2000). Visualization and self-organization of multidimensional data through equal- ized orthogonal mapping. IEEE Transactions on Neural Networks, 11(4):1031-1038.
  1181. Menhaj, M. B. and Jahanian, H. R. (1999). An analytical alternative for SOM. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 3, pages 1939-42, Piscataway, NJ. IEEE Service Center.
  1182. Mercier, G., Mouchot, M. C., and Cazuguel, G. (1999). Joint classification and compression of hyperspectral images. In IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99., volume 4, pages 2035-7, Piscataway, NJ. IEEE Service Center.
  1183. Merelo, J. J., Prieto, A., Moran, F., Marabini, R., and Carazo, J. M. (1998). Automatic classification of biological particles from electron-microscopy images using conventional and genetic-algorithm optimized learning vector quantization. Neural Processing Letters, 8(1):55-65.
  1184. Merelo, J. J., Rivas, V., Romero, G., Castillo, P., Pascual, A., and Carazo, J. M. (1999). Improved automatic classification of biological particles from electron-microscopy images using genetic neural nets. In Engineer- ing Applications of Bio-Inspired Artificial Neural Networks. International Work-Conference on Artificial and Natural Neural Networks, IWANN'99. Proceedings, (Lecture Notes in Computer Science Vol.1607), volume 2, pages 373-82, Berlin, Germany. Springer-Verlag.
  1185. Merenyi, E., Singer, R., and Farrand, W. H. (1995). Classification of the LCVF AVIRIS test site with a Kohonen artificial neural network. In Summaries of the 4th Annual JPL Airborne Geoscience Workshop, volume 1, pages 117-120.
  1186. Merkl, D. (1998). Text classification with self-organizing maps: Some lessons learned. Neurocomputing, 21(1-3):61-77.
  1187. Merkl, D. (1999). Document classification with self-organizing maps. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 183-197. Elsevier, Amsterdam.
  1188. Merkl, D. and Hasenauer, H. (1998). Using neural networks to predict individual tree mortality. In Engineer- ing Benefits from Neural Networks. Proceedings of the International Conference EANN '98, pages 197-204. Systems Engineering Association, Turku, Finland.
  1189. Merkl, D. and Rauber, A. (2000a). Digital libraries-classification and visualization techniques. In Proceedings 2000 Kyoto International Conference on Digital Libraries: Research and Practice. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 434-8.
  1190. Merkl, D. and Rauber, A. (2000b). Uncovering the hierarchical structure of text archives by using an unsu- pervised neural network with adaptive architecture. In Knowledge Discovery and Data Mining, Proceedings, pages 384-395.
  1191. Meyer, B. (1998). Self-organizing graphs-a neural network perspective of graph layout. In Graph Drawing. 6th International Symposium, GD'98. Proceedings, pages 246-62, Berlin, Germany. Springer-Verlag.
  1192. Meyer-Base, A. (1998a). Dynamic analysis of continuous self-organizing cortical maps. Proceedings of the SPIE-The International Society for Optical Engineering, 3390:586-92.
  1193. Meyer-Base, A. (1998b). On the existence and stability of solutions in self-organizing cortical maps. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computa- tional Intelligence, volume 2, pages 1516-19. IEEE, New York, NY, USA.
  1194. Mi, Y., Ishii, M., and Tsoukalas, L. H. (2001). Flow regime identification methodology with neural networks and two-phase flow models. Nuclear Engineering and Design, 204(1-3):87-100.
  1195. Michaelides, S. C., Pattichis, C. S., and Kleovoulou, G. (2001). Classification of rainfall variability by using artificial neural networks. International Journal of Climatology, 21:1401-14.
  1196. Mihalik, J. and Labovsky, R. (2001). Neural network approaches for predictive vector quantization of an image. Neural Network World, 11(1):33-48.
  1197. Miikkulainen, R. (1995). Script-based inference and memory retrieval in subsymbolic story processing. Ap- plied Intelligence, 5:137-163.
  1198. Miikkulainen, R. (1997). Dyslexic and category-specific impairments in a self-organizing feature map model of the lexicon. Brain and Language, 59:334-366.
  1199. Miikkulainen, R. (1999). Text and discourse understanding: The DISCERN system. In Dale, R., Moisl, H., and Somers, H., editors, A Handbook of Natural Language Processing: Techniques and Applications for the Processing of Language as Text. Marcel Dekker, New York.
  1200. Miikkulainen, R., Bednar, J. A., Choe, Y., and Sirosh, J. (1999a). Modeling self-organization in the visual cortex. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 243-252. Elsevier, Amsterdam.
  1201. Miikkulainen, R., Bednar, J. A., Choe, Y., and Sirosh, J. (1999b). Modeling self-organization in the visual cortex. In Proceedings of WSOM'99 Workshop on Self-Organizing Maps, New York. Elsevier.
  1202. Mikami, D. and Hagiwara, M. (2000). Self-growing learning vector quantization with additional learning and rule extraction abilities. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 4, pages 2895-2900, Piscataway, NJ. Keio Univ, IEEE.
  1203. Mikami, D. and Hagiwara, M. (2001). Self-growing learning vector quantization with additional learning ability. Transactions of the Institute of Electrical Engineers of Japan, Part C, 121:1620-6.
  1204. Mikami, T. and Wada, M. (2001). Data visualization method for growing self-organizing networks with ant clustering algorithm. In Advances in Artificial Life. 6th European Conference, ECAL 2001. Proceedings (Lecture Notes in Artificial Intelligence Vol.2159). Springer-Verlag, Berlin, Germany, pages 623-6.
  1205. Mikhael, W. B. and Krishnan, V. (2001). Energy-based split vector quantizer employing signal representation in multiple transform domains. Digital Signal Processing: A Review Journal, 11(4):359-370.
  1206. Miki, T., Iwasaki, S., Horio, K., and Yamakawa, T. (1999a). Non-linear quantization method depending upon appearance frequency by using self-organising map. In 15th Fuzzy System Symposium (Osaka June 2-5, 1999), pages 315-318. in Japanese.
  1207. Miki, T., Izumi, S., and Yamakawa, T. (1999b). Self-organizing method with input vector transformation and its application to shape detection. In 15th Fuzzy System Symposium (Osaka, June 2-5, 1999), pages 305-308. in Japanese.
  1208. Miki, T., Oosako, Y., and Yamakawa, T. (1999c). A new interpolation algorithm employing self-organizing map. In 15th Fuzzy System Symposium (Osaka, June 2-5, 1999), pages 311-314. in Japanese.
  1209. Mikrut, Z. (2001). Recognition of objects normalized in log-polar space using kohonen networks. In ISPA 2001. Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. In conjunction with 23rd International Conference on Information Technology Interfaces. Univ. Zagreb, Zagreb, Croatia, pages 308-12.
  1210. Milano, M., Schmidhuber, J., and Koumoutsakos, P. (2001). Active learning with adaptive grids. In Artificial Neural Networks-ICANN 2001, Proceedings, pages 436-442.
  1211. Millan, J. R., Posenato, D., and Dedieu, E. (2002). Continuous-action q-learning. Machine-Learning, 49:247- 65.
  1212. Min-Kyu, S., Murata, J., and Hirasawa, K. (2001). Function approximation using LVQ and fuzzy sets. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 3, pages 1442- 1447. Dept. of Elec./Electron. Sys. Eng., Grad. Sch. of Info. Sci./Elec. Eng., Kyushu University.
  1213. Ming, H. Y., Abuja, N., and Kriegman, D. (2000). Face detection using mixtures of linear subspaces. In Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pages 70-6, Los Alamitos, CA, USA. IEEE Computer Society.
  1214. Ming, H. Y. and Ahuja, N. (1999). A data partition method for parallel self-organizing map. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 3, pages 1929-33, Piscataway, NJ. IEEE Service Center.
  1215. Ming, X. G. and Mak, K. L. (2000). Intelligent setup planning in manufacturing by neural networks based approach. Journal of Intelligent Manufacturing, 11(3):311-331.
  1216. Mitchison, G. J. and Swindale, N. V. (1999). Can hebbian volume learning explain discontinuities in cortical maps? Neural Computation.
  1217. Mitiche, A. and Lebidoff, M. (2001). Pattern classification by a condensed neural network. Neural Networks, 14(4-5):575-580.
  1218. Mitihata, M., Miyoshi, T., and Masuyama, H. (2000). A consideration on the labels of the self-organizing map after refresh learning. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 233-238.
  1219. Mitsukura, Y., Fukumi, M., and Akamatsu, N. (2000). Design of genetic fog occurrence forecasting system by using LVQ network. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 5, pages 3678-3681, Piscataway, NJ. Univ of Tokushima, IEEE.
  1220. Mizoguchi, K. and Hagiwara, M. (1999). A novel neural network for four-term analogy based on area repre- sentation. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 2, pages 1144-9, Piscataway, NJ. IEEE Service Center.
  1221. Mizoguchi, K. and Hagiwara, M. (2001). A novel neural network for four-term analogy based on area repre- sentation. Transactions of the Institute of Electrical Engineers of Japan, Part C, 121:1261-7.
  1222. Mocofan, M., Caleanu, C., Lacrama, D., and Alexa, F. (2000). Unsupervised texture image segmentation. In Proceedings of the 5th Seminar on Neural Network Applications in Electrical Engineering. NEUREL 2000. IEEE & Academic Mind, Piscataway, NJ, USA & Belgrade, Yugoslavia, pages 101-4.
  1223. Moldenhauer, O. and Lüdeke, M. K. B. (2000). NNN-a neural network model for net primary production of plants on a global scale. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. ICSC Academic Press.
  1224. Molina, J. M., Isasi, P., Berlanga, A., and Sanchis, A. (2000). Hydroelectric power plant management re- lying on neural networks and expert system integration. Engineering Applications of Artificial Intelligence, 13(3):357-369.
  1225. Moller, D. P. F. and Berger, A. (2000). Discrete event simulation based on an artificial neural network simula- tor. In Simulation and Modelling. Enablers for a Better Quality of Life. 14th European Simulation. Multicon- ference 2000. SCS, San Diego, CA, USA, pages 686-90.
  1226. Mongini, F. and Italiano, M. (2001). TMJ disorders and myogenic facial pain: a discriminative analysis using the mcgill pain questionnaire. PAIN, 91(3):323-330.
  1227. Mongini, F., Italiano, M., Raviola, F., and Mossolov, A. (2000). The mcgill pain questionnaire in patients with TMJ pain and with facial pain as a somatoform disorder. CRANIO: The Journal of Craniomandibular Practice, 18(4):249-256.
  1228. Moonasar, V. and Venayagamoorthy, G. K. (1999). Speaker identification using a combination of different parameters as feature inputs to an artificial neural network classifier. In 1999 IEEE Africon. 5th Africon Conference in Africa., volume 1, pages 189-94, Piscataway, NJ. IEEE Service Center.
  1229. Moonasar, V. and Venayagamoorthy, G. K. (2001). A committee of neural networks for automatic speaker recognition (ASR) systems. In Proceedings of the International Joint Conference on Neural Networks, vol- ume 4, pages 2936-2940. Dept. of Electronics Engineering, M L Sultan Technikon.
  1230. Moran, A. W., O'Reilly, P. G., and Irwin, G. W. (2001). Probability estimation algorithms for self-validating sensors. Control Engineering Practice, 9(4):425-438.
  1231. Moran, A. W., P, O., and Irwin, G. W. (2000). Probability estimation algorithms for self-validating sensors. In Algorithms and Architectures for Real-Time Control 2000, (AARTC'2000). Proceedings volume from the 6th IFAC Workshop. Elsevier Science, Kidlington, UK.
  1232. Morasso, P. (1990). Neural representation of motor synergies. Advanced Neural Computers, pages 51-9.
  1233. Morasso, P. (1992). Neural mechanisms of synergy formation. Human Movement Science, 11:169-80.
  1234. Morasso, P. (1997). Active perception and representation of space. In C. Di Natale, A. D. and Davide, F., editors, Artificial and natural perception, pages 22-28. World Scientific, Singapore.
  1235. Morasso, P., Baratto, L., Capra, R., Re, C., and Spada, G. (1999a). Use of neural networks for the evaluation of classification power of different posturographic parameters. In Proceed. EMBEC'99, Vienna.
  1236. Morasso, P., Baratto, L., Capra, R., and Spada, G. (1999b). Internal models in the control of posture. Neural Networks, 12:1173-1180.
  1237. Morasso, P., D'Alessio, P., and Sanguineti, V. (1992a). Distributed models of motor control. Functional Neurology, 4:23-30.
  1238. Morasso, P., Frisone, F., and Bruni, S. (1998a). Fast learning of dynamic compensation in motor control. In L. Niklasson, M. B. and Ziemke, T., editors, Perspective in Neural Computing (ICANN'98), volume II, pages 985-990, Heidelberg. Springer.
  1239. Morasso, P., Frisone, F., and Perico, L. (1998b). Self-organization and cortical dynamics. In L. Niklasson, M. B. and Ziemke, T., editors, Perspective in Neural Computing (ICANN'98), volume I, pages 373-377, Heidelberg. Springer.
  1240. Morasso, P., Mussa Ivaldi, F. A., Vercelli, G., and Zaccaria, R. (1989). A connectionist formulation of motor planning. Connectionism in Perspective, pages 413-20.
  1241. Morasso, P., Pagliano, S., and Pareto, A. (1992b). Neural models for handwriting recognition. In Impedovo, S. and Simon, J. C., editors, From Pixels to Features III, pages 423-440. Elsevier, Amsterdam.
  1242. Morasso, P., Pareto, A., and Sanguineti, V. (1992c). SOC-a self-organizing classifier. In Aleksander, I. and Taylor, J., editors, Artificial Neural Networks, 2, volume 2, pages 1223-1226. North-Holland, Amsterdam.
  1243. Morasso, P., Sanguineti, V., , and Spada, G. (1995a). Neuromorphic planning and control with a mixture of cost functions. In Proceedings of the Third European Congress on Intelligent Techniques and Soft Computing (EUFIT'95 Aachen, Germany, August 28-31), volume 3, pages 1586-1590.
  1244. Morasso, P. and Sanguineti, V. (1991). Neurocomputing concepts in motor control. In Paillard, J., editor, Brain and Space, pages 404-432. Oxford University Press, Oxford.
  1245. Morasso, P. and Sanguineti, V. (1992a). Equilibrium-point and self-organization. Behavioral and Brain Sci- ences, 15:781-782.
  1246. Morasso, P. and Sanguineti, V. (1992b). Neural models of distributed motor control. In Stelmach, G. E. and Requin, J., editors, Tutorials in Motor Behavior II, pages 3-30. Elsevier Science Publishers B.V., Amsterdam.
  1247. Morasso, P. and Sanguineti, V. (1992c). Neurocomputing aspects in modelling cursive handwriting. Acta Psychologica, 82:213-235.
  1248. Morasso, P. and Sanguineti, V. (1992d). SOBoS-a self-organized body-schema. In Aleksander, I. and Taylor, J., editors, Artificial Neural Networks, 2, volume 1, pages 487-490. North-Holland, Amsterdam.
  1249. Morasso, P. and Sanguineti, V. (1994). Self-organizing topographic maps and motor learning. In Cliff, D., Husbands, P., Meyer, J. A., and Wilson, S. W., editors, From Animals to Animats 3, pages 214-220. MIT Press.
  1250. Morasso, P. and Sanguineti, V. (1996a). How the brain can discover the existence of external egocentric space. Neurocomputing, 12:289-310.
  1251. Morasso, P. and Sanguineti, V. (1996b). Self-organizing body-schema for motor planning. Journal Motor Behavior, 26:131-148.
  1252. Morasso, P. and Sanguineti, V. (1997a). Learning tidal waves vs learning sensorimotor mappings. Behavioral and Brain Sciences, 20:260-261.
  1253. Morasso, P. and Sanguineti, V., editors (1997b). Self-organization, Cortical Maps and Motor Control. Elsevier Science Publ., Amsterdam.
  1254. Morasso, P., Sanguineti, V., and Frisone, F. (1997a). Topologic organization of context fields for sensorimotor coordination. Behavioral and Brain Sciences, 21(412-413).
  1255. Morasso, P., Sanguineti, V., Frisone, F., and Perico, L. (1998c). Coordinate-free sensorimotor processing: computing with population codes. Neural Networks, 11:1417-1428.
  1256. Morasso, P., Sanguineti, V., and Spada, G. (1995b). Neocortical dynamics in sensorimotor control. In Mira, J., editor, Brain Processes, Theories and Models, pages 503-512. MIT Press, Cambridge, Mass, USA.
  1257. Morasso, P., Sanguineti, V., and Spada, G. (1997b). A computational theory of targeting movements based on force fields and topology representing networks. Neurocomputing, 15:414-434.
  1258. Morasso, P. and Solari, M. (1991). A neural implementation of analogic planning methods. In Artificial Neural Networks. Proceedings of the 1991 International Conference. ICANN-91, volume 2, pages 1281-4, Amsterdam, Netherlands. North-Holland.
  1259. Morasso, P., Vercelli, G., and Zaccaria, R. (1990). Neuro-computing aspects in motor planning and control. In Neurocomputing, Algorithms, Architectures and Applications. Proceedings of the NATO Advanced Research Workshop, Berlin, Germany. Springer-Verlag.
  1260. Morasso, P. G. and Sanguineti, V. (1999). Cerebellar versus stiffness control. IEE Colloquium on Self-Learning Robots III Brianstyle Robotics: The Cerebellum Beyond Function Approximation, 28:1-3.
  1261. Morasso, P. G., Sanguineti, V., and Frisone, F. (1999c). Advances in modeling cortical maps. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 267-278. Elsevier, Amsterdam.
  1262. Morita, Y., Obu-Cann, K., Tokutaka, H., Fujimura, K., and Yoshihara, K. (2000). Data mining of chemical analysis. Shinku/Journal of the Vacuum Society of Japan, 43(3):263-267.
  1263. Morita, Y., Tokutaka, H., Fujimura, K., and Yoshihara, K. (2001). Chemical spectra analysis system using internet. Shinku/Journal of the Vacuum Society of Japan, 44(3):248-251.
  1264. Morlini, I. (1998). Kohonen networks and the influence of training on data structures. In Niranjan, M., Wilson, E., Constantinides, T., and Kung, S.-Y., editors, Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop, pages 370-9. IEEE, New York, NY, USA.
  1265. Morris, S. A., Wu, Z., and Yen, G. (2001). A SOM mapping technique for visualizing documents in a database. In Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 1914-1919. Sch. of Elec. and Comp. Engineering, Oklahoma State University.
  1266. Morton, P. R., Fix, E. L., and Calhoun, G. L. (1996). Hand Gesture Recognition Using Neural Networks. Final rept. Nov 93-Sep 95.
  1267. Moshou, D., Anthonis, J., and Ramon, H. (1998). An active suspension based on self-organizing maps. In Intelligent Components for Vehicles (ICV'98). Proceedings volume from the IFAC Workshop., Kidlington, UK. Elsevier Science.
  1268. Moshou, D., Clijmaus, L., Anthonis, J., Kennes, P., and Ramon, H. (1997a). Neural network based system identification of agricultural machinery. Mathematics and Control Applications in Agriculture and Horticul- ture, pages 151-6.
  1269. Moshou, D., De Ketelaere, B., Coucke, P., De Baerdemacker, J., and Ramon, H. (1997b). A hierarchical self-organizing map for egg breakage classification. Mathematics and Control Applications in Agriculture and Horticulture, pages 125-9.
  1270. Moshou, D., De Ketelaere, B., Vrindts, E., Kennes, P., De Baerdemaeker, J., and Ramon, H. (1999). Local linear mapping neural networks for pattern recognition of plants. In Control Applications and Ergonomics in Agriculture (CAEA'98). Proceedings volume from the IFAC Workshop., Kidlington, UK. Elsevier Science.
  1271. Moshou, D. and Ramon, H. (2000). Wavelets and self-organizing maps in financial time series analysis. Neural Network World, 10:231-8.
  1272. Moshou, D., Vrindts, E., De Ketelaere, B., De Baerdemaeker, J., and Ramon, H. (2001). A neural network based plant classifier. Computers and Electronics in Agriculture, 31(1):5-16.
  1273. Moszczynski, L. (2000). Classification of measurement results of experiments using statistical software and neural networks. Pomiary Automatyka Kontrola. no.11; Nov. 2000; p.8-10, pages 8-10.
  1274. Motter, M. A. (1998). Control of the NASA Langley 16-Foot Transonic Tunnel with the Self-Organizing Feature Map. PhD Dissertation.
  1275. Motter, M. A. (1999). Control of the NASA Langley 16-foot transonic tunnel with the self-organizing map. In Proceedings of the 1999 American Control Conference., volume 3, pages 1659-60, Piscataway, NJ. IEEE Service Center.
  1276. Motter, M. A. (2000). Predictive multiple model switching control with the self-organizing map. In Proceed- ings of the International Joint Conference on Neural Networks, volume 4, pages 317-322, Piscataway, NJ. NASA Langley Research Cent, IEEE.
  1277. Mouravliansky, N. A., Delibasis, K. K., Matsopoulos, G. K., and Nikita, K. S. (1999). A new method for the elastic registration of CT and MRI head images. In Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society., volume 2, page 1156, Piscataway, NJ. IEEE Service Center.
  1278. Muneesawang, P. and Guan, L. (2001). Automatic similarity learning using SOTM for CBIR of the WT/VQ coded images. In IEEE International Conference on Image Processing, volume 2, pages 749-752. School of Elec. and Info. Engr., The University of Sydney.
  1279. Murai, H., Omatu, S., and Oe, S. (2000). Improvement of classification accuracy by two neural networks and its application to land cover mapping. In International Geoscience and Remote Sensing Symposium (IGARSS), volume 2, pages 685-687, Piscataway, NJ. Shikoku Univ, IEEE.
  1280. Murashima, S., Kashima, M., and Fuchida, T. (1998). Topology preservation of self-organizing maps. Trans- actions of the Institute of Electronics, Information and Communication Engineers, J81D-II(10):2457-66.
  1281. Murashima, S., Kashima, M., and Fuchida, T. (2000). New method for measuring the topology preservation of self-organizing feature maps. Australian Journal of Intelligent Information Processing Systems, 6(2):97-104.
  1282. Murthy, C. N. S. G. and Venkatesh, Y. V. (1998). Encoded pattern classification using constructive learning algorithms based on learning vector quantization. Neural Networks, 11(2):315-22.
  1283. Muruzabal, J. (2001a). Evolving high-posterior self-organizing maps. In Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001. Proceedings, Part I (Lecture Notes in Computer Science Vol. 2084). Springer- Verlag, Berlin, Germany, pages 701-8.
  1284. Muruzabal, J. (2001b). On the emulation of kohonen's self-organization via single-map metropolis-hastings algorithms. In Computational Science-ICCS 2001. International Conference. Proceedings, Part II (Lecture Notes in Computer Science Vol.2074). Springer-Verlag, Berlin, Germany, pages 346-55.
  1285. Mussa Ivaldi, F. A., Morasso, P., N. Hogan, N., and Bizzi, E. (1989). Network models of motor systems with many degrees of freedom. In Fraser, M. D., editor, Advances in Control Networks and Large Scale Parallel Distributed Processing Models. Ablex Publ. Corp., Norwood, NJ.
  1286. Mussa Ivaldi, F. A., Morasso, P., and Zaccaria, R. (1988). Kinematic networks. A distributed model for representing and regularizing motor redundancy. Biological Cybernetics, 60:1-16.
  1287. Myers, D., Wong, K. W., and Fung, C. C. (2000). Self-organising maps use for intelligent data analysis. Australian Journal of Intelligent Information Processing Systems, 6:89-96.
  1288. Myllykoski, P. and Wiklund, O. (1997). Prediction of temper rolling force with neural networks. In Neural Networks in Engineering Systems. Proceedings of the 1997 International Conference on Engineering Appli- cations of Neural Networks, volume 1, pages 151-4. Systems Engineering Association, Turku, Finland.
  1289. Nababhushana, T. N., Veeramanju, K. T., and Shivanna (1998). Coherency identification using growing self or- ganizing feature maps (power system stability). In Proceedings of EMPD '98. 1998 International Conference on Energy Management and Power Delivery, volume 1, pages 113-16. IEEE, New York, NY, USA.
  1290. Nag, A. K. and Mitra, A. (2001). Recent patterns of economic development in the world: an exploratory data analysis using self-organizing maps. In Proceedings of the IASTED International Conference. Artificial Intelligence and Applications. ACTA Press, Anaheim, CA, USA, pages 115-20.
  1291. Nagino, N. and Yamada, S. (2000). Information gathering based on user's interest by multiple web robots. Transactions of the Institute of Electronics, Information and Communication Engineers D I, pages 780-8.
  1292. Nakajima, T., Takizawa, H., Kobayashi, H., and Nakamura, T. (1998). Kohonen learning with a mechanism, the law of the jungle, capable of dealing with nonstationary probability distribution functions. IEICE Trans- actions on Information and Systems, E81-D(6):584-91.
  1293. Nakajima, T., Takizawa, H., Kobayashi, H., and Nakamura, T. (1999). A topology preserving neural network for nonstationary distributions. IEICE Transactions on Information and Systems, pages 1131-5.
  1294. Nakamura, K., Yamamoto, S., and Itoh, T. (1999). Document image segmentation using neural networks. Journal of the Institute of Image Electronics Engineers of Japan, 28:106-15.
  1295. Nakamura, M., Sugimoto, I., and Kuwano, H. (1998). Pattern recognition of QCM chemical sensor responses using LVQ. Transactions of the Society of Instrument and Control Engineers, 34(8):877-83.
  1296. Nakamura, T., Ishida, Y., and Honda, T. (1996). Spoken word recognition using DP matching based on SOM clustering. In Solving Engineering Problems with Neural Networks. Proceedings of the International Conference on Engineering Applications of Neural Networks (EANN'96), volume 1, pages 273-6. Systems Engineering Association, Turku, Finland.
  1297. Nakayama, M., Sanematsu, H., and Shimizu, Y. (2000). A document indexing and retrieval method based on a teaching guideline for keyword searching educational information. Transactions of the Institute of Electronics, Information and Communication Engineers D I, pages 225-33.
  1298. Namba, M. and Ishida, Y. (1996). Speaker identification using the combination of DP-matching and LVQ clus- tering techniques. In Solving Engineering Problems with Neural Networks. Proceedings of the International Conference on Engineering Applications of Neural Networks (EANN'96), volume 1, pages 261-4. Systems Engineering Association, Turku, Finland.
  1299. Nassery, P. and Faez, K. (1998). Signature pattern recognition using moments invariant and a new fuzzy LVQ model. IEICE Transactions on Information and Systems, IMAGE Signal Proc, (12):1483-1493.
  1300. Nassery, P. and Faez, K. (2000a). Dynamic model for the seismic signals processing and application in seismic prediction and discrimination. IEICE Transactions on Information and Systems, E83-D(12):2098-2106.
  1301. Nassery, P. and Faez, K. (2000b). Seismic events discrimination using a new FLVQ clustering model. IEICE Transactions on Information and Systems, (7):1533-1539.
  1302. Natschläger, T., Ruf, B., and Schmitt, M. (2002). Self-Organizing Neural Networks-Recent Advances and Applications, volume 78 of Studies in Fuzziness and Soft Computing, chapter Unsupervised Learning and Selg-Organization in Networks of Spiking Neurons. Physica-Verlag Heidelberg.
  1303. Naude, J., Nel, N., and Kruger, J. (2000a). Initial results of stick-slip modelling and characterization by self- organizing map (SOM) to improve machine tool design. South African Journal of Science, 96(9-10):499-504.
  1304. Naude, J., Nel, N., and Kruger, J. (2000b). Stick-slip modelling by SOM (self-organising map): towards the intelligent design and selection of friction surface and material in machine tool design. Prace Naukowe Instytutu Technologii Maszyn i Automatyzacji Politechniki Wroclawskiej, Seria: Konferencje., pages 69-80.
  1305. Neagoe, V. and Fratila, I. (1999). A neural segmentation of multispectral satellite images. In Computational Intelligence. Theory and Applications. International Conference, 6th Fuzzy Days. Proceedings, pages 334-41, Berlin, Germany. Springer-Verlag.
  1306. Negri, S. and Belanche, L. A. (2001). Heterogeneous kohonen networks. In Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. 6th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2001. Proceedings, Part I (Lecture Notes in Computer Science Vol. 2084). Springer- Verlag, Berlin, Germany, pages 243-52.
  1307. Nehmzow, U. (2000). Map building through self-organisation for robot navigation. In Advances in Robot Learning. 8th European Workshop on Learning Robots, EWLR-8. Proceedings (Lecture Notes in Artificial Intelligence Vol.1812). Springer-Verlag, Berlin, Germany, pages 1-22.
  1308. Neuwirth, S., Tenhagen, A., and Lippe, W. M. (1998). Kohonen-SOM for the neuro-computer synapse 1 N110. In Proceedings of the 5th International Conference on Soft Computing and Information/Intelligent Systems. Methodologies for the Conception, Design and Application of Soft Computing, volume 1, pages 77- 80, Singapore. World Scientific.
  1309. Ng, A. and Smith, K. A. (2000). LOGSOM: Web usage mining by a self-organizing map. In Smart Engineer- ing System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems. Vol.10. Proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE 2000). ASME, New York, NY, USA, pages 495-500.
  1310. Ngan, S. C. and Hu, X. (1999). Analysis of functional magnetic resonance imaging data using self-organizing mapping with spatial connectivity. Magnetic Resonance in Medicine, 41:939-46.
  1311. Nguyen, P. T. A., Romagnoli, R., Fekete, P., Arnison, M. R., Guan, L., and Cogswell, C. (1998). A self-organizing map for extracting features of chromosomes in microscopy images. In Proceedings of the Ninth Australian Conference on Neural Networks (ACNN'98). Univ. Queensland, Brisbane, Qld.,Australia, pages 158-62.
  1312. Nielsen, C. F. and Passmore, P. J. (2000a). Achieving accurate colour image segmentation in 2d and 3d with LVQ classifiers and partial adaptable class-specific representation. In Proceedings Fifth IEEE Workshop on Applications of Computer Vision. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 72-8.
  1313. Nielsen, C. F. and Passmore, P. J. (2000b). A solution to the problem of segmentation near edges using adaptable class-specific representation. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 1, pages 436-40.
  1314. Ning, L., Sixin, M., and Youfu, L. (2001). Effective feature analysis for color image segmentation. Transac- tions of Nanjing University of Aeronautics & Astronautics, 18:206-12.
  1315. Nishida, T., Kurogi, S., and Saeki, T. (2001a). Adaptive vector quantization using re-initialization method. Transactions of the Institute of Electronics, Information and Communication Engineers D II, pages 1503-11.
  1316. Nishida, T., Kurogi, S., and Saeki, T. (2001b). An analysis of competitive and reinitialization learning for adap- tive vector quantization. In Proceedings of the International Joint Conference on Neural Networks, volume 2, pages 978-983. Dept. of Control Engineering, Kyushu Institute of Technology.
  1317. Nissinen, A. S. and Hyötyniemi, H. (1998a). Evolutionary self-organizing map. In 6th European Congress on Intelligent Techniques and Soft Computing. EUFIT '98, volume 3, pages 1596-600, Aachen, Germany. Verlag Mainz.
  1318. Nissinen, A. S. and Hyötyniemi, H. (1998b). Evolutionary training of behavior-based self-organizing map. In 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, pages 660-5. IEEE, New York, NY, USA.
  1319. Nissinen, A. S., Hyotyniemi, H., and Koivo, H. (2000). Evolutionary self-organizing model bank. In Control Systems, Preprints, Conference, pages 267-270, Norcross, GA. Helsinki Univ of Technology, TAPPI Press.
  1320. Nogami, Y., Jyo, Y., Yoshioka, M., and Omatu, S. (1997). Remote sensing data analysis by Kohonen feature map and competitive learning. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, volume 1, pages 524-529, Piscataway, NJ. Institute of Electrical and Electronics Engineers, Inc.
  1321. Nogami, Y., Jyo, Y., Yoshioka, M., and Omatu, S. (1998). Remote sensing data analysis by using Koho- nen feature map and competitive learning. Transactions of the Institute of Systems, Control and Information Engineers, 11(9):508-13.
  1322. Nolker, C. and Ritter, H. (2000). Parametrized SOMs for hand posture reconstruction. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 4, pages 139-44.
  1323. Nunes de Castro, L. and Von Zuben, F. J. (1999). An improving pruning technique with restart for the Kohonen self-organizing feature map. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 3, pages 1916-19, Piscataway, NJ. IEEE Service Center.
  1324. Obach, M., Wagner, R., Werner, H., and Schmidt, H. H. (2001). Modelling population dynamics of aquatic insects with artificial neural networks. Ecological Modelling, 146(1-3):207-217.
  1325. Obaidat, M. S., Khalid, H., and Sadoun, B. (1998). Ultrasonic transducer characterization by neural networks. Information Sciences, 107(1):195-215.
  1326. Obu-Cann, K., Fujimura, K., and Tokutaka, H. (2000a). Clustering by SOM (self-organising maps), MST (minimal spanning tree) and MCP (modified counter propagation). Australian Journal of Intelligent Informa- tion Processing Systems, 6:72-81.
  1327. Obu-Cann, K., Fujimura, K., Tokutaka, H., Ohkita, M., Inui, M., and Yamada, S. (2001a). Exploring power transformer database using self-organising maps (SOM) and minimal spanning tree (MST). In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 132-9. Springer.
  1328. Obu Cann, K., Fujimura, K., Tokutaka, H., Ohkita, M., M., I., and S., Y. (2002). Data mining with self- organising maps (SOM) and minimal spanning tree (MST). International Journal of Knowledge Based Intel- ligent Engineering Systems, 6:40-7.
  1329. Obu-Cann, K., Fujimura, K., Tokutaka, H., and Yoshihara, K. (2000b). Data mining from chemical spectra data using self-organising maps. Neural Network World, 10:217-30.
  1330. Obu-Cann, K., Fujimura, K., Tokutaka, H., Yoshihara, K., and of SASJ, M. M. G. (2000c). Application of self- organizing maps to data mining using chemical spectra. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 311-8.
  1331. Obu-Cann, K., Kikuo, F., Heizo, T., Masaaki, O., and I., M. (2001b). SOM an approach to data mining of power transformer database. Transactions of the Institute of Electrical Engineers of Japan, Part C, 121:1126- 32.
  1332. Obu-Cann, K., Morita, Y., Fujimura, K., Tokutaka, H., Ohkita, M., and Inui, M. (2000d). Data mining of power transformer database using self organising maps. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 201-6.
  1333. Obu-Cann, K., Tokutaka, H., Fujimura, K., and Yoshihara, K. (1999). Chemical analysis of AES, XPS and XRD data using self-organising maps. Journal of Surface Analysis, 5(1):208-211.
  1334. Obu-Cann, K., Tokutaka, H., Fujimura, K., and Yoshihara, K. (2000e). Chemical analysis using XPS data and self-organizing maps. Surface and Interface Analysis, 30(1):181-184.
  1335. Oddo, L. A., Doucette, P., and Agouris, P. (2000). Automated road extraction via the hybridization of self- organization and model based techniques. In Proceedings 29th Applied Imagery Pattern Recognition Work- shop. IEEE Comput. Soc, Los Alamitos, CA, USA.
  1336. Oh, K. S., Feng, Y., Kaneko, K., Makinouchi, A., and Bae, S. H. (2001a). SOM-based r*-tree for similarity retrieval. In Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 182-9.
  1337. Oh, K. S., Kaneko, K., and Makinouchi, A. (2001b). A method of highspeed similarity retrieval based on self- organizing maps. Research Reports on Information Science and Electrical Engineering of Kyushu University, 6(1):77-82.
  1338. Oh, S. K., Kim, M. S., and Lee, J. J. (2001c). Adapting the migration topology of macro-micro evolutionary algorithm by clustering the individuals using self-organizing map. In IEEE International Symposium on In- dustrial Electronics, volume 1, pages 308-311. Dept. of Elec. Eng. and Comp. Sci., Korea Adv. Inst. Sci. and Technol.
  1339. Oh, S. K., Kim, M. S., and Lee, J. J. (2001d). Adapting the migration topology of macro-micro evolutionary algorithm by clustering the individuals using self-organizing map. In ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings. IEEE, Piscataway, NJ, USA, volume 1, pages 308-11.
  1340. Ohta, R. and Saito, T. (2001). A growing self-organnizing algorithm for dynamic clustering. In International Joint Conference on Neural Networks, Washington, DC, USA, July 15-19. CD-ROM.
  1341. Oja, E. and Kaski, S. (1999). Kohonen Maps. Elsevier, Amsterdam.
  1342. Oja, E., Laaksonen, J., Koskela, M., and Brandt, S. (1999). Self-organizing maps for content-based image database retrieval. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 349-362. Elsevier, Amsterdam.
  1343. Oja, M., Nikkilä, J., Törönen, P., Wong, G., Castrén, E., and Kaski, S. (2002). Exploratory clustering of gene expression profiles of mutated yeast strains. In Zhang, W. and Shmulevich, I., editors, Computational And Statistical Approaches To Genomics. Kluwer Acadmic Publishers. In press.
  1344. Oka, S., Takefuji, Y., and Suzuki, T. (2000). Feature extraction of IKONOS images by self-organization topo- logical map. In Proceedings of the International Conference on Imaging Science, Systems, and Technology. CISST'2000. CSREA Press -Univ. Georgia, Athens, GA, USA, volume 2, pages 687-91.
  1345. Okada, N., Maruki, Y., Yoshida, A., Shimizu, Y., and E., K. (1999). A self-organizing visuo-motor map for a redundant manipulator in environments with obstacles. In Proceedings of the Ninth International Conference on Advanced Robotics. 99 ICAR. Japan Robot Assoc, Tokyo, Japan, pages 517-22.
  1346. Okada, N., Minamoto, K., and Kondo, E. (2001). Collision avoidance for a visuo-motor system with a re- dundant manipulator using a self-organizing visuo-motor map. In Proceedings of the IEEE International Symposium on Assembly and Task Planning, pages 104-109. Graduate Sch. of Eng., Kyushu University.
  1347. Ollikainen, V., Backstrom, C., and Kaski, S. (2002). Electronic editor: automatic content-based sequential compilation of newspaper articles. Neurocomputing, 43:91-106.
  1348. Omatu, S., Fujinaka, T., Kosaka, T., Yanagimoto, H., and Yoshioka, M. (2001). Italian lira classification by LVQ. In Proceedings of the International Joint Conference on Neural Networks, volume 4, pages 2947-2951. Osaka Prefecture University.
  1349. Ong, S. H., Yeo, N. C., Lee, K. H., Venkatesh, Y. V., and Cao, D. M. (2002). Segmentation of color images using a two-stage self-organizing network. Image and Vision Computing, 20(4):279-289.
  1350. Onwubolu, G. C. (1998). Artificial neural network-based approach for design of parts for cellular manufactur- ing. Artificial Intelligence in Design '98. Kluwer Academic Publishers, Dordrecht, Netherlands; 1998; x+679 pp.p.661-78, pages 661-78.
  1351. Onwubolu, G. C. (1999). Design of parts for cellular manufacturing using neural network-based approach. Journal of Intelligent Manufacturing, 10:251-65.
  1352. Oravec, M. (2001). Multilayer perceptron, radial basis function network, and self-organizing map in the problem of face recognition. Journal of Electrical Engineering, 52:284-8.
  1353. Oravec, M. and Jurica, P. (2001). Face recognition based on feature-extraction by self-organizing map and clas- sification by RBF networks. In Proceedings VIPromCom-2001. 3rd International Symposium on Video Pro- cessing and Multimedia Communications. Croatian Soc. Electron. Marine-ELMAR, Zadar, Croatia, pages 87-90.
  1354. Oreski, S., Zupan, J., and Glavic, P. (2001). Neural network classification of phase equilibrium methods. Chemical and Biochemical Engineering Quarterly, 15(1):3-12.
  1355. Ornes, C. and Sklansky, J. (1998). Visual neural classifier. IEEE Transactions on Systems, Man, and Cyber- netics. Part B: Cybernetics, 28(4):620-625.
  1356. Ortega, A., Marco, S., Perera, A., Sundic, T., Pardo, A., and Samitier, J. (2001). An intelligent detector based on temperature modulation of a gas sensor with a digital signal processor. Sensors and Actuators, B: Chemical, 78(1-3):32-39.
  1357. Ortega, A., Marco, S., Sundic, T., and Samitier, J. (2000). New pattern recognition systems designed for electronic noses. Sensors and Actuators, B: Chemical, 69(3):302-307.
  1358. Osogami, Y. and Ishida, Y. (1996). Speech synthesis using zero-phase impulse responses clustered by SOM. In Solving Engineering Problems with Neural Networks. Proceedings of the International Conference on En- gineering Applications of Neural Networks (EANN'96), volume 1, pages 281-4. Systems Engineering Asso- ciation, Turku, Finland.
  1359. Osowski, S. and Brudzewski, K. (2000). Fuzzy self-organizing hybrid neural network for gas analysis system. IEEE Transactions on Instrumentation and Measurement, 49(2):424-428.
  1360. Osowski, S. and Linh, T. H. (2000). Fuzzy clustering neural network for classification of ECG beats. In Proceedings of the International Joint Conference on Neural Networks, volume 5, pages 26-30, Piscataway, NJ. Warsaw Univ of Technology, IEEE.
  1361. Osowski, S. and Nghia, D. D. (2000). Neural networks for classification of 2-d patterns. In WCC 2000-ICSP 2000. 2000 5th International Conference on Signal Processing Proceedings. 16th World Computer Congress 2000. IEEE, Piscataway, NJ, USA, volume 3, pages 1568-71.
  1362. Otte, R. (1998). Selbstorganisierende Merkmalskarten zur multivariaten Datenanalyse komplexer technischer Prozesse. PhD thesis, Universität Dortmund.
  1363. Ouellette, R., Noda, H., Niimi, M., and Kawaguchi, E. (2000). Topological ordered color table for BPCS- steganography using indexed color images. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.3971, volume 3971, pages 502-9.
  1364. Ouellette, R., Noda, H., Niimi, M., and Kawaguchi, E. (2001). Topological ordered color table for BPCS steganography using indexed color images. Transactions of the Information Processing Society of Japan, 42:110-13.
  1365. Owechko, Y. (1996). Optical Neural Networks Based on Distributed Holographic Gratings. Final rept. 30 Sep 92-28 Feb 96.
  1366. Owens, J. and Hunter, A. (2000). Application of the self-organising map to trajectory classification. In Proceedings Third IEEE International Workshop on Visual Surveillance. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 77-83.
  1367. Ozdemir, D. and Akarun, L. (2001). Fuzzy algorithms for combined quantization and dithering. IEEE Trans- actions on Image Processing, 10(6):923-931.
  1368. Pahalawatta, P. V. and Jouny, I. (2000). Web-based handwritten character recognition system. In Proceedings of the IASTED International Conference. Signal and Image Processing. IASTED/ACTA Press, Anaheim, CA, USA, pages 179-85.
  1369. Pai, P.-F. (2000). Neuro-fuzzy approach in parts clustering. Annual Conference of the North American Fuzzy Information Processing Society-NAFIPS, pages 138-142.
  1370. Pai, P. F. and Lee, E. S. (2001). Parts clustering by self-organizing map neural network in a fuzzy environment. Computers and Mathematics with Applications, 42(1-2):179-188.
  1371. Pajares, G., Cruz, J. M., and Aranda, J. (1998a). Stereo matching based on the self-organizing feature-mapping algorithm. Pattern Recognition Letters, 19(3-4):319-30.
  1372. Pajares, G., de la Cruz, J. M., and Lopez Orozco, J. A. (1998b). Improving stereovision matching through supervised learning. Pattern Analysis and Applications, 1:105-20.
  1373. Pal, N. R. and Eluri, V. K. (1998). Two efficient connectionist schemes for structure preserving dimensionality reduction. IEEE Transactions on Neural Networks, 9:1142-1154.
  1374. Pal, N. R. and Laha, A. (2000). A multi-prototype classifier and its application to remotely sensed image analysis. Australian Journal of Intelligent Information Processing Systems, 6:110-18.
  1375. Panayiotopoulos, T. and Zacharis, N. Z. (2001). Machine learning and intelligent agents. Machine learning and its applications. Advanced lectures. Springer-Verlag, Berlin, Germany; 2001; viii+324 pp.p.281-5, pages 281-5.
  1376. Panayiotou, P. A., Pattichis, C., Jenkins, D., and Plimmer, F. (2000). Modular artificial neural network valua- tion system. In Proceedings of the Mediterranean Electrotechnical Conference-MELECON, volume 2, pages 457-460, Piscataway, NJ. Land Information Cent, IEEE.
  1377. Papadimitriou, S., Mavroudi, S., Vladutu, L., and Bezerianos, A. (2001). Ischemia detection with a self- organizing map supplemented by supervised learning. IEEE Transactions on Neural Networks, 12(3):503- 515.
  1378. Papamarkos, N. (1999). Color reduction using local features and a Kohonen self-organized feature map neural network. International Journal of Imaging Systems and Technology, 10(5):404-409.
  1379. Papamarkos, N. and Atsalakis, A. (2000). Gray-level reduction using local spatial features. Computer Vision and Image Understanding, 78(3):336-350.
  1380. Papamarkos, N., Atsalakis, A. E., and Strouthopoulos, C. P. (2002). Adaptive color reduction. IEEE Transac- tions on Systems, Man, and Cybernetics, Part B: Cybernetics, 32(1):44-56.
  1381. Papamarkos, N., Strouthopoulos, C., and Andreadis, I. (2000). Multithresholding of color and gray-level images through a neural network technique. Image and Vision Computing, 18:213-22.
  1382. Paquier, W. and Ibnkahla, M. (1998). Self-organizing maps for rapidly fading nonlinear channel equalization. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 2, pages 865-9. IEEE, New York, NY, USA.
  1383. Park, D. C. (2000). Centroid neural network for unsupervised competitive learning. IEEE Transactions on Neural Networks, 11:520-8.
  1384. Park, D. C. and Woo, Y. J. (2001). Weighted centroid neural network for edge preserving image compression. IEEE Transactions on Neural Networks, 12(5):1134-1146.
  1385. Park, G. H. and Lee, Y. J. (2000). Rate control algorithm using SOFM-based neural classifier. Electronics Letters, 36(12):1041-1042.
  1386. Park, Y. G., Lee, H. K., Kim, W. S., Lim, K. J., Kang, S., Ree, J., and Kim, B. (2000a). Classification of defects in solid insulation material by PD methods. In Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, volume 2, pages 749-752, Piscataway, NJ. Chungbuk Natl Univ, IEEE.
  1387. Park, Y. G., Lee, K. W., Jang, D. U., Kang, S. H., Jeong, K. H., Kim, W. S., Lee, Y. H., and Lim, K. J. (2000b). Properties and classification of patterns of air discharges. Transactions of the Korean Institute of Electrical Engineers, C, 49:19-23.
  1388. Parkinson, A. M. and Parpia, D. Y. (1998). Intensity encoding in unsupervised neural nets. Neural Networks, 11:723-730.
  1389. Partsinevelos, P., Stefanidis, A., and Agouris, P. (2001). Automated spatiotemporal scaling for video general- ization. In IEEE International Conference on Image Processing, volume 1, pages 177-180. Dept. of Spatial Information Eng., Natl. Ctr. Geogr. Info. and Analysis, University of Maine.
  1390. Pascual, A., Barcena, M., Merelo, J. J., and Carazo, J. M. (1999). Application of the fuzzy Kohonen clustering network to biological macromolecules images classification. In Engineering Applications of Bio-Inspired Arti- ficial Neural Networks. International Work-Conference on Artificial and Natural Neural Networks, IWANN'99. Proceedings, (Lecture Notes in Computer Science Vol.1607), volume 2, pages 331-40, Berlin, Germany. Springer-Verlag.
  1391. Pascual, A., Barcena, M., Merelo, J. J., and Carazo, J.-M. (2000a). Mapping and fuzzy classification of macromolecular images using self-organizing neural networks. Ultramicroscopy, 84(1):85-99.
  1392. Pascual, A., Barcéna, M., Merelo, J. J., and Carazo, J. M. (2000b). Self-organizing networks for mapping and clustering biological macromolecules images. In Malmgren, H., Boga, M., and Niklasson, L., editors, Artificial Neural Networks in Medicine and Biology, Prodeedings of the ANNIMAB-1 Conference, Göteborg, Sweden, 13-16 May 2000, pages 283-288.
  1393. Pascual-Marqui, R. D., Pascual-Montano, A. D., Kochi, K., and M., C. J. (2001). Smoothly distributed fuzzy c-means: A new self-organizing map. Pattern Recognition, 34(12):2395-2402.
  1394. Patrick, R. (2000). Curve forecast with the SOM algorithm: using a tool to follow the time on a kohonen map. In 8th European Symposium on Artificial Neural Networks. ESANN"2000. Proceedings. D-Facto, Brussels, Belgium, pages 353-8.
  1395. Pattichis, C. S., Christodoulou, C. I., Pattichis, M., Pantziaris, M., and Nicolaides, A. (2001). An integrated system for the assessment of ultrasonic imaging atherosclerotic carotid plaques. In IEEE International Con- ference on Image Processing, volume 1, pages 325-328. Department of Computer Science, University of Cyprus.
  1396. Patton, R., Webb, M., and Gaj, R. (2001). Covert operations detection for maritime applications. Canadian Journal of Remote Sensing, 27(4):306-319.
  1397. Pavlides, G., Papadimitriou, S., Mavroudi, S., Vladutu, L., and Bezerianos, A. (2002). The supervised network self-organizing map for classification of large data sets. Applied Intelligence, 16(3):185-203.
  1398. Pedrycz, W., Succi, G., Reformat, M., Musilek, P., and Bai, X. (2001). Self organizing maps as a tool for software analysis. In Canadian Conference on Electrical and Computer Engineering, volume 1, pages 93-98. Dept. of Elec. and Computer Eng., University of Alberta.
  1399. Pei, S.-C. and Lo, Y.-S. (1998). Color image compression and limited display using self-organization Kohonen map. IEEE Transactions on Circuits and Systems for Video Technology, 8(2):191-205.
  1400. Pelikan, E., Matejka, P., Slama, M., and Vinkler, K. (1996). Interactive forecasting of the electric load using Kohonen self-organizing feature maps. In WCNN'96. World Congress on Neural Networks. International Neural Network Society 1996 Annual Meeting, pages 443-6. Lawrence Erlbaum Associates, Mahwah, NJ, USA.
  1401. peng, W., guangmin, S., and xinming, Z. (2001). Handwritten character recognition based on hybrid neural networks. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.4555, volume 4555, pages 65-70.
  1402. Perez, C. A., Held, C. M., and Mollinger, P. R. (1999). Handwritten digit recognition based on prototypes created by euclidean distance. In Proceedings 1999 International Conference on Information Intelligence and Systems, pages 320-3, Los Alamitos, CA, USA. IEEE Computer Society Press.
  1403. Perez, C. A., Salinas, C. A., and Estevez, P. (2001). Designing biologically inspired receptive fields for neural pattern recognition technology. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 1, pages 58-63. Department of Electrical Engineering, Universidad de Chile.
  1404. Perus, M. (2001). Multi-level synergetic computation in the brain. Nonlinear Phenomena in Complex Systems, 4:157-93.
  1405. Petersohn, H. (1998). Assessment of cluster analysis and self-organizing maps. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(2):139-49.
  1406. Petrescu, A. and Tomescu, N. (1998). Kohonen neural nets in colours reduction of images. Electrotehnica, Electronica si Automatica, 46(5-6):22-4.
  1407. Peura, M. (1998). The self-organizing map of trees. Neural Processing Letters, 8(2):155-162.
  1408. Peura, M. (1999a). Attribute trees in image analysis-heuristic matching and learning techniques. In Proc. of International Conference on Image Analysis and Processing (ICIAP'99), Venice, Italy, September 27-29, pages 1160-1165.
  1409. Peura, M. (1999b). Self-organizing map of attribute trees. In ICANN99. Ninth International Conference on Artificial Neural Networks (IEE Conf. Publ. No.470), volume 1, pages 168-173, London, UK. IEE.
  1410. Peura, M. (2001). Attribute trees as adaptive object models in image analysis. Acta Polytechnica Scandinavica, Mathematics and Computing Series. no.Ma113; 2001; p.1-80, pages 1-80.
  1411. Pfurtscheller, G. and Pregenzer, M. (1999). LVQ and single trial EEG classification. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 317-328. Elsevier, Amsterdam.
  1412. Phaf, R. H., Den Dulk, P., Tijsseling, A., and Lebert, E. (2001). Novelty-dependent learning and topological mapping. Connection Science, 13(4):293-321.
  1413. Pham, D. T. and Awad, H. A. (2000). Function approximation using fuzzy Kohonen networks. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Intelligent Systems Laboratory, Systems Division, School of Engineering, University of Wales Cardiff, ICSC Academic Press.
  1414. Pham, D. T. and Chan, A. B. (1998). A novel firing rule for training Kohonen self-organising maps. In Thirteenth International Conference on Applications of Artificial Intelligence in Engineering AIENG XIII, pages 101-4, Southampton, UK. Computational Mechanics Publications.
  1415. Pham, D. T. and Sagiroglu, S. (2000). Neural network classification of defects in veneer boards. In Proceedings of the Institution of Mechanical Engineers, Part B (Journal of Engineering Manufacture), volume 214, pages 255-8.
  1416. Piepenbrock, C. and Obermayer, K. (1999). Effects of lateral competition in the primary visual cortex on the development of topographic projections and ocular dominance maps. Neurocomputing, 26:477-82.
  1417. Piepenbrock, C. and Obermayer, K. (2000). The effect of intracortical competition on the formation of topo- graphic maps in models of Hebbian learning. Biological Cybernetics, 82:345-53.
  1418. Pilla V., J. and Lopes, H. S. (2000). Detection of movement-related desynchronization of the EEG using neural networks. In Enderle, J., editor, Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings, volume 2, pages 1372-1376. Department of Electronics, CEFET-PR.
  1419. Pintore, M., Taboureau, O., Ros, F., and Chretien, J. R. (2001). Database mining applied to central nervous system (CNS) activity. European Journal of Medicinal Chemistry, 36(4):349-359.
  1420. Piras, A. and Germond, A. (1998). Local linear correlation analysis with the SOM. Neurocomputing, 21(1- 3):79-90.
  1421. Pitas, I., Kotropoulos, C., Nikolaidis, N., and Bors, A. G. (1997). Robust and adaptive techniques in self organizing neural networks. Nonlinear Analysis, Theory, Methods & Applications, 30:4517-4528.
  1422. Plebe, A. and Anile, A. M. (2002). A neural-network-based approach to the double traveling salesman prob- lem. Neural Computation, 14(2):437-471.
  1423. Pleshko, V. V., Ermakov, A. E., and Lipinskii, G. V. (2001). TopSOM: visualisation of document collections by means of self-organising maps of topics. Informatsionnye-Tekhnologii. no.8; 2001; p.8-11, pages 8-11.
  1424. Plesinger, A., Ruzek, B., and Bouskova, A. (2000). Statistical interpretation of WEBNET seismograms by artificial neural nets. Studia Geophysica et Geodaetica, 44(2):251-271.
  1425. Pletnev, I. V. and Zernov, V. V. (2002). Classification of metal ions according to their complexing properties: a data-driven approach. Analytica Chimica Acta, 455(1):131-142.
  1426. Podgornik, P. and Dobnikar, A. (1996). Modified art for character recognition. In Solving Engineering Prob- lems with Neural Networks. Proceedings of the International Conference on Engineering Applications of Neu- ral Networks (EANN'96), volume 1, pages 289-92. Systems Engineering Association, Turku, Finland.
  1427. Pok, G. and Liu, J. C. (1998). Texture classification by a two-level hybrid scheme. In Proceedings of the SPIE-The International Society for Optical Engineering, volume 3656, pages 614-22.
  1428. Pok, G. and Liu, J. C. (1999). Unsupervised texture segmentation based on histogram of encoded Gabor features and MRF model. IEEE International Conference on Image Processing, 3:208-211.
  1429. Polanco, X., Francois, C., and Lamirel, J. C. (2001). Using artificial neural networks for mapping of science and technology: A multi-self-organizing-maps approach. Scientometrics, 51(1):267-292.
  1430. Polani, D. (1997). Fitness functions for the optimization of Self-Organizing maps. In Bäck, T., editor, Pro- ceedings of the Seventh International Conference on Genetic Algorithms, pages 776-783. Morgan Kaufmann.
  1431. Polani, D. (1999). On the optimization of self-organizing maps by genetic algorithms. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 157-170. Elsevier, Amsterdam.
  1432. Polani, D. (2002). Self-Organizing Neural Networks-Recent Advances and Applications, volume 78 of Stud- ies in Fuzziness and Soft Computing, chapter Measures for the Organization of Self-Organizing Maps, pages 13-44. Physica-Verlag Heidelberg.
  1433. Polani, D. and Uthmann, T. (1992). Adaptation of Kohonen feature map topologies by genetic algorithms. In Männer, R. and Manderick, B., editors, Parallel Problem Solving from Nature, 2, pages 421-429. Elsevier Science Publishers B.V.
  1434. Polanski, J. and Walczak, B. (2000). Comparative molecular surface analysis (COMSA): A novel tool for molecular design. Computers and Chemistry, 24(5):615-625.
  1435. Polishchuk, V. and Kanevski, M. (2000). Comparison of unsupervised and supervised training of RBF neural networks. Case study: Mapping of contamination data. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Institute of Nuclear Safety, ICSC Academic Press.
  1436. Ponthieux, S. and Cottrell, M. (2001a). Living conditions: classification of households using the kohonen algorithm. European Journal of Economic and Social Systems, 15:69-84.
  1437. Ponthieux, S. and Cottrell, M. (2001b). Neural classification and "traditional" data analysis: an application to households' living conditions. In Bio-Inspired Applications of Connectionism. 6th International Work- Conference on Artificial and Natural Neural Networks, IWANN 2001. Proceedings, Part II. (Lecture Notes in Computer Science Vol.2085). Springer-Verlag, Berlin, Germany, pages 738-45.
  1438. Porrmann, M., Ruping, S., and Ruckert, U. (1999). Som hardware with acceleration module for graphical representation of the learning process. In Proceedings of the Seventh International Conference on Microelec- tronics for Neural, Fuzzy and Bio-Inspired Systems, pages 380-6, Los Alamitos, CA, USA. IEEE Computer Society.
  1439. Poulos, M., Rangoussi, M., and Alexandris, N. (1999). Neural network based person identification using EEG features. In 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99, volume 2, pages 1117-20, Piscataway, NJ. IEEE Service Center.
  1440. Pregenzer, M. and Pfurtscheller, G. (1999). Frequency component selection for an EEG-based brain computer interface (BCI). IEEE Transactions on Rehabilitation Engineering, 7(3).
  1441. Pregenzer, M., Pfurtscheller, G., and Flotzinger, D. (1994). Selection of electrode positions for an EEG-based brain computer interface (BCl) super(1)). Biomedizinische Technik, 39(10):264-269.
  1442. Priddy, K. L., Keller, P. E., and Angeline, P. J., editors (2001). Proceedings of SPIE-The International Society for Optical Engineering, volume 4390.
  1443. Prigent, C., Aires, F., Rossow, W., and Matthews, E. (2001). Joint characterization of vegetation by satellite observations from visible to microwave wavelengths: A sensitivity analysis. Journal of Geophysical Research, 106:20665-85.
  1444. Principe, J. C., Wang, L., and Motter, M. A. (1998). Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control. Proceedings of the IEEE, 86(11):2240-58.
  1445. Privitera, C. M. and Morasso, P. (1994a). The analysis of continuous temporal sequences by a map of sequen- tial leaky integrators. In 1994 IEEE International Conference on Neural Networks. IEEE World Congress on Computational Intelligence, volume 5, pages 3127-30, New York, NY, USA. IEEE.
  1446. Privitera, C. M. and Morasso, P. (1994b). A neural model for the execution of symbolic motor programs. In Marinaro, M. and Morasso, P., editors, International Conference on Artificial Neural Networks, pages 254- 257. Springer-Verlag, London,.
  1447. Proriol, J. (1993). MLP-RBF. A cooperative multi-modular neural network application in high-energy physics.
  1448. Puechmorel, S. and Ibnkahla, M. (1996). Manifold Kohonen maps. In WCNN'96. World Congress on Neu- ral Networks. International Neural Network Society 1996 Annual Meeting, pages 995-8. Lawrence Erlbaum Associates, Mahwah, NJ, USA.
  1449. Pulakka, K. and Kujanpa, V. (1998). Rough level path planning method for a robot using SOFM neural network. Robotica, 16(pt.4):415-23.
  1450. Pullwitt, R. and Der, R. (2001). Integrating contextual information into text document clustering with self- organising maps. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 54-60. Springer.
  1451. Purwins, H., Blankertz, B., and Obermayer, K. (2000). New method for tracking modulations in tonal music in audio data format. In Proceedings of the International Joint Conference on Neural Networks, volume 6, pages 270-275, Piscataway, NJ. CCRMA, IEEE.
  1452. Qiao, X. B., Jiang, B., Hou, T. J., and Xu, X. J. (2001). Representation of molecular electrostatic potentials of biopolymer by self-organizing feature map. Chinese Journal of Chemistry, 19(12):1172-1178.
  1453. qiao, X. J., Bin, L. Q., and Beng, Z. Y. (2000). Automatic classification of stellar spectra using SOFM method. Acta Astrophysica Sinica, 20:437-50.
  1454. Qiong, L., Ray, S., Levinson, S., Huang, T., and Huang, J. (1999). Temporal sequence learning and recog- nition with dynamic SOM. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 5, pages 2970-5, Piscataway, NJ. IEEE Service Center.
  1455. Qizhi, T., Xiaohai, H., li, J., Zhouyu, D., Xiaoqiang, W., and Deyuan, T. (2000). Color image segmenta- tion algorithm based on neural networks. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.4224, volume 4224, pages 109-13.
  1456. Quek, C., Wahab, A., and Aarit, S. (2000). POP-yager: A novel self-organizing fuzzy neural network based on the yager inference. In Proceedings of SPIE-The International Society for Optical Engineering, volume 4120, pages 14-25, Bellingham, WA. Nanyang Technological Univ, Society of Photo-Optical Instrumentation Engineers.
  1457. Raekelboom, S. and Van Hulle, M. M. (1998). The Softmap algorithm. Neural Processing Letters, 8:181-192.
  1458. Rahman, M., Yu, X., and Srinivasan, B. (1999a). A neural networks based approach for fast mining char- acteristic rules. In Advanced Topics in Artificial Intelligence. 12th Australian Joint Conference on Artificial Intelligence, AI'99. Proceedings (Lecture Notes in Artificial Intelligence Vol.1747). Springer-Verlag, Berlin, Germany, pages 36-47.
  1459. Rahman, S. M., Karmakar, G. C., and Bignall, B. (1998). Self-organising map for shape-based image classi- fication. In 13th International Conference on Computers and Their Applications, pages 291-4. International Society for Computers and Their Applications-ISCA, Cary, NC, USA.
  1460. Rahman, S. M., Karmaker, G. C., and Bignall, R. J. (1999b). Improving image classification using ex- tended run length features. In Visual Information and Information Systems. Third International Conference, VISUAL'99. Proceedings (Lecture Notes in Computer Science Vol.1614), pages 475-82, Berlin, Germany. Springer-Verlag.
  1461. Raivio, K. (1999). Receiver Structures Based on Self-Organizing Maps. PhD thesis, Helsinki University of Technology, Espoo, Finland.
  1462. Raivio, K., Henriksson, J., and Simula, O. (1998). Neural detection of QAM signal with strongly nonlinear receiver. Neurocomputing, 21(1-3):159-171.
  1463. Raivio, K., Simula, O., and Laiho, J. (2001). Neural analysis of mobile radio access network. In Proceedings 2001 IEEE International Conference on Data Mining. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 457-64.
  1464. Raivio, O., Riihijärvi, J., and Mähönen, P. (2000). Classifying and clustering the Internet traffic by Kohonen network. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. VTT, Networking Research, Wireless Internet Laboratory, ICSC Academic Press.
  1465. Rajaniemi, H. J. and Mahonen, P. (2002). Classifying gamma-ray bursts using self-organizing maps. Astro- physical Journal, 566(1):202-209.
  1466. Ralli, E. and Hirzinger, G. (1997). Robot path planning using Kohonen maps. In Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97, volume 3, pages 1224-9. IEEE, New York, NY, USA.
  1467. Rana, O. F. (2000). Automating parallel implementation of neural learning algorithms. International Journal of Neural Systems, 10:227-41.
  1468. Rantanen, J. T., Laine, S. J., Antikainen, O. K., Mannermaa, J. P., Simula, O. E., and Yliruusi, J. K. (2001). Visualization of fluid-bed granulation with self-organizing maps. Journal of Pharmaceutical and Biomedical Analysis, 24(3):343-352.
  1469. Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. (2001). A scalable content-addressable network. In Computer Communication Review, volume 31, pages 161-172. Dept. of Elec. Eng. and Comp. Sci., University of California, Berkeley.
  1470. Rau, J. D. and Wang, J. H. (1999). A voting principle of multiple features for chinese character recognition system using neural network classifiers. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics., volume 6, pages 874-8, Piscataway, NJ. IEEE Service Center.
  1471. Rauber, A. (1999). LabelSOM: on the labeling of self-organizing maps. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 5, pages 3527-32, Piscataway, NJ. IEEE Service Cen- ter.
  1472. Rauber, A., Dittenbach, M., and Merkl, D. (2000a). Automatically detecting and organizing documents into topic hierarchies: A neural network based approach to bookshelf creation and arrangement. In Research and Advanced Technology for Digital Libraries, Proceedings, pages 348-351.
  1473. Rauber, A. and Fruhwirth, M. (2001). Automatically analyzing and organizing music archives. In Research and Advanced Technology for Digital Libraries. 5th European Conference, ECDL 2001. Proceedings (Lecture Notes in Computer Science Vol.2163). Springer-Verlag, Berlin, Germany, pages 402-14.
  1474. Rauber, A. and Merkl, D. (1998a). Creating an order in distributed digital libraries by integrating independent self-organizing maps. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of ICANN98, the 8th International Conference on Artificial Neural Networks, volume 2, pages 773-778. Springer, London.
  1475. Rauber, A. and Merkl, D. (1998b). Finding structure in text archives. In 6th European Symposium on Artificial Neural Networks. ESANN'98. Proceedings, pages 179-84, Brussels, Belgium. D-Facto.
  1476. Rauber, A. and Merkl, D. (1998c). Organization of distributed digital libraries: a neural network-based ap- proach. In Intelligent Data Engineering and Learning. Perspectives on Financial Engineering and Data Min- ing. 1st International Symposium. IDEAL'98., pages 283-8, Singapore. Springer-Verlag.
  1477. Rauber, A. and Merkl, D. (1999a). Automatic labeling of self-organizing maps: making a treasure-map reveal its secrets. In Methodologies for Knowledge Discovery and Data Mining. Third Pacific-Asia Conference, PAKDD-99. Proceedings, pages 228-37, Berlin, Germany. Springer-Verlag.
  1478. Rauber, A. and Merkl, D. (1999b). Mining text archives: Creating readable maps to structure and describe document collections. In Principles of Data Mining and Knowledge Discovery, pages 524-529.
  1479. Rauber, A. and Merkl, D. (1999c). SOMLib: a digital library system based on neural networks. In Digital 99 Libraries. Fourth ACM Conference on Digital Libraries. ACM, New York, NY, USA, pages 240-1.
  1480. Rauber, A. and Merkl, D. (1999d). The SOMLib digital library system. In Research and Advanced Technology for Digital Libraries, Proceedings, pages 323-342.
  1481. Rauber, A. and Merkl, D. (1999e). Using self-organizing maps to organize document archives and to char- acterize subject matter: how to make a map tell the news of the world. In Database and Expert Systems Applications. 10th International Conference, DEXA'99 (Lecture Notes in Computer Science Vol.1677), pages 302-11, Berlin, Germany. Springer-Verlag.
  1482. Rauber, A. and Merkl, D. (2000). Providing topically sorted access to subsequently released newspaper edi- tions or: how to build your private digital library. In Database and expert systems applications. 11th Interna- tional Conference, DEXA 2000. Proceedings (Lecture Notes in Computer Science Vol.1873). Springer-Verlag, Berlin, Germany, pages 499-508.
  1483. Rauber, A., Schweighofer, E., and Merkl, D. (2000b). Text classification and labelling of document clusters with self-organising maps. OEGAI Journal, 19:17-23.
  1484. Rauber, A., Tomsich, P., and Merkl, D. (2000c). <sub>par</sub>SOM: A parallel implementation of the self-organizing map exploiting cache effects: Making the SOM fit for interactive high-performance data anal- ysis. In Proceedings of the International Joint Conference on Neural Networks, volume 6, pages 177-182, Piscataway, NJ. Vienna Univ of Technology, IEEE.
  1485. Raviwongse, R., Allada, V., and Sandidge Jr., T. (2000). Plastic manufacturing process selection method- ology using self-organizing map (SOM)/fuzzy analysis. International Journal of Advanced Manufacturing Technology, 16(3):155-161.
  1486. Ray, S. and Chan, A. (2001). Automatic feature extraction from wavelet coefficients using genetic algorithms. In Neural Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Work- shop. IEEE, Piscataway, NJ, USA, pages 233-41.
  1487. Rehtanz, C. (1999). Visualisation of voltage stability in large electric power systems. In IEE Proceedings Generation, Transmission and Distribution, volume 146, pages 573-6.
  1488. Rehtanz, C. and Kuhlmann, D. (1998). Applications of the self-organizing map in electric power systems. In Proc. EUFIT'98, 6th European Congress on Intelligent Techniques & Soft Computing, volume 1, pages 195-199. ELITE Foundation, Aachen, Germany.
  1489. Reinhardt, L., Simelius, K., Jokiniemi, T., Nenonen, J., Tierala, I., Toivonen, L., and Katila, T. (1998). Clas- sification of body surface potential map sequences during ventricular activation using Kohonen networks. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biol- ogy Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond., volume 3, pages 1344-7, Piscataway, NJ. IEEE Service Center.
  1490. Reinhardt, L., Simelius, K., Nenonen, J., Tierala, I., Mäkijärvi, M., Toivonen, L., and Katila, T. (1999). Source localization of ventricular arrhythmias using self-organizing neural networks. Computers in Cardiol- ogy, 26:331-4.
  1491. Reinhardt, L., Vesanto, R., Montonen, J., Fetsch, T., Mäkijärvi, M., Sierra, G., and Breithardt, G. (1997). Ap- plication of learning vector quantization for localization of myocardial infarction. In Boom, H., Robinson, C., Rutten, W., Neuman, M., and Wijkstra, H., editors, Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Bridging Disciplines for Biomedicine', volume 3, pages 921-2. IEEE, New York, NY, USA.
  1492. Rendon, E., Salgado, L., Menendez, J. M., and Garcia, N. (1997). Adaptive palette determination for color images based on Kohonen networks. In Proceedings of the International Conference on Image Processing, volume 1, pages 830-3. IEEE Computer Society, Los Alamitos, CA, USA.
  1493. Resta, M. (1998). A hybrid neural network system for trading financial markets. In Deboeck, G. and Kohonen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 106-116. Springer, London.
  1494. Resta, M. (1999). Hybrid neural networks vs nonlinear time series models in financial forecasting. In Pro- ceedings of the International ICSC Congress on Computational Intelligence Methods and Applications. ICSC Academic Press, Zurich, Switzerland.
  1495. Resta, M. (2000). ATA: The artificial technical analyst building intra-day market strategies. International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES, 2:729-732.
  1496. Resta, M. (2002). Self-Organizing Neural Networks-Recent Advances and Applications, volume 78 of Studies in Fuzziness and Soft Computing, chapter Self-Organizing Maps and Financial Forecasting: an Application, pages 185-216. Physica-Verlag Heidelberg.
  1497. Reutterer, T. and Natter, M. (2000). Segmentation-based competitive analysis with MULTICLUS and topology representing networks. Computers and Operations Research, 27(11):1227-1247.
  1498. Reynolds, R., Resssom, H., and Musavi, M. (2001). Use of clustering to improve performance in fuzzy gene expression analysis. In International Joint Conference on Neural Networks, Washington, DC, USA, July 15- 19. CD-ROM.
  1499. Rezai Rad, G. A. and Green, R. J. (1997). A competitive learning algorithm for non-zero memory codebook design in encoding of CT sequences. In Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering'., volume 3, pages 1342-6, Piscataway, NJ. IEEE Service Center.
  1500. Riadokoro, H., Sato, K., and Ishii, M. (2000). Acquisition of world image and self-localization using sequential view images. Transactions of the Institute of Electronics, Information and Communication Engineers D II, pages 2587-96.
  1501. Ribes, J. M. M., Simon, B., and Macq, B. (2001). Combined kohonen neural networks and discrete cosine transform method for iterated transformation theory. SIGNAL PROCESSING-IMAGE COMMUNICATION, 16(7):643-656.
  1502. Riesenhuber, M., Bauer, H. U., Brockmann, D., and Geisel, T. (1998). Breaking rotational symmetry in a self-organizing map model for orientation map development. Neural Computation, 10(3):717-30.
  1503. Riqueline, J., Martinez, J. L., Gomez, A., and Goma, D. C. (2000). Possibilities of artificial neural networks in short-term load forecasting. In Proceedings of the IASTED International Conference Power and Energy Systems. IASTED/ACTA Press, Anaheim, CA, USA, pages 165-70.
  1504. Ritter, H. (1997). Self-organizing maps for robot control. In Gerstner, W., Germond, A., Hasler, M., and Nicoud, J. D., editors, Artificial Neural Networks-ICANN '97. 7th International Conference Proceedings, pages 675-84. Springer-Verlag, Berlin, Germany.
  1505. Ritter, H. (1998a). Applications of the self-organizing map in electric power systems. In Proc. EUFIT'98, 6th European Congress on Intelligent Techniques & Soft Computing, volume 1, pages 200-204. ELITE Founda- tion, Aachen, Germany.
  1506. Ritter, H. (1998b). Robotics applications of the self-organizing map. In 6th European Congress on Intelligent Techniques and Soft Computing. EUFIT '98, volume 1, pages 200-4, Aachen, Germany. Verlag Mainz.
  1507. Ritter, H. (1999). Self-organizing maps on non-euclidean spaces. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 97-110. Elsevier, Amsterdam.
  1508. Rizvi, S. A. and Nasrabadi, N. M. (1999). Neural networks for image coding: A survey. In Proceedings of SPIE-The International Society for Optical Engineering, volume 3647, pages 46-57.
  1509. Rizvi, S. A. and Nasrabadi, N. M. (2001a). Clutter-rejection technique for FLIR imagery using dynamic ROI extraction. In Nasrabadi, N. M. and Katsaggelos, A. K., editors, Proceedings of SPIE-The International Society for Optical Engineering, volume 4305, pages 1-10. Dept. of Eng. Science and Physics, College of Staten Island, University of New York.
  1510. Rizvi, S. A. and Nasrabadi, N. M. (2001b). Neural network algorithms for automatic target recognition us- ing forward-looking infra-red imagery: a survey. In PINSA A (Proceedings of the Indian National Science Academy) Part A (Physical Sciences). vol.67, no.2, volume 67, pages 243-76.
  1511. Rizvi, S. A., Nasrabadi, N. M., and Der, S. Z. (1999). A clutter rejection technique for FLIR imagery using region-based principal component analysis. In Proceedings 1999 International Conference on Image Process- ing, volume 4, pages 415-19, Piscataway, NJ. IEEE Service Center.
  1512. Rizvi, S. A., Saadawi, T. N., and Nasrabadi, N. M. (2000). A clutter rejection technique for FLIR imagery using region based principal component analysis. Pattern Recognition, 33:1931-3.
  1513. Rizzo, R. (2001). LBG-m: A modified LBG architecture to extract high-order neural structures. In Proceedings of the International Joint Conference on Neural Networks, volume 2, pages 779-783. CNR, ITDF.
  1514. Rizzo, R., Allegra, M., and Fulantelli, G. (1999). Hypertext-like structures through a SOM network. In Hypertext '99. Returning to our Diverse Roots. The 10th ACM Conference on Hypertext and Hypermedia. ACM, New York, NY, USA, pages 71-2.
  1515. Rodriguez Arroyo, J. M., Allinson, N., and Beddoes, A. J. (2001). Self-organising maps for the condition mon- itoring of 11kV paper insulated cables. In International Joint Conference on Neural Networks, Washington, DC, USA, July 15-19. CD-ROM.
  1516. Rodríguez Arroyo, J. M., Boddoes, A. J., and Allinson, N. M. (2001). Self-organising maps for condition assessment of paper isunlated cables. In Allison, N., Yin, H., Allison, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 253-8. Springer.
  1517. Rogozan, A. and Deleglise, P. (1998). Hybrid hidden Markov model/neural network models for speechreading. In 6th European Symposium on Artificial Neural Networks. ESANN'98. Proceedings, pages 377-82, Brussels, Belgium. D-Facto.
  1518. Roh, Y. J. and Cho, H. S. (2001). Design and analysis of x-ray digital tomosynthesis system. In Proceedings of the SICE Annual Conference, pages 252-258. Department of Mechanical Engineering, Korea Adv. Inst. Sci. and Technology.
  1519. Roh, Y. J., Ko, K. W., Cho, H. S., Kim, H. C., Joo, H. N., and Kim, S. K. (1999). Inspection of ball grid array (BGA) solder joints using x-ray cross-sectional images. In Proceedings of SPIE-The International Society for Optical Engineering, volume 3836, pages 168-178.
  1520. Romero, G., Castillo, P. A., Merelo, J. J., and Prieto, A. (2001). Using SOM for neural network visualization. In Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. 6th International Work- Conference on Artificial and Natural Neural Networks, IWANN 2001. Proceedings, Part I (Lecture Notes in Computer Science Vol. 2084). Springer-Verlag, Berlin, Germany, pages 629-36.
  1521. Roobaert, D. and Van Hulle, M. M. (1998). The SIM neural module: self-organized learning of 2D invariant representations. In Proceedings of SSAB98, pages 153-156, Uppsala, Sweden.
  1522. Ros, F., Audouze, K., Pintore, M., and Chretien, J. R. (2000). Hybrid systems for virtual screening: Interest of fuzzy clustering applied to olfaction. SAR and QSAR in Environmental Research, 11(3-4):281-+.
  1523. Rousset, P. and Guinot, C. (2001). Distance between kohonen classes visualization tool to use SOM in data set analysis and representation. In Bio-Inspired Applications of Connectionism. 6th International Work- Conference on Artificial and Natural Neural Networks, IWANN 2001. Proceedings, Part II. (Lecture Notes in Computer Science Vol.2085). Springer-Verlag, Berlin, Germany, pages 119-26.
  1524. Roussinov, D. G. and Chen, H. (1998). A scalable self-organizing map algorithm for textual classification: a neural network approach to thesaurus generation. CC-AI, The Journal for the Integrated Study of Artificial Intelligence, Cognitive Science and Applied Epistemology, 15(1-2):81-111.
  1525. Roussinov, D. G. and Chen, H. (1999). Document clustering for electronic meetings: An experimental com- parison of two techniques. Decision Support Systems, 27(1):67-79.
  1526. Roverso, D. (2000). Soft computing tools for transient classification. Information Sciences, 127(3):137-156.
  1527. Roverso, D. and Fantoni, P. F. (1998). ALADDIN: a neural classifier of fast transients for alarm filtering in nu- clear power plants. In Fuzzy Logic and Intelligent Technologies for Nuclear Science and Industry. Proceedings of the 3rd International FLINS Workshop, Singapore. World Scientific.
  1528. Rubo, Z., Yu, S., Xingoe, W., Guangmin, Y., and Guochang, G. (2000). Research on reinforcement learning of the intelligent robot based on self-adaptive quantization. In Proceedings of the 3rd World Congress on Intelligent Control and Automation. IEEE, Piscataway, NJ, USA, volume 2, pages 1226-9.
  1529. Rueping, S., Porrmann, M., and Rueckert, U. (1998). Som accelerator system. Neurocomputing, 21(1):31-50.
  1530. Ruf, B. and Schmitt, M. (1997). Unsupervised learning in networks of spiking neurons using temporal coding. In Gerstner, W., Germond, A., Hasler, M., and Nicoud, J. D., editors, Artificial Neural Networks-ICANN '97. 7th International Conference on Artificial Neural Networks Proceedings, pages 361-6. Springer-Verlag, Berlin, Germany.
  1531. Ruf, B. and Schmitt, M. (1998a). Self-organization of spiking neurons using action potential timing. IEEE Transactions on Neural Networks, 9(3):575-578.
  1532. Ruf, B. and Schmitt, M. (1998b). Self-organizing maps of spiking neurons using temporal coding. In Bower, J. M., editor, Computational Neuroscience: Trends in Research, 1998, pages 509-514, Plenum Press, New York.
  1533. Ruiz-Del-Solar, J. and Kottow, D. (1999). ASGCS: a new self-organizing network for automatic selection of feature variables. In Engineering Applications of Bio-Inspired Artificial Neural Networks. International Work- Conference on Artificial and Natural Neural Networks, IWANN'99. Proceedings, (Lecture Notes in Computer Science Vol.1607), volume 2, pages 805-13, Berlin, Germany. Springer-Verlag.
  1534. Ruiz-del Solar, J. and Kottow, D. (2000). Bio-inspired texture segmentation architectures. In Biologically Motivated Computer Vision, Proceeding, pages 444-452.
  1535. Ruiz del Solar, J. and Kottow, D. (2000). Neural-based architectures for the segmentation of textures. In Pro- ceedings 15th International Conference on Pattern Recognition. ICPR-2000. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 3, pages 1080-3.
  1536. Ruping, S. and Muller, J. (1999). Analysis of IC fabrication processes using self-organizing maps. In ICANN99. Ninth International Conference on Artificial Neural Networks (IEE Conf. Publ. No.470), volume 2, pages 631-6, London, UK. IEE.
  1537. Rüping, S., Porrmann, M., and Rückert, U. (1998). SOM accelerator system. Neurocomputing, 21(1-3):31-50.
  1538. Rüping, S., Rückert, U., Goser, K., and Hartung, M. (1996). Diagnosis-system with self-organizing feature maps and fuzzy-logic. In Neural Networks and Their Applications. Conference Proceedings, pages 251-8. Domaine Univ. Saint-Jerome, Marseille, France.
  1539. Ryu, J. and Cho, S. B. (2001). Gender recognition of human behaviors using neural ensembles. In Proceed- ings of the International Joint Conference on Neural Networks, volume 1, pages 571-576. Yonsei University, Department of Computer Science.
  1540. Saarinen, J., Kallioniemi, I., Niinisto, A., and T., F. A. (1999). Surface roughness measurement with optical scatterometry [and neural network model]. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.3897, volume 3897, pages 570-7.
  1541. Saban, M. R., Hellmich, H., Nguyen, N. B., Winston, J., Hammond, T. G., and Saban, R. (2001). Time course of LPS-induced gene expression in a mouse model of genitourinary inflammation. Physiological Genomics, 5(3):147-160.
  1542. Sadeghi, A. A. (1998a). Asymptotic behavior of self organizing maps with nonuniform stimuli distribution. Annals of Applied Probability, 8:281-299.
  1543. Sadeghi, A. A. (1998b). Self-organization property of Kohonen's map with general type of stimuli distribution. Neural Networks, 11(9):1637-1643.
  1544. Sadeghi, A. A. (2001). Convergence in distribution of the multi-dimensional kohonen algorithm. Journal of Applied Probability, 38(1):136-151.
  1545. Sagar, B. S. D. (2001). Generation of self organized critical connectivity network map (SOCCNM) of ran- domly situated water bodies during flooding process. Discrete Dynamics in Nature and Society, 6(3):225-228.
  1546. Saggaf, M. M. and Nebrija, E. L. (2000). Estimation of lithologies and depositional facies from wire-line logs. AAPG Bulletin (American Association of Petroleum Geologists), 84(10):1633-1646.
  1547. Saheb Zamani, M. and Mehdipur, F. (1999a). An efficient method for placement of VLSI designs with Koho- nen map. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 5, pages 3328-31, Piscataway, NJ. IEEE Service Center.
  1548. Saheb Zamani, M. and Mehdipur, F. (1999b). Using Kohonen map for the placement of regular VLSI designs. In Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99, pages 65-9, Los Alamitos, CA, USA. IEEE Computer Society.
  1549. Sakamoto, S. and Kobuchi, Y. (2000). Convergence property of topographic mapping formation from cell layer to cell layer through correlation learning rule. Neural Networks, 13(7):709-718.
  1550. Sallis, P., Hill, L., Janee, G., Lovette, K., and Masi, C. (1999). A methodology for profiling users of large in- teractive systems incorporating neural network data mining techniques. In Managing Information Technology Resources in Organizations in the Next Millennium. 1999 Information Resources Management Association International Conference, pages 994-8, Hershey, PA, USA. Idea Group Publishing.
  1551. Salmela, P., Kuusisto, S., Saarinen, J., Laurila, K., and Haavisto, P. (1996). The hybrid of self-organizing map and multilayer perceptron in isolated spoken number recognition. In WCNN'96. World Congress on Neural Networks. International Neural Network Society 1996 Annual Meeting, pages 63-8. Lawrence Erlbaum Associates, Mahwah, NJ, USA.
  1552. Salvini, R. L. and de Carvalho, L. A. (2000). Elastic neural net algorithm for cluster analysis. In Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 191-5.
  1553. Samuel, P. D. and Pines, D. J. (2001). Classifying helicopter gearbox faults using a normalized energy metric. Smart Materials and Structures, 10(1):145-153.
  1554. Sanchez, J. S., Pla, F., and Ferri, F. J. (1999). Learning vector quantization with alternative distance criteria. In Proceedings 10th International Conference on Image Analysis and Processing, pages 84-9, Los Alamitos, CA, USA. IEEE Computer Society Press.
  1555. Sanchez, J. S., Pla, F., and Ferri, F. J. (2000). Adaptive learning from nearest centroid neighbours for the near- est neighbour rule. Pattern Recognition and Applications (Frontiers in Artificial Intelligence and Applications Vol.56). IOS Press, Amsterdam, Netherlands; 2000; viii+287 pp.p.29-36, pages 29-36.
  1556. Sandidge, T. E. and Dagli, C. H. (1997). Derivation of fuzzy membership functions using one-dimensional self-organizing maps. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics., 2:995-998.
  1557. Sandidge, T. E. and Dagli, C. H. (1998). Construction of fuzzy membership functions using interactive self-organizing maps. Proceedings of the SPIE-The International Society for Optical Engineering, 3390:282- 6.
  1558. Sanguineti, V. and Morasso, P. (1994). Self-organization of an equilibrium-point motor controller. In Marinaro, M. and Morasso, P., editors, International Conference on Artificial Neural Networks, volume 1, pages 86-89. Springer-Verlag, London.
  1559. Sanguineti, V., Morasso, P., and Tsuji, T. (1993a). Run-time robot planning. In Proceedings of the In- ternational Joint Conference on Neural Networks (IJCNN'93-Nagoya 25-29 october '93), volume 2, pages 2815-2818.
  1560. Sanguineti, V., Spada, G., and Morasso, P. (1995). Function approximation by interconnected distributed representations. In Fogelman, F., editor, Proceedings of the International Conference on Artificial Neural Networks (ICANN'95-Paris October 9-13), volume 2, pages 87-91.
  1561. Sanguineti, V., Tsuji, T., and Morasso, P. (1993b). A dynamical model for the generation of curved trajectories. In Gielen, S. and Kappen, B., editors, Proceedings of ICANN'93 (Amsterdam, September 13-16), London. Springer Verlag.
  1562. Santos Andre, T. C. S. and da Silva, A. C. R. (1999). A neural network made of a Kohonen's SOM coupled to a MLP trained via backpropagation for the diagnosis of malignant breast cancer from digital mammograms. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 5, pages 3647-50, Piscataway, NJ. IEEE Service Center.
  1563. Saraceno, C. and Leonardi, R. (1998). Identification of visual correlations between non-consecutive shots in digital image sequences. VLBV98. Univ. Illinois, Urbana, IL, USA, pages 65-8.
  1564. Sardy, S., Wihartini, and Jatno, S. (2001). The area change detection on synthetic aperture radar images by using wavelet transform and neural networks. In Proceedings of the IASTED International Conference. Artificial Intelligence and Applications. ACTA Press, Anaheim, CA, USA, pages 148-52.
  1565. Sarzeaud, O. and Stephan, Y. (2000a). Data interpolation using kohonen networks. In Proceedings of the International Joint Conference on Neural Networks, volume 6, pages 197-202, Piscataway, NJ. ECTIA, IEEE.
  1566. Sarzeaud, O. and Stephan, Y. (2000b). Fast interpolation using kohonen self-organizing neural networks. In Theoretical Computer Science. Exploring New Frontiers of Theoretical Informatics. International Confer- ence IFIP TCS 2000. Proceedings (Lecture Notes in Computer Science Vol.1872). Springer-Verlag, Berlin, Germany, pages 126-39.
  1567. Sasaki, N. and Ishikawa, M. (2000). Gesture recognition for dynamic scene images. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 221-6.
  1568. Sato, A. (1999). Analysis of initial state dependence in generalized LVQ. In IEE Conference Publication, volume 2, pages 928-933.
  1569. Sato, A. (2000). A learning method for definite canonicalization based on minimum classification error. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 2, pages 199-202.
  1570. Sato, A. (2001). Discriminative dimensionality reduction based on generalized LVQ. In Artificial Neural Networks-ICANN 2001, Proceedings, pages 65-72.
  1571. Sato, A. and Yamada, K. (1998a). An analysis of convergence in generalized LVQ. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of ICANN98, the 8th International Conference on Artificial Neural Networks, volume 1, pages 170-176. Springer, London.
  1572. Sato, A. and Yamada, K. (1998b). A formulation of learning vector quantization using a new misclassification measure. In Jain, A. K., Venkatesh, S., and Lovell, B. C., editors, Proceedings. Fourteenth International Conference on Pattern Recognition, volume 1, pages 322-5. IEEE Computer Society, Los Alamitos, CA, USA.
  1573. Sato, A. and Yamada, K. (1999). A formulation of learning vector quantization using a new misclassification measure. Transactions of the Institute of Electronics, Information and Communication Engineers D II, pages 650-9.
  1574. Satoshi, K., Nakamoto, T., and Moriizumi, T. (2000). Study of LSI circuit for learning and odor recognition using 1 bit data stream signal processing method. Transactions of the Institute of Electrical Engineers of Japan, Part E, 120:204-10.
  1575. Saveliev, A. A. and Dobrinin, D. V. (1999). Hierarchical multispectral image classification based on self orga- nized maps. In IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99., volume 5, pages 2510-12, Piscataway, NJ. IEEE Service Center.
  1576. Scheffer, C. and Heyns, P. S. (2001). Wear monitoring in turning operations using vibration and strain mea- surements. Mechanical Systems and Signal Processing, 15(6):1185-1202.
  1577. Scheunders, P. (2000a). Multiscale edge representation applied to image fusion. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.4119, pt.1-2, volume 4119, pages 894-901.
  1578. Scheunders, P. (2000b). Multispectral image fusion using local mapping techniques. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 2, pages 311-14.
  1579. Scheunders, P. (2001). Local mapping for multispectral image visualization. Image and Vision Computing, 19(13):971-978.
  1580. Schill, K., Baier, V., Rohrbein, F., and Brauer, W. (2001). A hierarchical network model for the analysis of human spatio-temporal information processing. In Rogowitz, B. E. and Pappas, T. N., editors, Proceedings of SPIE-The International Society for Optical Engineering, volume 4299, pages 615-621. Inst. fur Medizinis- che Psychologie, Ludwig-Maximilians-Universitat.
  1581. Schmitt, B. and Duboeck, G. (1998). Differential patterns in consumer purchase preferences using self- organizing maps: A case study of China. In Deboeck, G. and Kohonen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 141-156. Springer, London.
  1582. Schneider, G. (1998). Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting pep- tides. Proteins,
  1583. Schneider, G. (2000). Neural networks are useful tools for drug design. Neural Networks, 13(1):15-16.
  1584. Schon, P. C., Puppe, B., and Manteuffel, G. (2000). Classification of stress calls of the domestic pig (sus scrofa) using LPC-analysis and a self organizing neuronal network. Archiv fur Tierzucht-Archives of Animal Breeding, 43:177-183.
  1585. Schon, P. C., Puppe, B., and Manteuffel, G. (2001). Linear prediction coding analysis and self-organizing feature map as tools to classify stress calls of domestic pigs (sus scrofa). Journal of the Acoustical Society of America, 110(3):1425-1431.
  1586. Schonweiler, R., Hess, M., Wubbelt, P., and Ptok, M. (2000a). Novel approach to acoustical voice analysis using artificial neural networks. JARO, 1(4):270-282.
  1587. Schonweiler, R., Wubbelt, P., Tolloczko, R., Rose, C., and Ptok, M. (2000b). Classification of passive auditory event-related potentials using discriminant analysis and self-organizing feature maps. Audiology and Neuro- otology, 5(2):69-82.
  1588. Schuchhardt, J. (1996). Local structural motifs of protein backbones are classified by self-organizing neural networks. Protein Engineering, 9(10):833-842.
  1589. Schuemie, M. and van den Berg, J. (1999). Information retrieval systems using an associative conceptual space and self-organising maps. In Accepted for presentation at the BNAIC'99 Conference, November 1999, Maastricht.
  1590. Schultz, A. (1993). Collective recall via the brain-state-in-a-box network. IEEE Transactions on Neural Networks, 4(4):580-587.
  1591. Schunemann, S. and Michaelis, B. (1998). Data analysis of not well separable clusters of different feature density with a two-layer classification system comprised of a SOM and an ART 2-A network. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 1, pages 707-12. IEEE, New York, NY, USA.
  1592. Schunemann, S. and Michaelis, B. (1999). A hierarchical self-organizing feature map for analysis of not well separable clusters of different feature density. In 7th European Symposium on Artificial Neural Networks. ESANN'99. Proceedings, pages 13-18, Brussels, Belgium. D-Facto.
  1593. Schûnemann, S. and Michaelis, B. (2000). Special algorithms for analysis of clusters with different feature density using self-organizing maps. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Otto von Guericke University of Magdeburg, Institute for Electronics, Signal Processing and Communications, ICSC Academic Press.
  1594. Schunemann, S., Michaelis, B., and Schubert, W. (1998). Cluster analysis with SOFM for the detection of different diseases in the human immune system. In 6th European Congress on Intelligent Techniques and Soft Computing. EUFIT '98, volume 2, pages 1320-4, Aachen, Germany. Verlag Mainz.
  1595. Schurer, T. (1994). Experimental comparison of different feature extraction and classification methods for telephone speech. Proceedings of Second IEEE Workshop on Interactive Voice Technology for Telecommuni- cations Applications, pages 93-96.
  1596. Schutte, F., Beineke, S., Grotstollen, H., Frohleke, N., Witkowski, U., Ruckert, U., and Ruping, S. (1997). Structure-and parameter identification for a two-mass system with backlash and friction using a self-organizing map. In EPE'97. 7th European Conference on Power Electronics and Applications. EPE As- soc, Brussels, Belgium, volume 3, pages 358-63.
  1597. Schweighofer, E. and Merkl, D. (1999). Data mining in law with adaptive learning techniques. In Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99, pages 799-803, Los Alamitos, CA, USA. IEEE Computer Society.
  1598. Schwenker, F., Kestler, H., and Palm, G. (1998). Adaptive clustering and multidimensional scaling of large and high-dimensional data sets. In ICANN 98. Proceedings of the 8th International Conference on Artificial Neural Networks, volume 2, pages 911-16, London, UK. Springer-Verlag London.
  1599. Schwenker, F., Kestler, H. A., and Palm, G. (2000). Combination of supervised and unsupervised learning for radial-basis-function networks. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. University of Ulm, D-89069 Ulm, Germany, ICSC Academic Press.
  1600. Schwenker, F., Kestler, H. A., and Palm, G. (2002a). Self-Organizing Neural Networks-Recent Advances and Applications, volume 78 of Studies in Fuzziness and Soft Computing, chapter Unsupervised and Supervised Learning in Radial-Basis-Function Networks, pages 217-43. Physica-Verlag Heidelberg.
  1601. Schwenker, F., Kestler, H. A., and Palm, G. (2002b). Self-Organizing Neural Networks-Recent Advances and Applications, volume 78 of Studies in Fuzziness and Soft Computing, chapter Algorithms for the Visualization of Large and Multivariate Data Sets, pages 165-184. Physica-Verlag Heidelberg.
  1602. Schwenker, F., Kestler, H. A., Palm, G., and Hoeher, M. (1994). Similarities of LVQ and RBF learning-a survey of learning rules and the application to the classification of signals from high-resolution electrocardio- graphy. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics., 1:646-651.
  1603. Seiffert, U. (2002). Self-Organizing Neural Networks-Recent Advances and Applications, volume 78 of Stud- ies in Fuzziness and Soft Computing, chapter Growing Multi-Dimensional Self-Organizing Maps for Motion Detection, pages 95-120. Physica-Verlag Heidelberg.
  1604. Seiffert, U. and Jain, L. C., editors (2002). Self-Organizing Neural Networks-Recent Advances and Applica- tions, volume 78 of Studies in Fuzziness and Soft Computing. Physica-Verlag Heidelberg.
  1605. Seiffert, U. and Michaelis, B. (1998). Quasi-four-dimensional-neuroncube and its application to motion esti- mation. In Engineering Benefits from Neural Networks. Proceedings of the International Conference EANN '98, pages 78-81. Systems Engineering Association, Turku, Finland.
  1606. Seiffert, U. and Michaelis, B. (2001). Multi-dimensional self-organising maps on massively prallel hardware. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 160-6.
  1607. Seki, I. and Hori, Y. (2002). Detection of abnormal action using image sequence for monitoring system of aged people. Transactions of the Institute of Electrical Engineers of Japan, Part D, 122:182-8.
  1608. Selb, A. (2000). Comparison of vector quantization algorithms. OEGAI Journal, 19:8-14.
  1609. Selouani, S. A. and Caelen, J. (1999). A hybrid learning vector quantization/time-delay neural networks system for the recognition of arabic speech. In Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP'99). Bogazici Univ, Instanbul, Turkey, volume 2, pages 709-13.
  1610. Selouani, S. A. and D., O. (2001). Hybrid architectures for complex phonetic features classification: a unified approach. In Proceedings of the Sixth International Symposium on Signal Processing and its Applications. IEEE, Piscataway, NJ, USA, volume 2, pages 719-22.
  1611. Senjyu, T., Tamaki, Y., and Uezato, K. (2000). Next day load curve forecasting using self organizing map. In PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings. IEEE, Piscat- away, NJ, USA, volume 2, pages 1113-18.
  1612. Seo, S. B., Kim, D., and Kang, D. S. (1999). VQ codebook design and feature extraction of image information for multimedia information searching. Journal of the Institute of Electronics Engineers of Korea S, 36:101-12.
  1613. Seo, Y.-G. and Cho, S.-B. (2000). Self-organizing map for optimal audit data reduction in intrusion detection system. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 195-200.
  1614. Serrano-Cinca, C. (1994). Beyond Z-analysis: Self-organizing neural networks for financial diagnosis. Dis- cussion Papers in Accounting and Management Science 94-92, University of Southampton, Southampton, UK.
  1615. Serrano-Cinca, C. (1998a). From financial information to strategic groups: A self-organizing neural network approach. Journal of Forecasting, 17.
  1616. Serrano-Cinca, C. (1998b). Let financial data speak for themselves. In Deboeck, G. and Kohonen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 3-23. Springer, London.
  1617. Severin, E. (2001). Ownership structure and the performance of firms: evidence from france. European Journal of Economic and Social Systems, 15:85-107.
  1618. Sforna, M., Lamedica, R., Prudenzi, A., Caciotta, M., and Orsolini Cencelli, V. (1995). Neutral network based technique for short-term forecasting of anomalous load periods.
  1619. Shah Hosseini, H. and Safabakhsh, R. (2000). Pattern classification by the time adaptive self-organizing map. In ICECS 2000. 7th IEEE International Conference on Electronics, Circuits and Systems. IEEE, Piscataway, NJ, USA, volume 1, pages 495-8.
  1620. Shah-Hosseini, H. and Safabakhsh, R. (2001). TAPCA: time adaptive self-organizing maps for adaptive prin- cipal components analysis. In Proceedings 2001 International Conference on Image Processing. IEEE, Pis- cataway, NJ, USA, volume 1, pages 509-12.
  1621. Shalash, W. M. and Abou Chadi, F. (2000). A fingerprint classification technique using multilayer SOM. In Proceedings of the Seventeenth National Radio Science Conference. 17th NRSC'2000. Minufiya Univ, Minu- fiya, Egypt.
  1622. Shanmukh, K., Ganesh Murthy, C. N. S., and Venkatesh, Y. V. (1999). Applications of self-organization networks spatially isomorphic to patterns. Information Sciences, 114:23-39.
  1623. Shao, J. F. and Han, J. (2002). The application of SOM networks on rock blastability classification. In Proceedings of the Annual Conference on Explosives and Blasting Technique, volume I, pages 407-413. Lab. of Mechanics of Lille, Univ. of Sci. and Technol. of Lille, International Society of Explosives Engineers.
  1624. Sharpe, P. K. and Caleb, P. (1998). Self organising maps for the investigation of clinical data: a case study. Neural Computing & Applications, 7(1):65-70.
  1625. Shawkey, H., Elsimary, H., Haddara, H., and Ragaie, H. F. (1999). Design of a VLSI neural network arrhyth- mia classifier. In Proceedings of the Sixteenth National Radio Science Conference. NRSC'99. Ain Shams Univ, Cairo, Egypt.
  1626. Shawkey, H., Elsimary, H., Ragaai, H., and Haddara, H. (1998). Low power VLSI neural network based arrhythmia classifier. Proceedings of IEEE Symposium on Computer-based Medical Systems, pages 282-288.
  1627. Shen, T., Huang, S., Han, S., and Liu, D. (2001). Multi-type information fusion and state identification based SOFM. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 37(1):37-41.
  1628. Shi, G.-R., Xing, Y., and Zhang, Y.-Q. (2001). Self-organizing feature map networks for segmentation of point-cloud. Journal of Shanghai Jiaotong University, 35:1093-6.
  1629. Shibata, A. and Sakai, Y. (2000). Budgetary transfer processe: Equity versus efficiency. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 171-9.
  1630. Shibata, A. and Sakai, Y. (2002). Budgetary transfer to local governments: equity, efficiency and political influence. International Journal of Knowledge Based Intelligent Engineering Systems, 6:23-30.
  1631. Shibata, T., Miyagi, K., Fujimura, K., and Tokutaka, H. (1999). Optimization of surface component mounting on the printed circuit board using SOM-TSP method. Technical report, IEICE. (in Japanese).
  1632. Shieh, J. S., Linkens, D. A., and Peacock, J. E. (1999). Hierarchical rule based and self organizing fuzzy logic control for depth of anesthesia. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 29:98-109.
  1633. Shihab, K. I. and Campbell, J. A. (1997). Workload characterisation based on AI techniques: a comparative study. In Simulation in Industry. 9th European Simulation Symposium 1997. ESS'97. SCS, San Diego, CA, USA, pages 567-70.
  1634. Shihab, K. I. and Ramadhan, H. A. (2000). Clustering technique using dynamic filtering concepts and its application to computer workload modeling. Journal of Intelligent Systems, 10(4):321-344.
  1635. Shin, H. W., Llobet, E., Gardner, J. W., Hines, E., and Dow, C. (2000). Classification of the strain and growth phase of cyanobacteria in potable water using an electronic nose system. IEE Proceedings: Science, Measurement and Technology, 147(4):158-164.
  1636. Shinichi, Y., Shinji, D., and Shigeru, O. (1999). Deterministic annealing method with equidistortion principle for vector quantization. Transactions of the Institute of Electrical Engineers of Japan, Part C, 119:1010-17.
  1637. Shirakura, J. and Kurata, K. (1998). Locking of self-organizing multiple maps by weak similarity of input information. Transactions of the Institute of Electronics, Information and Communication Engineers, J81D- II(10):2421-9.
  1638. Shirakura, J. and Kurata, K. (2001). Nonlinear principal component analysis by learning nerve fields united by inhibitory connections. Transactions of the Institute of Electronics, Information and Communication Engineers D II, pages 549-58.
  1639. Shouno, H. and Kurata, K. (2001). Formation of a direction map by projection learning using kohonen's self-organization map. Biological cybernetics, 85(4):241-246.
  1640. Shu Yue, J., Tsang, E., Yeung, D., and Shi, D. (2000). Mining fuzzy association rules with weighted items. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 3, pages 1906-1911, Piscataway, NJ. Hong Kong Polytechnic Univ, IEEE.
  1641. Shumsky, S. (2001). Self-organising internet semantic network. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 61-66. Springer.
  1642. Shumsky, S. A. (1999). Navigation in databases using self-organising maps. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 197-206. Elsevier, Amsterdam.
  1643. Shumsky, S. A. and Yarovoy, A. V. (1998). Self-organizing atlas of russian banks. In Deboeck, G. and Koho- nen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 72-82. Springer, London.
  1644. Shuono, H. and Kurata, K. (2001). Formation of a direction map by projection learning using kohonen's self-organization map. Biological Cybernetics, 85:241-6.
  1645. Shyamsunder, M. T., Rajagopalan, C., Raj, B., Dewangan, S. K., Rao, B. P. C., and Ray, K. K. (2000). Pattern recognition approaches for the detection and characterization of discontinuities by eddy current testing. Materials Evaluation, 58(1):93-101.
  1646. Si, J., Lin, S., and Vuong, M. A. (2000). Dynamic topology representing networks. Neural Networks, 13(6):617-627.
  1647. Si, J. and Rawat, B. S. (2000). New approach for virtual topology design in multihop lightwave networks. Journal of Optical Communications, 21(3):94-100.
  1648. Siegel, B. K. and Keller, K. J. (1992). Pilot task monitoring using neural networks. In Proceedings of the IEEE 1992 National Aerospace and Electronics Conference, volume 2, pages 709-714, Dayton, OH. New York, Institute of Electrical and Electronics Engineers, Inc.
  1649. Silulwane, N. F., Richardson, A. J., Shillington, F. A., and Mitchell-Innes, B. A. (2001). Identification and classification of vertical chlorophyll patterns in the benguela upwelling system and angola-benguela front using an artificial neural network. South African Journal of MARINE Science-Suid-Afrikaanse Tydskrif vir Seeweetenskap, 23:37-51.
  1650. Sim, H. and Damper, R. (1997). Two-dimensional object matching using Kohonen maps. In Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, volume 1, pages 620-25, Piscataway, NJ. Institute of Electrical and Electronics Engineers, Inc.
  1651. Simula, O., Ahola, J., Alhoniemi, E., Himberg, J., and Vesanto, J. (1999a). Self-organizing map in analysis of large-scale industrial systems. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 375-387. Elsevier, Amsterdam.
  1652. Simula, O. and Alhoniemi, E. (1999). Som based analysis of pulping process data. In Engineering Applications of Bio-Inspired Artificial Neural Networks. International Work-Conference on Artificial and Natural Neural Networks, IWANN'99. Proceedings, (Lecture Notes in Computer Science Vol.1607), volume 2, pages 567-77, Berlin, Germany. Springer-Verlag.
  1653. Simula, O., Hollmen, J., and Alhoniemi, E. (2002). Models from data: analysis of industrial processes and telecommunication systems. Automazione-e-Strumentazione, 50:107-13.
  1654. Simula, O., Vasara, P., Vesanto, J., and Helminen, R.-R. (1999b). The self-organizing map in industry analysis. In Jain, L. and Vemuri, V., editors, Intelligent Techniques in Industry., chapter 4, pages 87-112. CRC Press LLC.
  1655. Simula, O., Vesanto, J., Alhoniemi, E., and Hollmén, J. (1999c). Analysis and modeling of complex systems using the self-organizing map. In Kasabov, N. and Kozma, R., editors, Neuro-Fuzzy Techniques for Intelligent Information Systems., pages 3-22. Physica-Verlag.
  1656. Simula, O., Vesanto, J., and Vasara, P. (1998). Analysis of industrial systems using the self-organizing map. In Proceedings of 1998 Second International Conference on Knowledge-Based Intelligent Engineering Systems (KES'98), pages 61-68. Adelaide, Australia.
  1657. Sinesio, F., Di Natale, C., Quaglia, G. B., Bucarelli, F. M., Moneta, E., Macagnano, A., Paolesse, R., and D'Amico, A. (2000). Use of electronic nose and trained sensory panel in the evaluation of tomato quality. Journal of the Science of Food and Acrigulture, 80(1):63-71.
  1658. Singh, K. M., Bora, P. K., and Mahanta, A. (2001). Features preserving filters using fuzzy kohonen cluster- ing network in detection of impulse noise. In Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001. IEEE, Piscataway, NJ, USA, volume 1, pages 420-3.
  1659. Singh, R., Cherkassky, V., and Papanikolopoulos, N. (2000). Self-organizing maps for the skeletonization of sparse shapes. IEEE Transactions on Neural Networks, 11:241-8.
  1660. Singh, R., Cherkassky, V., and Papanikolopoulos, N. P. (1997). Determining the skeletal description of sparse shapes. Proc. IEEE International Symposium on Computational Intelligence in Robotics and Automation, pages 368-373.
  1661. Sinha, A. and Smith, A. D. (1999). Self-organizing map (SOM) of space acceleration measurement system (SAMS) data. Microgravity Science and Technology, 12(2):78-87.
  1662. Siponen, M., Vesanto, J., Simula, O., and Vasara, P. (2001). An approach to automated interpretation of SOM. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 89-94.
  1663. Siqueira, M., Drehmer, G., and Navaux, P. (2000a). Fetal left atrium segmentation using kohonen maps to measure the septum primum redundancy index. In Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks. IEEE Comput. Soc, Los Alamitos, CA, USA, page 287.
  1664. Siqueira, M. L., Gasperin, C. V., Scharcanski, J., Zielinsky, P., and Navaux, P. O. A. (2000b). Echocardio- graphic image sequence segmentation using self-organizing maps. Neural Networks for Signal Processing- Proceedings of the IEEE Workshop, 2:594-603.
  1665. Sirat, M. and Talbot, C. J. (2001). Application of artificial neural networks to fracture analysis at the aspo HRL, sweden: Fracture sets classification. International Journal of Rock Mechanics and Mining Sciences, 38(5):621-639.
  1666. Sirosh, J. and Miikkulainen, R. (1995). A unified neural network model for the self-organization of topo- graphic receptive fields and lateral interaction. In Pearson, D. W., Steele, N. C., and Albrecht, R. F., editors, Artificial Neural Nets and Genetic Algorithms: Proceedings of the International Conference in Ales, France (ICANNGA95), New York. Springer.
  1667. Sirosh, J. and Miikkulainen, R. (1996a). Multisize receptive fields and lateral connections self-organize like ocular dominance and orientation columns in a Hebbian model of the visual cortex. In Proceedings of the Eighteenth Annual Meeting of the Cognitive Science Society (COGSCI-96), pages 430-435, Hillsdale, NJ.
  1668. Erlbaum.
  1669. Sirosh, J. and Miikkulainen, R. (1996b). A neural network model of topographic reorganization following cortical lesions. In Witten, M., editor, Computational Medicine, Public Health and Biotechnology: Building a Man in the Machine, Proceedings of the First World Congress, Teaneck, NJ. World Scientific.
  1670. Sirosh, J., Miikkulainen, R., and Bednar, J. A. (1996). Self-organization of orientation maps, lateral con- nections, and dynamic receptive fields in the primary visual cortex. In Sirosh, J., Miikkulainen, R., and Choe, Y., editors, Lateral Interactions in the Cortex: Structure and Function, volume Electronic book http://www.cs.utexas.edu/users/nn/web-pubs/htmlbook96, pages 420-423. The UTCS Neural Networks Re- search Group, Austin, TX.
  1671. Skok, S. and Martsic, A. (2000). The self-organizing neural network applied to adaptive distance protection. In 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings. IEEE, Piscataway, NJ, USA, volume 3, pages 1956-60.
  1672. Skok, S. and Marusic, A. (2000). Comparison of various neural network models applied to adaptive distance protection. In DRPT2000. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Proceedings. IEEE, Piscataway, NJ, USA, pages 244-50.
  1673. Skok, S. and Marusic, A. (2001a). Adaptive distance protection based on various neural network models. Ciencia and Engenharia/ Science and Engineering Journal, 10(2):39-46.
  1674. Skok, S. and Marusic, A. (2001b). Distance protection of a double-circuit line based on kohonen neural net- work considering different operation modes. In 2001 IEEE Porto Power Tech Proceedings. IEEE, Piscataway, NJ, USA, volume 4, page 5.
  1675. Skubalska Rafajlowicz, E. (2000). One-dimensional kohonen LVQ nets for multidimensional pattern recogni- tion. International Journal of Applied Mathematics and Computer Science, 10:767-78.
  1676. Smith, K., Palaniswami, M., and Krishnamoorthy, M. (1998). Neural techniques for combinatorial optimiza- tion with applications. IEEE Transactions on Neural Networks, 9:1301-1318.
  1677. Smola, A. J., Mika, S., Scholkopf, B., and Williamson, R. C. (2001). Regularized principal manifolds. Journal of Machine Learning Research, 1:179-209.
  1678. So, P. and Liu, Z. Q. (1998). Adaptive subspace self-organising map for pattern recognition. In IEEE ICIPS'98. Proceedings of the Second IEEE International Conference on Intelligent Processing Systems. IEEE, Piscat- away, NJ, USA, pages 149-53.
  1679. Soffker, D. (2000). Human-machine interaction: modeling of individual planning, cognition, representation and action. In 7th IFAC Symposium on Automated Systems Based on Human Skill. Joint Design of Technology and Organisation. Preprints. VDI/VDE-GMA, Duesseldorf, Germany, pages 123-6.
  1680. Sohn, S. and Dagli, C. H. (2001a). Advantages of using fuzzy class memberships in self-organizing map and support vector machines. In Proceedings of the International Joint Conference on Neural Networks, vol- ume 3, pages 1886-1890. Smart Engineering Systems Laboratory, Department of Engineering Management, University of Missouri-Rolla.
  1681. Sohn, S. and Dagli, C. H. (2001b). Self-organizing map with fuzzy class memberships. In Priddy, K. L., Keller, P. E., and Angeline, P. J., editors, Proceedings of SPIE-The International Society for Optical Engi- neering, volume 4390, pages 150-157. Smart Engineering Systems Laboratory, Department of Engineering Management, University of Missouri.
  1682. Soliman, H. (2001). Neural net simulation: SFSN model for image compression. In Proceedings of the IEEE Annual Simulation Symposium, pages 325-332.
  1683. Soliman, H. and Abdelali, A. (2000). Colored image compression using neural networks. Parallel and Dis- tributed Computing and Systems. IASTED/ACTA Press, Anaheim, CA, USA; 2000; 2 vol, 1:229-31.
  1684. Somervuo, P. (1999a). Redundant hash addressing of feature sequences using the self-organizing map. Neural Processing Letters, 10(1):25-34.
  1685. Somervuo, P. (1999b). Time topology for the self-organizing map. In IJCNN'99. International Joint Confer- ence on Neural Networks. Proceedings., volume 3, pages 1900-5, Piscataway, NJ. IEEE Service Center.
  1686. Somervuo, P. (2000a). Competing hidden markov models on the self-organizing map. In Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 169-174, Piscataway, NJ. Helsinki Univ of Technology, IEEE.
  1687. Somervuo, P. (2000b). Self-organizing maps for signal and symbol sequences. Acta Polytechnica Scandinav- ica, Mathematics and Computing Series. no.Ma107; 2000; p.2-45, pages 2-45.
  1688. Somervuo, P. and Kohonen, T. (1999). Self-organizing maps and learning vector quantization for feature sequences. Neural Processing Letters, 10(2):151-159.
  1689. Somervuo, P. and Kohonen, T. (2000). Clustering and visualization of large protein sequence databases by means of an extension of the self-organizing map. In Discovery Science. Third International Conference, DS 2000. Proceedings (Lecture Notes in Artificial Intelligence Vol.1967). Springer-Verlag, Berlin, Germany, pages 76-85.
  1690. Sona, D., Sperduti, A., and Starita, A. (2000). Discriminant pattern recognition using transformation-invariant neurons. Neural Computation, 12(6):1355-1370.
  1691. Song, K.-T. and Sheen, L.-H. (2000). Heuristic fuzzy-neuro network and its application to reactive navigation of a mobile robot. Fuzzy Sets and Systems, 110(3):331-340.
  1692. Soriano, M., Garcia, L., and Saloma, C. (2001). Fluorescent image classification by major color histograms and a neural network. Optics Express, 8(5):271-277.
  1693. Sotolongo Aguilar, G. and Guzman Sanchez, M. V. (2001). Application of neuronal networks. the case of bibliometrics. Ciencias de la Informacion, 32:27-34.
  1694. Souza, S. X., Doria Neto, A. D., Costa, J. A. F., and De Andrade Netto, M. L. (2001). A neural hybrid system for large memory association. In Proceedings of the International Joint Conference on Neural Networks, volume 2, pages 1174-1179. Univ. Federal do Rio Grande do Norte, Department of Electrical Engineering, Lab. of Computer Eng. and Automation.
  1695. Soylu, M., Ozdemirel, N. E., and Kayaligil, S. (2000). Self-organizing neural network approach for the single AGV routing problem. European Journal of Operational Research, 121(1):124-137.
  1696. Spitzner, A. and Polani, D. (1998). Order parameters for Self-Organizing maps. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceedings of the 8th Int. Conf. on Artificial Neural Networks (ICANN 98), Skövde, Sweden, volume 2, pages 517-522. Springer.
  1697. Sprekelmeyer, U., Tenhagen, A., and Lippe, W.-M. (2000). Fuzzy kohonen classifier. In IEEE International Conference on Fuzzy Systems, volume 2, pages 572-576, Piscataway, NJ. Westfaelische Wilhelms-Universitaet Muenster, IEEE.
  1698. Srinivasa, N. and Ahuja, N. (1999). Topological and temporal correlator network for spatiotemporal pattern learning, recognition, and recall. IEEE Transactions on Neural Networks, 10(2):356-371.
  1699. Srinivasa, N. and Sharma, R. (1996). A self-organizing invertible map for active vision applications. In WCNN'96. World Congress on Neural Networks. International Neural Network Society 1996 Annual Meeting, pages 121-4. Lawrence Erlbaum Associates, Mahwah, NJ, USA.
  1700. Srinivasan, D., Tan, S. S., Cheng, C. S., and Chan, E. K. (1999). Parallel neural network-fuzzy expert system strategy for short-term load forecasting: system implementation and performance evaluation. IEEE Transac- tions on Power Systems, 14:1100-6.
  1701. Srivastava, L., Singh, S. N., and Sharma, J. (1998). Parallel self organizing hierarchical neural network based fast voltage estimation. IEE Proceedings-Generation, Transmission and Distribution, 145:98-104.
  1702. Stacey, D. A., Kremer, S. C., and Dara, R. (2000). A SOM/MLP hybrid network that uses unlabeled data to improve classification performance. In Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems. Vol.10. Proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE 2000). ASME, New York, NY, USA, pages 179-84.
  1703. Stankevicius, G. (2001). Forming of the investment portfolio using the self-organizing maps (SOM). Infor- matica, 12:573-84.
  1704. Stanley, K., Wu, Q. M. J., W., d. C., and Gruver, W. A. (2001). Modular neural-visual servoing with image compression input. Journal of Intelligent & Fuzzy Systems, 10:1-11.
  1705. Ster, B. and Dobnikar, A. (1996). Neural networks in medical diagnosis: comparison with other methods. In Solving Engineering Problems with Neural Networks. Proceedings of the International Conference on Engi- neering Applications of Neural Networks (EANN'96), volume 1, pages 427-30. Systems Engineering Associ- ation, Turku, Finland.
  1706. Steuer, M., Caleb Solly, P., and Smith, J. (2001). An alternative approach for the evaluation of the neocogni- tron. In 9th European Symposium on Artificial Neural Networks. ESANN'2001. Proceedings. D-Facto, Evere, Belgium, pages 125-30.
  1707. Steven, G., Anguera, R., Egan, C., Steven, F., and L., V. (2001). Dynamic branch prediction using neural networks. In Proceedings Euromicro Symposium on Digital Systems Design. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 178-85.
  1708. Strickert, M., Bojer, T., and Hammer, B. (2001). Generalized relevance LVQ for time series. In Artificial Neural Networks-ICANN 2001, Proceedings, pages 677-683.
  1709. Strouthopoulos, C. and Papamarkos, N. (1997). Document block identification using a neural network. Inter- national Conference on Digital Signal Processing. DSP, 2:999-1002.
  1710. Strouthopoulos, C. and Papamarkos, N. (1998). Text identification for document image analysis using a neural network. Image and Vision Computing, 16(12):879-896.
  1711. Strube, H. W. (1995). Sprachverstehen in neuronaler Architektur (SPINA). Abschlussbericht. (Speech under- standing in neural architecture (SPINA). Final report).
  1712. Su, B. and Jeng, S. K. (2001). Multi-timbre chord classification using wavelet transform and self- organized map neural networks. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, volume 5, pages 3377-3380. Graduate Inst. of Communication Eng., Department of Electrical Engineering, National Taiwan University.
  1713. Su, C. T., Yang, T., and Ke, C. M. (2002a). A neural-network approach for semiconductor wafer post-sawing inspection. IEEE Transactions on Semiconductor Manufacturing, 15(2):260-266.
  1714. Su, M.-C. and Chang, H.-T. (1998). Genetic-algorithms-based approach to self-organizing feature map and its application in cluster analysis. In 1998 IEEE International Joint Conference on Neural Networks, Proceedings. IEEE World Congress on Computational Intelligence, volume 1, pages 735-40. IEEE, New York, NY, USA.
  1715. Su, M.-C. and Chang, H.-T. (1999). Self-organizing neural networks for data projection. In 5th Interna- tional Computer Science Conference ICSC'99. Proceedings (Lecture Notes in Computer Science Vol. 1749). Springer-Verlag, Berlin, Germany, pages 206-15.
  1716. Su, M.-C. and Chang, H.-T. (2000). Fast self-organizing feature map algorithm. IEEE Transactions on Neural Networks, 11(3):721-733.
  1717. Su, M.-C. and Chang, H.-T. (2001). New model of self-organizing neural networks and its application in data projection. IEEE Transactions on Neural Networks, 12(1):153-158.
  1718. Su, M.-C., Chou, C.-H., and Chang, H.-T. (2000a). Adding a healing mechanism in the self-organizing feature map algorithm. In Proceedings of the International Joint Conference on Neural Networks, volume 6, pages 171-176, Piscataway, NJ. Tamkang Univ, IEEE.
  1719. Su, M.-C., Chou, C.-H., and Chang, H.-T. (2002b). A healing mechanism to improve the topological preserv- ing property of feature maps. IEICE Transactions on Information and Systems, E85-D(4):735-743.
  1720. Su, M. C., DeClaris, N., and Liu, T. K. (1997). Application of neural networks in cluster analysis. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics., 1:1-6.
  1721. Su, M.-C., Lai, E., and Tew, C.-Y. (2000b). A SOM-based fuzzy system and its application in handwritten digit recognition. In Proceedings International Symposium on Multimedia Software Engineering. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 253-8.
  1722. Su, M. C. and Liu, I. C. (1999). Facial image morphing by self-organizing feature maps. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 3, pages 1969-72, Piscataway, NJ. IEEE Service Center.
  1723. Su, M. C. and Liu, I. C. (2001). Application of the self-organizing feature map algorithm in facial image morphing. Neural Processing Letters, 14(1):35-47.
  1724. Su, M. C., Liu, T. K., and Chang, H. T. (1999). An efficient initialization scheme for the self-organizing feature map algorithm. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 3, pages 1906-10, Piscataway, NJ. IEEE Service Center.
  1725. Su, M.-C. and Tew, C.-Y. (2000). Self-organizing feature-map-based fuzzy system. In Proceedings of the International Joint Conference on Neural Networks, volume 5, pages 20-25, Piscataway, NJ. Tamkang Univ, IEEE.
  1726. Su, M.-C., Tew, C.-Y., and Chen, H.-H. (2001). Musical symbol recognition using SOM-based fuzzy systems. In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference. IEEE, Piscataway, NJ, USA, volume 4, pages 2150-3.
  1727. Suchy, J. and Majlath, J. (1999). Application of self-organizing map to transformation of coordinates in robotics. In IMEKO-XV. World Congress. Measurement to Improve the Quality of Life in the 2st Century- Measurement Helps to Coordinate Nature with Human Activities-Vol. X. TEG-17. ISMCR'99 Topical Work- shop on Virtual Reality and Advanced Human-Robot Systems. IMEKO, Budapest, Hungary, pages 277-82.
  1728. Suetake, N., Nakamura, Y., and Yamakawa, T. (1999). Maximum entropy ICA constrained by individual en- tropy maximization employing self-organizing maps. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 2, pages 1038-42, Piscataway, NJ. IEEE Service Center.
  1729. Suganthan, P. N. (1998). Hierarchical self organising maps. In Proceedings of the Ninth Australian Conference on Neural Networks (ACNN'98). Univ. Queensland, Brisbane, Qld.,Australia, pages 255-9.
  1730. Suganthan, P. N. (1999). Hierarchical overlapped SOM's for pattern classification. IEEE Transactions on Neural Networks, 10(1):193-196.
  1731. Suganthan, P. N. (2001a). Pattern classification using multiple hierarchical overlapped self-organising maps. Pattern Recognition, 34(11):2173-2179.
  1732. Suganthan, P. N. (2001b). SHAPESOM. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 110-7. Springer.
  1733. Suksmono, A. B. and Hirose, A. (2000). Adaptive complex-amplitude texture classifier that deals with both height and reflectance for interferometric SAR images. IEICE Transactions on Electronics, E83-C(12):1912- 1916.
  1734. Suksmono, A. B., Karsa, K., Tjondronegoro, S., and Soegijoko, S. (1998a). Low bit rate image coding based on vector transformation with neural network approach. In IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings., pages 603-6, Piscataway, NJ. IEEE Service Center.
  1735. Suksmono, A. B., Sastrokusumo, U., and Kondo, K. (1998b). Adaptive image coding based on vector quanti- zation using SOFM-NN algorithm. In IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings., pages 443-6, Piscataway, NJ. IEEE Service Center.
  1736. Suksmono, A. B., Sastrokusumo, U., Suryana, J., and E., P. B. (1999). Application of image coding system based on vector quantization using SOFM-NN algorithm for x-ray images. In 1999 IEEE International Sym- posium on Intelligent Signal Processing and Communication Systems. Signal Processing and Communications Beyond 2000. King Mongkuts Inst. Technol, Bangkok, Thailand, pages 613-16.
  1737. Sumathi, S., Sivanandam, S. N., and Jagadeeswari (2000). Design of soft computing models for data mining applications. Indian Journal of Engineering and Materials Sciences, 7:107-21.
  1738. Sun, H., Kaveh, M., and Tewfik, A. (1999). Self-organizing map neural network for transient signal classifi- cation in mechanical diagnostics. In Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP'99). Bogazici Univ, Instanbul, Turkey, volume 2, pages 539-43.
  1739. Sun, Y. (2000a). On quantization error of self-organizing map network. Neurocomputing, 34:169-193.
  1740. Sun, Y. (2000b). On quantization error of self-organizing map network. Neurocomputing, 34:169-93.
  1741. Sun, Y., Chan, K. L., Krishnan, S. M., and Dutt, D. N. (2000). Unsupervised classification of ECG beats using a MLVQ neural network. In Enderle, J., editor, Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings, volume 2, pages 1387-1390. BMERC, School of EEE, Nanyang Technological University.
  1742. Sussner, P. (2000). Fixed points of autoassociative morphological memories. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Institute of Mathematics, Statistics, and Scientic Computation, State University of Campinas, ICSC Academic Press.
  1743. Suzuki, D. and Hammami, O. (1999). Som on multi-FPGA ISA board-hardware aspects. In ICECS'99. Pro- ceedings of ICECS '99. 6th IEEE International Conference on Electronics, Circuits and Systems., volume 3, pages 1401-5, Piscataway, NJ. IEEE Service Center.
  1744. Swindale, N. V. (1996a). The development of topography in the visual cortex: a review of models. Network: Computation in Neural Systems, 7:161-247.
  1745. Swindale, N. V. (1996b). Visual cortex: Looking into a Klein bottle. Current Biology, 6(7):776-779.
  1746. Swindale, N. V. (1998). Cortical organization: Modules, polymaps and mosaics. Current Biology, 8:R270- R273.
  1747. Swindale, N. V. and Bauer, H. U. (1998). Application of Kohonen self organizing feature map algorithm to cortical maps of orientation and direction preference. Proceedings of the Royal Society of London, Series B: Biological Sciences, 265:827-838.
  1748. Swiniarski, R. W. (2001). Rough sets methods in feature reduction and classification. International Journal of Applied Mathematics and Computer Science, 11:565-82.
  1749. Syrjäsuo, M. T. and Pulkkinen, T. I. (1999). Determining the skeletons of the auroras. In Proceedings 10th International Conference on Image Analysis and Processing, pages 1063-6, Los Alamitos, CA, USA. IEEE Computer Society Press.
  1750. Szabo, R. R. (2000). Study to evaluate the rough set theory and the learning vector quantization neural network paradigm using Bayesian probability theory. International Journal of Smart Engineering System Design, 2(3):201-227.
  1751. Szczepaniak, P. S., Lisboa, P. J., and Ifeachor, E. C. (2000). Artificial neural networks in medicine-survey of applications. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computa- tion (NC'2000) May 23-26, 2000 in Berlin, Germany. Institute of Computer Science,Technical University of Lodz; Systems Research Institute, Polish Academy of Sciences; Liverpool John Moores University; School of Electronics, Communication and Electrical Engineering, University of Plymouth, ICSC Academic Press.
  1752. Tada, K. and Obu-Cann, K. (2000). SOM application to qualitative information analysis. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 180-7.
  1753. Tafeit, E. and Reibnegger, G. (1999). Artificial neural networks in laboratory medicine and medical outcome prediction. Clinical Chemistry and Laboratory Medicine, 37(9):845-853.
  1754. Tai, W.-P. and Liou, C.-Y. (2000). Image representation by self-organizing conformal network. Visual Com- puter, 16(2):91-105.
  1755. Takatsuka, M. and Jarvis, R. A. (2001). Encoding 3d structural information using multiple self-organizing feature maps. Image and Vision Computing, 19(3):99-118.
  1756. Tallam, R. M., Habetler, T. G., Harley, R. G., Gritter, D. J., and Burton, B. H. (2000). Neural network based on-line stator winding turn fault detection for induction motors. In Conference Record-IAS Annual Meeting (IEEE Industry Applications Society), volume 1, pages 375-380, Piscataway, NJ. Georgia Inst of Technology, IEEE.
  1757. Talumassawatdi, R. and Lursinsap, C. (2001). Fault immunization concept for self-organizing mapping neural networks. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems, 9:781-90.
  1758. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S., and Golub, T. R. (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceedings of the National Academy of Science, USA, 96(6):2907-2912.
  1759. Tambouratzis, G., Hairetakis, N., Markantonatou, S., and carayannis, G. (2001). Evaluating SOM-based models on text classification tasks for the greek language. In Allison, N., Yin, H., Allison, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 267-74. Springer.
  1760. Tambouratzis, G., Papakonstantinou, G., Stamatelopoulos, S., Zakopoulos, N., and Moulopoulos, S. (2002). Analyzing the 24-hour blood pressure and heart-rate variability with self-organizing feature maps. Interna- tional Journal of Intelligent Systems, 17(1):63-76.
  1761. Tamminen, S., Pirttikangas, S., and Roning, J. (2000). Self-organizing maps in adaptive health monitoring. In Proceedings of the International Joint Conference on Neural Networks, volume 4, pages 259-264, Piscataway, NJ. Univ of Oulu, IEEE.
  1762. Tan, R. S. and Narasimhan, V. L. (1998). Mapping finite element grids onto parallel multicomputers using a self-organising map. IEE Proceedings-Computers and Digital Techniques, 145(3):211-14.
  1763. Taner, M. T., Berge, T., Walls, J. D., Smith, M., Taylor, G., Dumas, D., and Carr, M. (2001). Well log calibra- tion of kohonen-classified seismic attributes using bayesian logic. Journal of Petroleum Geology, 24(4):405- 416.
  1764. Tang, H. (1998). Applying Adaptive Techniques and Operations Research Methods to the Resource Manage- ment in Telecommunications. PhD thesis, Helsinki University of Technology, Espoo, Finland.
  1765. Tang, X. (1996). Transform Texture Classification. Doctoral thesis.
  1766. Tay, F. E. H. and Cao, L. J. (2001). Improved financial time series forecasting by combining support vector machines with self-organizing feature map. Intelligent Data Analysis, 5:339-54.
  1767. Taylor, O., Tait, J., and J., M. (1999). Improved classification for a data fusing kohonen self organizing map using a dynamic thresholding technique. In IJCAI-99. Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers, San Francisco, CA, USA, volume 2, pages 828-32.
  1768. Tellechea, M. and Grana, M. (2001). On the application of competitive neural networks for unsupervised anal- ysis of hyperspectral remote sensing images. In Serpico, S. B., editor, Proceedings of SPIE-The International Society for Optical Engineering, volume 4170, pages 65-72.
  1769. Tenhagen, A., Sprekelmeyer, U., and Lippe, W.-M. (2000). Analysis of a fuzzified self-organizing map's output behaviour. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 251-56.
  1770. Tenhagen, A., Sprekelmeyer, U., and Lippe, W. M. (2001). On the combination of fuzzy logic and kohonen nets. In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference. IEEE, Piscataway, NJ, USA, volume 4, pages 2144-9.
  1771. Teoh, C. C., Mansor, S. B., Mispan, M. R., Mohamed Shariff, A., and Ahmad, N. (2001). Extraction of infras- tructure details from fused image. In International Geoscience and Remote Sensing Symposium (IGARSS), volume 3, pages 1490-1492. GISAT, Faculty of Engineering, University Putra Malaysia, Institute of Electrical and Electronics Engineers Inc.
  1772. Teranishi, M., Omatu, S., and Kosaka, T. (2000). Classification of bill fatigue levels by feature-selected acoustic energy pattern using competitive neural network. In Proceedings of the International Joint Conference on Neural Networks, volume 6, pages 249-252, Piscataway, NJ. Nara Natl Coll of Technology, IEEE.
  1773. Tereshko, V. (2001). Topology-preserving elastic nets. In Connectionist Models of Neurons, Learning Pro- cesses, and Artificial Intelligence. 6th International Work-Conference on Artificial and Natural Neural Net- works, IWANN 2001. Proceedings, Part I (Lecture Notes in Computer Science Vol. 2084). Springer-Verlag, Berlin, Germany, pages 554-60.
  1774. Terra, M. H. and Tinos, R. (2001). Fault detection and isolation in robotic manipulators via neural networks: A comparison among three architectures for residual analysis. Journal of Robotic Systems, 18(7):357-374.
  1775. Tetko, I. V., Kovalishyn, V. V., and Livingstone, D. J. (2001). Volume learning algorithm artificial neural networks for 3d QSAR studies. Journal of Medicinal Chemistry, 44(15):2411-2420.
  1776. Teucci, C. M., Marchesi, C., and Carpeggiani, C. (1998). Comparing symbolic to connectionist knowledge representation in the design of a patient record for cardiology. In Proceedings on the Third International Conference on Neural Networks and Expert Systems in Medicine Healthcare, pages 271-8, Singapore. World Scientific Publishing.
  1777. Teucci, M. C., Braccini, G., Carpeggiani, C., and Marchesi, C. (1997). An application of self-organising maps for a knowledge base for use in cardiac domain. In Computers in Cardiology 1997, pages 569-72. IEEE, New York, NY, USA.
  1778. Thang, K. F., Aggarwal, R. K., Esp, D. G., and McGrail, A. (2000). Statistical and neural network analysis of dissolved gases in power transformers. In IEE Conference Publication, pages 324-329, Stevenage. Univ of Bath, IEE.
  1779. Theodoropoulos, G., Loumos, V., Anagnostopoulos, C., Kayafas, E., and Martinez Gonzales, B. (2000). Dig- ital image analysis and neural network based system for identification of third-stage parasitic strongyle larvae from domestic animals. Computer Methods and Programs in Biomedicine, 62(2):69-76.
  1780. Thian, T. S. and Yen, T. W. (1999). Illumination-sensitive failure mechanism-a case study on transient I/sub cc/ failure. In Proceedings of the 1999 7th International Symposium on the Physical and Failure Analysis of Integrated Circuits., pages 73-6, Piscataway, NJ. IEEE Service Center.
  1781. Thiran, P. (1998). Self-organization in cellular neural networks: a comparison with Kohonen's self-organizing maps. In Tavsanoglu, V., editor, 1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings, pages 68-73. IEEE, New York, NY, USA.
  1782. Thiran, P. (1999). Kohonen self-organizing map with quantized weights. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 145-156. Elsevier, Amsterdam.
  1783. Thomas, E., Van Hulle, M. M., and Vogels, R. (2001). Encoding of categories by noncategory-specific neurons in the inferior temporal cortex. Journal of Cognitive Neuroscience, 13(2):190-200.
  1784. Thompson, B. T. (1999). Application of fuzzy logic to feature extraction from images of agricultural material. In Proceedings of the SPIE -The International Society for Optical Engineering. vol.3812, volume 3812, pages 241-50.
  1785. Tian, B., Azimi Sadjadi, M. R., Haar, T. H. V., and Reinke, D. (1997). Neural network-based cloud clas- sification on satellite imagery using textural features. IEEE International Conference on Image Processing, 3:209-212.
  1786. Tian, B., Shaikh, M. A., Azimi Sadjadi, M. R., Vonder Haar, T. H., and Reinke, D. L. (1999). Study of cloud classification with neural networks using spectral and textural features. IEEE Transactions on Neural Networks, 10(1):138-151.
  1787. Tillmann, B., Bharucha, J. J., and Bigand, E. (2000). Implicit learning of tonality: A self-organizing approach. Psychological Review, 107(4):885-913.
  1788. Tino, P. and Nabney, I. (2002). Hierarchical GTM: constructing localized nonlinear projection manifolds in a principled way. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:639-56.
  1789. Tino, P., Nabney, I., and Sun, Y. (2001). Using directional curvatures to visualize folding patterns of the GTM projection manifolds. In Artificial Neural Networks-ICANN 2001. International Conference. Proceedings (Lecture Notes in Computer Science Vol.2130). Springer-Verlag, Berlin, Germany, pages 421-8.
  1790. Tinos, R. and Terra, M. H. (1998). Fault detection and isolation in robotic manipulators and the radial basis function network trained by the Kohonen's self-organizing map. In de Padua Braga, A. and Ludermir, T. B., editors, Proceedings 5th Brazilian Symposium on Neural Networks, pages 85-90. IEEE Computer Society, Los Alamitos, CA, USA.
  1791. Tinos, R. and Terra, M. H. (2001). Fault detection and isolation in robotic manipulators using a multilayer perceptron and a RBF network trained by the kohonen's self-organizing map. Controle and Automacao, 12(1):11-18.
  1792. Tipping, M. E. and Lowe, D. (1998). Shadow targets: a novel algorithm for topographic projections by radial basis functions. Neurocomputing, 19(1):211-222.
  1793. Todeschini, R., Galvagni, D., Vilchez, J. L., Delolmo, M., and Navas, N. (1999). Kohonen artificial neural networks as a tool for wavelength selection in multicomponent spectrofluorometric Pls modeling application to phenol, O cresol, M cresol and P cresol mixtures. TrAC-Trends in Analytical Chemistry, 18:93-98.
  1794. Toivanen, P. J., Ansamäki, J., Leppäjärvi, S., and Parkkinen, J. (1998). Edge detection of multispectral im- ages using the 1-D self-organizing map. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceed- ings of ICANN98, the 8th International Conference on Artificial Neural Networks, volume 2, pages 737-742. Springer, London.
  1795. Toivanen, P. J., Ansamäki, J., Leppäjärvi, S., and Parkkinen, J. P. S. (1999). Multispectral edge detection using the 2-dimensional self-organizing map. In Proceedings of SPIE-The International Society for Optical Engineering, volume 3647, pages 103-110.
  1796. Tokutaka, H. (1997). Application of self-organizing maps (SOM) to the data of chemical analysis and the surroundings of SOM (in japanese). Journal of Surface Analysis, 3:545-557.
  1797. Tokutaka, H. and Fujimura, K. (1999). SOM-TSP: An approach to optimize surface component mounting on a printed circuit board. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 219-230. Elsevier, Amsterdam.
  1798. Tokutaka, H., Fujimura, K., Iwamoto, K., Obu-Cann, K., Kishida, S., and Yoshihara, K. (1998a). Application of self-organizing maps to a chemical analysis. Australian Journal of Intelligent Information Processing Systems, 5(3):181-186.
  1799. Tokutaka, H., Kishida, S., and Fujimura, K. (1999a). Application of Self-Organizing Maps-2 Dimensional Visualization of Multi-Dimensional Informations. Kaibundo Publishing Co. Ltd. (in Japanese).
  1800. Tokutaka, H., Tanaka, M., Kubono, A., Shiraki, W., Miyoshi, T., and Fujimura, K. (1999b). Visual Explo- rations in Finance with Self-Organizing Maps (Translated into Japanese). Springer-Verlag Tokyo.
  1801. Tokutaka, H., Yoshihara, K., Fujimura, K., Iwamoto, K., and Obu-Cann, K. (1999c). Application of self- organizing maps (SOM) to auger electron spectroscopy (AES). Surface and Interface Analysis, 27:783-788.
  1802. Tokutaka, H., Yoshihara, K., Fujimura, K., Iwamoto, K., Obu-Cann, K., Watanabe, T., and Kishida, S. (1999d). Application of self-organizing maps (SOM) to chemical data analysis. Journal of Surface Analysis, 5(1):102- 105.
  1803. Tokutaka, H., Yoshihara, K., Fujimura, K., Iwamoto, K., Watanabe, T., and Kishida, S. (1998b). Application of self-organizing maps (SOM) to the composition determination of chemical products. In Proceedings of International Joint Conference on Neural Networks, pages 301-305.
  1804. Tokutaka, H., Yoshihara, K., Fujimura, K., Iwamoto, K., Watanabe, T., and Kishida, S. (1998c). Applica- tions of self-organizing maps (SOM) to the composition determination of chemical products. In 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence, volume 1, pages 301-5. IEEE, New York, NY, USA.
  1805. Tokutaka, H., Yoshihara, K., Fujimura, K., Obu-Cann, K., and Iwamoto, K. (1999e). Application of self- organizing maps (SOM) to chemical analysis. Applied Surface Science, 144-145:59-63.
  1806. Tokutaka, H., Yoshihara, K., Iwamoto, K., Fujimura, K., Watanabe, T., and Kishida, K. (1998d). Application of self-organizing maps to chemical analysis. Journal of the Vacuum Society of Japan, 41(3). (in Japanese).
  1807. Tolba, A. S. (1999). Glovesignature: a virtual-reality-based system for dynamic signature verification. Digital Signal Processing, 9:241-66.
  1808. Tolba, A. S. (2000). A parameter-based combined classifier for invariant face recognition. Cybernetics and Systems, 31(8):837-849.
  1809. Tolba, A. S. (2001). Invariant gender identification. Digital Signal Processing: A Review Journal, 11(3):222- 240.
  1810. Tolba, A. S. and Abu-Rezq, A. N. (1999). Combined classifiers for invariant face recognition. In Proceedings 1999 International Conference on Information Intelligence and Systems, pages 350-9, Los Alamitos, CA, USA. IEEE Computer Society Press.
  1811. Tolba, A. S. and Abu Rezq, A. N. (2000). Combined classifiers for invariant face recognition. Pattern Analysis and Applications, 3:289-302.
  1812. Tolba, A. S., Abu-Rezq, A. N., and Al Mazeedi, M. (1999a). Adaptive texture classification with Hartley transform and application to visual inspection. Microcomputer-Applications, 18:71-6.
  1813. Tolba, A. S., Ashraf, M., and Abu Rezq, A. N. (1999b). Eyes-strip extraction for detection of a human face. In ICM'99. Proceedings. Eleventh International Conference on Microelectronics. Kuwait Univ, Safat, Kuwait, pages 109-12.
  1814. Tomescu, B. and VanLandingham, H. F. (1997). Neuro-fuzzy multi-model control using sugeno inference and Kohonen tuning in parameter space. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics., 2:1028-1032.
  1815. Tomsich, P., Rauber, A., and Merkl, D. (2000a). Optimizing the parSOM neural network implementation for data mining with distributed memory systems and cluster computing. In Proceedings 11th International Workshop on Database and Expert Systems Applications. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 661-5.
  1816. Tomsich, P., Rauber, A., and Merkl, D. (2000b). parSOM: Using parallelism to overcome memory latency in self-organizing neural networks. In High Performance Computing and Networking, Proceedings, pages 136-145.
  1817. Torkkola, K., Gardner, R. M., Kaysser Kranich, T., and Ma, C. (2000). Mining gene expression data: clustering with self-organizing maps. In Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining. Practical Application Company, Blackpool, UK, pages 63-72.
  1818. Torkkola, K., Gardner, R. M., Kaysser-Kranich, T., and Ma, C. (2001). Self-organizing maps in mining gene expression data. In Gattiker, J. R., Wang, J. T. L., and Wang, P. P., editors, Information Sciences, volume 139, pages 79-96. Motorola Labs, MD ML28.
  1819. Törönen, P., Kolehmainen, M., Wong, G., and Castrén, E. (1999). Analysis of gene expression data using self-organizing maps. FEBS Letters, 451:142-146.
  1820. Toshiji, K. and Genyo, U. (2001). Fault location identification in power transformer impulse test using koho- nen's self-organizing map. Transactions of the Institute of Electrical Engineers of Japan, Part C, 121:1670-5.
  1821. Tourassi, G. D. and Jr, C. E. F. (1995). Lesion size quantification in spect using an artificial neural network classification approach. Computers and Biomedical Research, 28(3):257-270.
  1822. Touzet, C. and Santos, J. M. (1998). Reinforcement function design and bias for efficient learning in mobile robots.
  1823. Touzet, C. F. and Santos, J. M. (2001). Q-learning and robotics. In Simulation in Industry '2001. 13th European Simulation Symposium 2001. ESS'2001. SCS Eur. BVBA, Ghent, Belgium, pages 685-8.
  1824. Tsai, J. H. and Wang, J. H. (1999). Using self-creating neural network for surface reconstruction. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics., volume 4, pages 886-90, Piscataway, NJ. IEEE Service Center.
  1825. Tsay, M. K., Shyu, K. H., and Chang, P. C. (1999). Feature transformation with generalized learning vector quantization for hand-written chinese character recognition. IEICE Transactions on Information and Systems E82-D 3 1999, pages 687-692.
  1826. Tsay, T. I. J. and Chen, J. Y. (1999). Intelligent visual control of robot manipulators. In 30th International Symposium on Robotics. Celebrating the 30th Anniversary toward the Next Millennium. Japan Robot Assoc, Tokyo, Japan, pages 445-52.
  1827. Tsopanoglou, A., Mourjopoulos, J., and Kokkinakis, G. (1994). Adaptation of an isolated word speech recog- nition system to continuous speech using multisection LVQ codebook modification and prosodic parameter transformation. Speech Communication, 15(1):1-20.
  1828. Tsuji, T., Ito, K., and Morasso, P. (1993). Learning of robot arm impedance in operational space using neural networks. In Proceedings of the International Joint Conference on Neural Networks (IJCNN'93-Nagoya 25-29 october '93), volume 1, pages 635-638.
  1829. Tsuji, T., Morasso, P., Shigehashi, K., and Kaneko, M. (1995). Motion planning for manipulators using artificial potential field approach that can adjust convergence time of generated arm trajectory. Journal of the Robotics Society of Japan, 13(3):285-290.
  1830. Tsuruta, N., Taniguchi, R. I., and Amamiya, M. (1998). Hypercolumn model: a combination model of hierar- chical self-organizing maps and neocognitron for image recognition. Transactions of the Institute of Electron- ics, Information and Communication Engineers, J81D-II(10):2288-300.
  1831. Tsuruta, N., Yoshiki, Y., and Tobely, T. E. (2001). A randomized hypercolumn model and gesture recognition. In Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. 6th International Work- Conference on Artificial and Natural Neural Networks, IWANN 2001. Proceedings, Part I (Lecture Notes in Computer Science Vol. 2084). Springer-Verlag, Berlin, Germany, pages 235-42.
  1832. Tu, F., Wen, F., Willett, P., Pattipati, K., and Jordan, E. H. (2001). Signal processing and neural network toolbox and its application to failure diagnosis and prognosis. In Willett, P. K. and Kirubarajan, T., editors, Proceedings of SPIE-The International Society for Optical Engineering, volume 4389, pages 121-132. De- partment of Electrical Engineering, Univ. of Connecticut, U-2157.
  1833. Tucker, C. A. (1999). Self-organizing maps for time series analysis of electromyographic data. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 5, pages 3577-80, Piscataway, NJ. IEEE Service Center.
  1834. Tulkki, A. (1998). Real estate investment appraisal of buildings using SOM. In Deboeck, G. and Kohonen, T., editors, Visual Explorations in Finance with Self-Organizing Maps, pages 128-140. Springer, London.
  1835. Turhan Sayan, G., Inan, S., Ince, T., and Leblebicioglu, K. (1998). Applications of artificial neural networks and genetic algorithms to electromagnetic target classification. The Application of Information Technologies (Computer Science) to Mission Systems, page 23.
  1836. Turhan Sayan, G. and Ince, T. (1999). Neural network techniques in electromagnetic target classification: a comparison study. In IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting., volume 4, pages 2222-5, Piscataway, NJ. IEEE Service Center.
  1837. Turhan Sayan, G., Leblebicioglu, K., and Ince, T. (1999). Electromagnetic target classification using time- frequency analysis and neural networks. Microwave and Optical Technology Letters, 21(1):63-69.
  1838. Tyystjärvi, E., Koski, A., Keränen, M., and Nevalainen, O. (1999). The kautsky curve is a built-in barcode. Biophysical-Journal, 77:1159-67.
  1839. Tzovaras, D. and Strintzis, M. G. (1998). Use of nonlinear principal component analysis and vector quantiza- tion for image coding. IEEE Transactions on Image Processing, 7(8):1218-1223.
  1840. Uchino, E., Kawamura, M., and Nagata, K. (2000). Dynamic pruning process of SOM by using the updated weight information. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 245-250.
  1841. Uchino, E., Nakashima, S., and Yamakawa, T. (1998). Signal classification by modified LVQ and fuzzy template matching with special reference to gas/water pipe discrimination. In Proceedings of the 5th Interna- tional Conference on Soft Computing and Information/Intelligent Systems. Methodologies for the Conception, Design and Application of Soft Computing, volume 2, pages 720-3, Singapore. World Scientific.
  1842. Uchino, E., Nakashima, S., Yamakawa, T., and Toyoda, Y. (1999). Pattern classification by using self- organized fuzzy templates and its application. In 15th Fuzzy System Symposium (Osaka June 2-5, 1999), pages 607-608. in Japanese.
  1843. Ultsch, A. (1999). Data mining and knowledge discovery with emergent selg-organizing feature maps for multivariate time series. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 33-46. Elsevier, Amsterdam.
  1844. Ultsch, A. (2000). The neuro-data-mine. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Philipps-University of Marburg, Department of Computer Science, ICSC Academic Press.
  1845. Um, I.-T., Ra, J.-H., and Kim, M.-H. (2000). Comparison of clustering methods for MLP-based speaker verification. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 2, pages 475-8.
  1846. Umezaki, T., Hirano, T., and Sato, Y. (2001). Automatic synthesis of 3d facial expression. Transactions of the Institute of Electrical Engineers of Japan, Part C, 121:417-22.
  1847. Unneberg, P., Merelo, J. J., Chacon, P., and Moran, F. (2001). SOMCD: Method for evaluating protein sec- ondary structure from UV circular dichroism spectra. Proteins-Structure Function and Genetics, 42(4):460- 470.
  1848. Urushibata, K., Hoshida, T., Suzumura, T., and Oyabu, M. (2000). Application of self-organizing maps to clus- ter of x-ray photoelectron spectra of organic polymers. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 305-10.
  1849. Utsugi, A. (1998). Density estimation by mixture models with smoothing priors. Neural Computation, 10:2115-2135.
  1850. Utsugi, A. (2000). Bayesian sampling and ensemble learning in generative topographic mapping. Neural Processing Letters, 12(3):277-290.
  1851. Vahey, M. T., Nau, M. E., Jagodzinski, L. L., Yalley-Ogunro, J., Taubman, M., Michael, N. L., and Lewis, M. G. (2002). Impact of viral infection on the gene expression profiles of proliferating normal human pe- ripheral blood mononuclear cells infected with HIV type 1 RF. AIDS Research and Human Retorviruses, 18(3):179-192.
  1852. Vailaya, A. and Jain, A. (2000a). Detecting sky and vegetation in outdoor images. Proceedings of SPIE-The International Society for Optical Engineering, 3972:411-420.
  1853. Vailaya, A. and Jain, A. (2000b). Reject option for VQ-based bayesian classification. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 2, pages 48-51.
  1854. Valentin, N. and Denoeux, T. (2001). A neural network-based software sensor for coagulation control in a water treatment plant. Intelligent Data Analysis, 5:23-39.
  1855. Valentin, N., Denoeux, T., and Fotoohi, F. (1999a). An hybrid neural network based system for optimization of coagulant dosing in a water treatment plant. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 5, pages 3380-5, Piscataway, NJ. IEEE Service Center.
  1856. Valentin, N., Denoeux, T., and Fotoohi, F. (1999b). Modelling of coagulant dosage in a water treatment plant. In Engineering Applications of Neural Networks. Proceedings of the 5th International Conference on Engineering Applications of Neural Networks (EANN'99), pages 165-70, Torun, Poland. Wydawnictwo Adam Marszalek.
  1857. Valerand, S. and Maldague, X. (2000). Defect characterization in pulsed thermography: A statistical method compared with kohonen and perceptron neural networks. NDT and E International, 33(5):307-315.
  1858. Valkealahti, K. (1997). Texture classification with single-and double-resolution co-occurrence maps. In Neural Networks in Engineering Systems. Proceedings of the 1997 International Conference on Engineering Applications of Neural Networks, volume 1, pages 63-6. Systems Engineering Association, Turku, Finland.
  1859. van den Berg, J. and Schuemie, M. (1999). Information retrieval systems using an associative conceptual space. In 7th European Symposium on Artificial Neural Networks. ESANN'99. Proceedings, pages 351-6, Brussels, Belgium. D-Facto.
  1860. Van Hulle, M. M. (1997a). The formation of topographic maps that maximize the average mutual information of the output responses to noiseless input signals. Neural Computation, 9(3):595-606.
  1861. Van Hulle, M. M. (1997b). Nonparametric regression analysis achieved with topographic maps developed in combination with projection pursuit learning: An application to density estimation and adaptive filtering of grey scale images. IEEE Transactions on Signal Processing, Special issue on Neural Network Applications to Signal Processing, 45(11):2663-2672.
  1862. Van Hulle, M. M. (1997c). Topology-preserving map formation achieved with a purely local unsupervised competitive learning rule. Neural Networks, 10(3):431-446.
  1863. Van Hulle, M. M. (1998a). Clustering with kernel-based equiprobabilistic topographic maps. In Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, pages 204-213, Cambridge, UK.
  1864. Van Hulle, M. M. (1998b). Faithful representations with topographic maps. In Proceedings of Neural Networks-Networks for Signal Processing, pages 204-213, Cambridge, UK.
  1865. Van Hulle, M. M. (1998c). Kernel-based equiprobabilistic topographic map formation. Neural Computation, 10(7):1847-1871.
  1866. Van Hulle, M. M. (1998d). Nonparametric regression modeling with equiprobable topographic maps and pro- jection pursuit learning with application to PET image processing. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology. Special Issue on Applications of Neural Networks in Biomedical Image Processing, 18:275-285.
  1867. Van Hulle, M. M. (1999). Density-based clustering with topographic maps. IEEE Transactions on Neural Networks, 10(1):204-207.
  1868. van Hulle, M. M. (1999). Faithful representations with topographic maps. Neural Networks, 12(6):803-823.
  1869. van Hulle, M. M. (2000). Faithful Representations and Topographic Maps From Distortion-to Information- based Self-organization. J. Wiley & Sons, Inc.
  1870. Van Hulle, M. M. (2000). Monitoring the formation of kernel-based topographic maps. Neural Networks for Signal Processing-Proceedings of the IEEE Workshop, 1:241-250.
  1871. Van Hulle, M. M. (2001). Towards an information-theoretic approach to kernel-based topographic map for- mation. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 1-6. Springer.
  1872. Van Laerhoven, K. (2001). Combining the self-organizing map and k-means clustering for on-line classifica- tion of sensor data. In Artificial Neural Networks-ICANN 2001, Proceedings, pages 464-469.
  1873. Van Laerhoven, K. and Cakmakci, O. (2000). What shall we teach our pants? International Symposium on Wearable Computers, Digest of Papers, pages 77-83.
  1874. Vanderheyden, Y., Vankeerberghen, P., Novic, M., Zupan, J., and Massart, D. (2000). The application of Koho- nen neural networks to diagnose calibration problems in atomic-absorption spectrometry. Talanta, 51(3):455- 466.
  1875. Varsta, M., Heikkonen, J., and Del R. Millan, J. (1997). Epileptic activity detection in EEG with neural networks. In Neural Networks in Engineering Systems. Proceedings of the 1997 International Conference on Engineering Applications of Neural Networks, volume 1, pages 179-86. Systems Engineering Association, Turku, Finland.
  1876. Varsta, M., Heikkonen, J., and Lampinen, J. (1998). On the convergence properties of the temporal Kohonen map and the recurrent self-organizing map. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceed- ings of ICANN98, the 8th International Conference on Artificial Neural Networks, volume 2, pages 687-692. Springer, London.
  1877. Varsta, M., Heikkonen, J., and Lampinen, J. (2000). Analytical comparison of the temporal kohonen map and the recurrent self organizing map. In 8th European Symposium on Artificial Neural Networks. ESANN"2000. Proceedings. D-Facto, Brussels, Belgium, pages 273-80.
  1878. Varsta, M., Heikkonen, J., Lampinen, J., and Millan, J. D. R. (2001). Temporal kohonen map and the recurrent self-organizing map: Analytical and experimental comparison. Neural Processing Letters, 13(3):237-251.
  1879. Vassilas, N. (1998). Theoretical analysis of the batch variant of the self-organizing feature map algorithm for 1-D networks mapping a continuous 1-D input space. International Journal of Computer Mathematics, 67(1):77-103.
  1880. Vassilas, N., Charou, E., and Varoufakis, S. (1997). Fast and efficient land-cover classification of multispectral remote sensing data using artificial neural network techniques. International Conference on Digital Signal Processing. DSP, 2:995-998.
  1881. Vassilas, N., Thiran, P., and Ienne, P. (1996). Modifications of Kohonen's feature map algorithm for an efficient parallel implementation. IEEE International Conference on Neural Networks, 2:932-937.
  1882. Vellido, A., Lisboa, P. J. G., and Meehan, K. (1999). Segmentation of the on-line shopping market using neural networks. Expert Systems with Applications, 17:303-14.
  1883. Vellido, A., Lisboa, P. J. G., and Meehan, K. (2000a). The generative topographic mapping as a principal model for data visualization and market segmentation: an electronic commerce case study. International Journal of Computers, Systems and Signals, 1:119-38.
  1884. Vellido, A., Lisboa, P. J. G., and Meehan, K. (2000b). Segmenting the e-commerce market using the generative topographic mapping. In MICAI 2000: Advances in Artificial Intelligence, Proceedings, pages 470-481.
  1885. Venna, J. and Kaski, S. (2001). Neighborhood preservation in nonlinear projection methods: An experimental study. In Artificial Neural Networks-ICANN 2001, Proceedings, pages 485-491.
  1886. Vercelli, G. and Morasso, P. (1998). Recognition and classification of path features with self-organizing maps during reactive navigation. In Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications, volume 3, pages 1437-42, New York, NY, USA. IEEE.
  1887. Verikas, A., Malmqvist, K., Bacauskiene, M., and Bergman, L. (2000). Monitoring the de-inking process through neural network-based colour image analysis. Neural Computating & Applications, 9(2):142-151.
  1888. Vesanto, J. (1999). Som-based data visualization methods. Intelligent Data Analysis, 3:111-26.
  1889. Vesanto, J. and Ahola, J. (1999). Hunting for correlations in data using the self-organizing map. In Proc. of International ICSC Congress on Computational Intelligence Methods and Applications (CIMA'99), Rochester, New York, USA, June 22-25, pages 279-285. ICSC Academic Press.
  1890. Vesanto, J. and Alhoniemi, E. (2000). Clustering of the self-organizing map. IEEE Transactions on Neural Networks, 11(3):586-600.
  1891. Vesanto, J., Alhoniemi, E., Himberg, J., Kiviluoto, K., and Parviainen, J. (1999a). Self-organizing map for data mining in matlab: The SOM toolbox. Simulation News Europe, (25):54.
  1892. Vesanto, J., Himberg, J., Alhoniemi, E., and Parhankangas, J. (1999b). Self-organizing map in matlab: the SOM toolbox. In Proc. of Matlab DSP Conference 1999, Espoo, Finland, November 16-17, pages 35-40.
  1893. Vesanto, J., Himberg, J., Siponen, M., and Simula, O. (1998). Enhancing SOM based data visualization. In Proceedings of 5th International Conference on Soft Computing and Information / Intelligent Systems (IIZUKA'98), pages 64-67. Iizuka, Japan.
  1894. Vesanto, J., Vasara, P., Helminen, R. R., and Simula, O. (1997). Integrating environmental, technological and financial data in forest industry analysis. Neural Networks: Best Practice in Europe, pages 153-6.
  1895. Viademonte, S., Burstein, F., and Beckenkamp, F. G. (2000). Empirical study of distribution based on voyager: a performance analysis. In Proceedings of the Hawaii International Conference on System Sciences, page 37, Los Alamitos, CA. Monash Univ, IEEE.
  1896. Vilain, J., Giron, A., Brahmi, D., Deschavanne, P., and Fertil, B. (1999). Application of curvilinear component analysis to chaos game representation images of genome. In Proceedings of SPIE-The International Society for Optical Engineering, volume 3647, pages 111-119.
  1897. Villman, T., Badel, B., Kämpf, D., and Geyer, M. (2000). Monitoring of physiological parameters of patients and therapists during psychotherapy sessions using self-organizing maps. In Malmgren, H., Boga, M., and Niklasson, L., editors, Artificial Neural Networks in Medicine and Biology, Prodeedings of the ANNIMAB-1 Conference, Göteborg, Sweden, 13-16 May 2000, pages 221-226.
  1898. Villmann, T., , and Merényi, E. (2000a). Extensions and modifications of the SOM and its application in satellite remote sensoring processing. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. Klinik un Poliklinik für Psychotherapie und Psycosomatische Medizin, Universität Leipzig; Lunar and Planetory Laboratory, University of Arizona, ICSC Academic Press.
  1899. Villmann, T. (1998). Estimation of topography in self-organizing maps and data driven growing of suitable network structures. In Lieven, K., editor, Proceedings of European Congress on Intelligent Techniques and Soft Computing (EUFIT'98), pages 235-244, Aachen, Germany. ELITE Foundation.
  1900. Villmann, T. (1999a). Benefits and limits of the self-organizing map and its variants in the area of satellite remote sensoring processing. In Proc. of European Symposium on Artificial Neural Networks (ESANN'99), pages 111-116, Brussels, Belgium. D facto publications.
  1901. Villmann, T. (1999b). Topology preservation in self-organizing maps. In Oja, E. and Kaski, S., editors, Kohonen Maps, pages 279-292. Elsevier, Amsterdam.
  1902. Villmann, T. and Bauer, H. U. (1998). Applications of the growing self-organizing map. Neurocomputing, 21(1-3):91-100.
  1903. Villmann, T., Bauer, H. U., and Herrmann, M. (1997). Neuronale merkmalskarten und topologieerhaltung. In Groß, H.-M., editor, Proceedings of Selbstorganisation Von Adaptivem Verfahren (SOAVE'97) Ilmenau, pages 119-126, VDI-Verlag Düsseldorf. Fortschrittsberichte des VDI.
  1904. Villmann, T., Haupt, R., and Hering, K. (2000b). Parallel evolutionary algorithms with SOM-like migration and its application to VLSI-design. In Proceedings of the International Joint Conference on Neural Networks, volume 5, pages 167-172, Piscataway, NJ. Universitaet Leipzig, IEEE.
  1905. Villmann, T., Hermann, W., and Geyer, M. (2000c). Data mining and knowledge discovery in medical appli- cations using self-organizing maps. In Medical Data Analysis. First International Symposium, ISMDA 2000. Proceedings (Lecture Notes in Computer Science Vol.1933). Springer-Verlag, Berlin, Germany, pages 138-51.
  1906. Villmann, T., Hermann, W., and Geyer, M. (2000d). Variants of self-organizing maps for data mining and data visualization in medicine. Neural Network World, 10:751-62.
  1907. Villmann, T. and Herrmann, M. (1998). Magnification control in neural maps. In Proc. of European Symposium on Artificial Neural Networks (ESANN'98), pages 191-196, Brussels, Belgium. D facto publications.
  1908. Villmann, T. and Hessel, A. (1999). Analyzing psychotherapy process time series using neural maps. In ICANN99. Ninth International Conference on Artificial Neural Networks (IEE Conf. Publ. No.470), volume 2, pages 767-72, London, UK. IEE.
  1909. Villmann, T., Hessel, A., and Plöttner, G. (1998a). The growing SOM for estimation of the intrinsic dimension and range of psychotherapy process data. In Wang, P. P. and Georgiou, G. M., editors, Proceedings of the 3rd International Conference on Computational Intelligence and Neuroscience, pages 72-75, Duke University and Research Triangle Park, Durham, North Carolina (USA). Association for Intelligent Machinery, Inc.
  1910. Villmann, T., Körner, A., and Albani, C. (1998b). Evolutionary algorithms with migration scheme inspired by neural dynamic and its application to reformulation of categories in psychotherapy research. In Ifeachor, E. C., Sperduti, A., and Starita, A., editors, Neural Networks and Expert Systems in Medicine and Healthcare, pages 313-321, Singapore. World Scientific.
  1911. Villmann, T., Körner, A., and Albani, C. (1998c). Evolutionary algorithms with self-organizing population dynamic for clustering of categories in psychotherapy research using large clinical data sets. In Proceedings of International ICSC/IFAC Symposium on Neural Computation (NC'98), pages 130-136, Wien, Austria. International Computer Science Conventions Academic Press.
  1912. Villmann, T. and Merényi, E. (2002). Self-Organizing Neural Networks-Recent Advances and Applications, volume 78 of Studies in Fuzziness and Soft Computing, chapter Extensions and Modifications of the Kohonen- SOM and Applications in Remote Sensing Image Analysis, pages 121-40. Physica-Verlag Heidelberg.
  1913. Villmann, T., Rietz, U., Hessel, A., and Plöttner, G. (1999). Estimation of the intrinsic dimension of psy- chotherapy process data-a comparing study including the GSOM. In Krell, G., Michaelis, B., Nauck, D., and Kruse, R., editors, Proceedings of International Workshop 'Neuronale Netze in der Anwendung', Magdeburg, pages 7-16. University Magdeburg.
  1914. Vinson, D. P. and Vigliocco, G. (2002). A semantic analysis of grammatical class impairments: semantic representations of object nouns, action nouns and action verbs. Journal of Neurolinguistics, 15(3-5):317-351.
  1915. Vintan, L. N. and Iridon, M. (1999). Towards a high performance neural branch predictor. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 2, pages 868-73, Piscataway, NJ. IEEE Service Center.
  1916. Visa, A., Toivonen, J., Back, B., and Vanharanta, H. (2000a). Toward text understanding-classification of text documents by word map. In Proceedings of SPIE-The International Society for Optical Engineering, volume 4057, pages 299-305, Bellingham, WA. Lappeenranta Univ of Technology, SPIE.
  1917. Visa, A., Toivonen, J., Ruokonen, P., Vanharanta, H., and Back, B. (2000b). Knowledge discovery from text documents based on paragraph maps. In Proceedings of the Hawaii International Conference on System Sciences Jan 4-Jan 7 2000, page 38.
  1918. Visa, A., Toivonen, J., Vanharanta, H., and Back, B. (2001). Prototype matching-finding meaning in the books of the bible. In Proceedings of the Hawaii International Conference on System Sciences, page 72.
  1919. Vishwanathan, N. and Wunsch II, D. C. (2001). ART/SOFM: A hybrid approach to the TSP. In Proceedings of the International Joint Conference on Neural Networks, volume 4, pages 2554-2557. Appl. Computational Intell. Lab., Dept. of Elec. and Comp. Engineering, University of Missouri-Rolla.
  1920. Vishwanathan, S. V. N. and Murty, M. N. (2000). Kohonen's SOM with cache. Pattern Recognition, 33(11):1927-1929.
  1921. Viswanathan, S., Ersoy, I., Bunyak, F., and Dagli, C. (1999). Evolving neural networks applied to predator- evader problem. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 4, pages 2394-7, Piscataway, NJ. IEEE Service Center.
  1922. Voegtlin, T. (2000). Context quantization and contextual self-organizing maps. In Proceedings of the Inter- national Joint Conference on Neural Networks, volume 6, pages 20-25, Piscataway, NJ. Inst des Sciences Cognitives, IEEE.
  1923. Voegtlin, T. and Dominey, P. F. (2001). Recursive self-organising maps. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 210-5. Springer.
  1924. Vollmer, U. and Strey, A. (1999). Experimental study on the precision requirements of RBF, RPROP and BPTT training. In ICANN99. Ninth International Conference on Artificial Neural Networks (IEE Conf. Publ. No.470), volume 1, pages 239-44, London, UK. IEE.
  1925. Volmer, R. and Lehrbass, F. B. (1997). Kohonen's self-organizing maps and the future of the DAX. Wirtschaftsinformatik, 39(4):339-44.
  1926. Vuori, V., Laaksonen, J., and Kangas, J. (2002). Influence of erroneous learning samples on adaptation in on-line handwriting recognition. Pattern Recognition, 35(4):915-925.
  1927. Vuori, V., Laaksonen, J., Oja, E., and Kangas, J. (1999). On-line adaptation in recognition of handwritten alphanumeric characters. In Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR '99, pages 792-5, Los Alamitos, CA, USA. IEEE Computer Society.
  1928. Wagatsuma, H. and Yamaguchi, Y. (1999). A neural network model self-organizing a cognitive map using theta phase precession. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics., volume 3, pages 199-204, Piscataway, NJ. IEEE Service Center.
  1929. Waizumi, Y., Kato, N., Saruta, K., and Nemoto, Y. (2000). High speed and high accuracy rough classification for handwritten characters using hierarchical learning vector quantization. IEICE Transactions on Information and Systems, E83-D(6):1282-1290.
  1930. Waldemark, J. (1996). An automated procedure for cluster analysis of multivariate satellite data. In Solving Engineering Problems with Neural Networks. Proceedings of the International Conference on Engineering Applications of Neural Networks (EANN'96), volume 1, pages 237-40. Systems Engineering Association, Turku, Finland.
  1931. Waldemark, J., Dovner, P., and Karlsson, J. (1995). Neural network detection system for lower-hybrid cavities in electron plasma density measured by the FREJA satellite.
  1932. Walker, A. J., Cross, S. S., and Harrison, R. F. (1999). Visualization of biomedical datasets by use of growing cell structure networks: a novel diagnostic classification technique. The Lancet, 354:1518-1521.
  1933. Walley, W. J., Martin, R. W., and MA, O. (2000). Self-organising maps for the classification and diagnosis of river quality from biological and environmental data. In Environmental Software Systems. Environmen- tal Information and Decision Support. IFIP TC5 WG5.11. 3rd International Symposium. Kluwer Academic Publishers, Norwell, MA, USA, pages 27-41.
  1934. Walley, W. J. and O'Connor, M. A. (2001). Unsupervised pattern recognition for the interpretation of ecolog- ical data. Ecological Modelling, 146(1-3):219-230.
  1935. Walter, J., Arnrich, B., and Scheering, C. (2000a). Learning fine positioning of a robot manipulator based on gabor wavelets. In Proceedings of the International Joint Conference on Neural Networks, volume 5, pages 137-142, Piscataway, NJ. Univ of Bielefeld, IEEE.
  1936. Walter, J., Nölker, C., and Ritter, H. (2000b). The PSOM algorithm and applications. In Bothe, H. and Rojas, R., editors, Proceeding of the ICSC Symposia on Neural Computation (NC'2000) May 23-26, 2000 in Berlin, Germany. University of Bielefeld, Department of Computer Science, ICSC Academic Press.
  1937. Wan, W. and Fraser, D. (1996). Spatial and temporal classification with multiple self-organising maps. In Proceedings of the 3rd Conference on Image and signal processing for remote sensing III, volume 2955, pages 307-314, Bellingham, WA. Society of Photo-Optical Instrumentation Engineers.
  1938. Wan, W. and Fraser, D. (1999). Multisource data fusion with multiple self-organizing maps. IEEE Transactions on Geoscience and Remote Sensing, 37:1344-9.
  1939. Wan, W. and Fraser, D. (2000a). A multiple self-organizing map scheme for remote sensing classification. In Multiple Classifier Systems. First International Workshop, MCS 2000. Proceedings (Lecture Notes in Com- puter Science Vol.1857). Springer-Verlag, Berlin, Germany, pages 300-9.
  1940. Wan, W. J. and Fraser, D. (2000b). A multiple self-organizing map scheme for remote sensing classification. In Multiple classifier Systems, pages 300-309.
  1941. Wang, A., Shen, L., and Zhao, Z. (2000a). Color tongue image segmentation using fuzzy kohonen networks and genetic algorithm. In Proceedings of SPIE-The International Society for Optical Engineering, volume 3962, pages 182-190, Bellingham, WA. Beijing Polytechnic Univ, SPIE.
  1942. Wang, H. C., Badger, J., Kearney, P., and Li, M. (2001a). Analysis of codon usage patterns of bacterial genomes using the self-organizing map. Molecular Biology and Evolution, 18(5):792-800.
  1943. Wang, J., Yu, S.-Y., and Zhang, W.-J. (2000b). Design of optimal codebook using evolutionary strategy. Journal of China Institute of Communications, 21:60-4.
  1944. Wang, J. H. and Hsiao, C. P. (1999). On disparity matching in stereo vision via a neural network framework. In Proceedings of the National Science Council, Republic of China, Part A (Physical Science and Engineering), volume 23, pages 665-77.
  1945. Wang, J. H. and Peng, C. Y. (1999). Competitive neural network scheme for learning vector quantization. Electronics Letters, 35(9):725-726.
  1946. Wang, J.-H. and Peng, C.-Y. (2000). Novel self-creating neural network for learning vector quantization. Neural Processing Letters, 11(2):139-151.
  1947. Wang, J. H., Peng, C. Y., and Rau, J. D. (2000c). Harmonic neural networks for on-line learning vector quantization. IEE Proceedings: Vision, Image and Signal Processing, 147(5):485-492.
  1948. Wang, J. H., Rau, J. D., and Peng, C. Y. (2000d). Toward optimizing a self-creating neural network. IEEE Transactions on Systems, Man and Cybernetics Part B-Cybernetics, 30(4):586-593.
  1949. Wang, J. H. and Sun, W. D. (1999). Online learning vector quantization: a harmonic competition approach based on conservation network. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 29:642-53.
  1950. Wang, L., Bridges, S. M., Boggess, L. C., and J., V. J. (2000e). Neural network classification of leaf reflectance spectra for predicting nutrient deficiency of cotton. In Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems. Vol.10. Proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE 2000). ASME, New York, NY, USA, pages 1037- 43.
  1951. Wang, L. and Qi, F. (2000). Adaptive FKCN method for image segmentation. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 28(2):4-6.
  1952. Wang, S. (2001). Cluster analysis using a validated self-organizing method: cases of problem identification. International Journal of Intelligent Systems in Accounting, Finance and Management, 10:127-38.
  1953. Wang, S. (2002). Nonlinear pattern hypothesis generation for data mining. Data and Knowledge Engineering, 40(3):273-283.
  1954. Wang, S. D. and Lee, C. J. (1999). Fingerprint recognition using directional micropattern histograms and LVQ networks. In Proceedings 1999 International Conference on Information Intelligence and Systems, pages 300-3, Los Alamitos, CA, USA. IEEE Computer Society Press.
  1955. Wang, X., Lin, H., Lu, J., and Yahagi, T. (2001b). Detection of nonlinearly distorted m-ary QAM signals using self-organizing map. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E84-A(8):1969-1976.
  1956. Wang, X., Lin, H., Lu, J., and Yahagi, T. (2001c). Detection of nonlinearly distorted m-ary QAM signals using self-organizing map. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, pages 1969-76.
  1957. Wang, X. D., Jin, H., Zhao, R. C., and Wu, C. M. (2001d). Texture segmentation method based on incomplete tree-structured wavelet transform and fuzzy clustering network. Mini Micro Systems, 22:325-8.
  1958. Wang, X. D. and Zhao, R. C. (2001). New texture segmentation method based on visual perception and IFKCN. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 19(1):31-34.
  1959. Wang, X. Z., Yoshizawa, M., Tanaka, A., Abe, K., Yambe, T., and Nitta, S. (2001e). Automatic detection and classification of abnormalities for artificial hearts using a hierarchical self-organizing map. ARTIFICIAL ORGANS, 25(2):150-153.
  1960. Wang, X. Z., Yoshizawa, M., Tanaka, A., Abe, K., Yambe, T., Nitta, S.-I., Chinzei, T., Abe, Y., and Imachi, K. (2001f). Automatic monitoring system for artificial hearts using self organizing map. ASAIO Journal, 47(6):686-691.
  1961. Wang, X. Z., Yoshizawa, M., Tanaka, A., Abe, K. i., Takeda, H., Yambe, T., Nitta, S. i., and Imachi, K. (1999). Automatic monitoring system for artificial hearts using self-organizing map. In Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings 2 (Oct 13-Oct 16 1999), page 756.
  1962. Wang, Y. and Rong, G. (1999). A self organizing neural network based fuzzy system. Fuzzy Sets and Systems, 103:1-11.
  1963. Wang, Y., Zhu, Y. S., Thakor, N. V., and Xu, Y. H. (2001g). A short-time multifractal approach for arrhythmia detection based on fuzzy neural network. IEEE Transactions on Biomedical Engineering, 48(9):989-995.
  1964. Wang, Y., Zhu, Y. S., Thakor, N. V., and Xu, Y. H. (2001h). A short-time multifractal approach for arrhythmia detection based on fuzzy neural network. IEEE Transactions on Biomedical Engineering, 48:989-95.
  1965. Watanabe, T., Kishida, K., Ishihara, K., Yamauchi, Y., and Tokutaka, H. (1998a). Application of neural networks to quantitative chemical analysis. Journal of the Surface Science Society of Japan, 19(2):36-43. (in Japanese).
  1966. Watanabe, T., Kishida, S., Ishihara, K., Kawai, T., Tokutaka, T., and Fukushima, S. (1998b). Application of neural networks to chemical analysis (in japanese). Journal of the Surface Science Society of Japan, 19(6):46- 54.
  1967. Watanabe, T., Kishida, S., Kawai, T., Ishihara, K., Tokutaka, H., and Fukushima, S. (1998c). Smoothing of chemical analysis data by neural networks. In Proceedings of the Fifth International Conference on Neural Information Processing, pages 707-709, Kitakyushu, Japan.
  1968. Watkins, D. (1998). Discovering geographical clusters in a U.S. telecommunications company call detail records using Kohonen self organising maps. In PADD98. Proceedings of the Second International Conference on the Practical Application of Knowledge Discovery and Data Mining, pages 67-73. Practical Application Co. Ltd, Blackpool, UK.
  1969. Webb, A. R. (2000). Gamma mixture models for target recognition. Pattern Recognition, 33(12):2045-2054.
  1970. Wedel, J. and Polani, D. (1996). Critic-based learning of actions with Self-Organizing feature maps. Technical report, Institut für Informatik, Johannes Gutenberg-Universität Mainz.
  1971. Wei, H. (2001). A SOM network model for feature extraction by hyper columns architecture of primary visual cortex. Journal of Zhejiang University, 35:258-63.
  1972. Weidong, H., Wenxian, Y., and Guirong, G. (1998). A new fuzzy Kohonen clustering network. Acta Electron- ica Sinica, 26(3):117-19.
  1973. Weigang, L. and da Silva, N. C. (1999). Implementation of parallel self-organizing map to the classification of image. In Proceedings of SPIE-The International Society for Optical Engineering, volume 3722, pages 284-292.
  1974. Weijters, A., Van den Bosch, A., and Van den Herik, H. J. (1998). Intelligible neural networks with BP-SOM. In Proceedings of ECML-98. Accepted for publication.
  1975. Weijters, T. and Van den Bosch, A. (1998). Interpretable neural networks with BP-SOM. In Mira, J., Pasqual del Pobil, A., and Ali, M., editors, Tasks and Methods in Applied Artificial Intelligence. Proceedings of 11th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems IEA-98-AIE, volume 2, pages 564-73. Springer-Verlag, Berlin, Germany.
  1976. Wen, F., Willett, P., and Deb, S. (2000). Condition monitoring for helicopter data. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, volume 1, pages 224-229, Piscataway, NJ. Univ of Connecticut, IEEE.
  1977. Wen, F., Willett, P., and Deb, S. (2001). Analysis of the westland data set. In Willett, P. K. and Kirubarajan, T., editors, Proceedings of SPIE-The International Society for Optical Engineering, volume 4389, pages 204-215. Elec. and Computer Eng. Department, U-2157, University of Connecticut.
  1978. Wesolowski, M. and Suchacz, B. (2001). Classification of rapeseed and soybean oils by use of unsupervised pattern-recognition methods and neural networks. Fresenius' Journal of Analytical Chemistry, 371(3):323- 330.
  1979. Wessels, T. and Omlin, C. W. (2000). Hybrid system for signature verification. In Proceedings of the Interna- tional Joint Conference on Neural Networks, volume 5, pages 509-514, Piscataway, NJ. Univ of Stellenbosch, IEEE.
  1980. West, D. (1998). An investigation of the bias/variance dilemma for neural network classification models. In Joint Conference on Intelligent Systems 1999 (JCIS'98), volume 4, pages 48-51. Association for Intelligent Machinery, Inc.
  1981. West, D. (2000). Neural network credit scoring models. Computers and Operations Research, 27(11):1131- 1152.
  1982. West, D. and West, V. (2000a). Improving diagnostic accuracy using a hierarchical neural network to model decision subtasks. International Journal of Medical Informatics, 57(1):41-55.
  1983. West, D. and West, V. (2000b). Model selection for a medical diagnostic decision support system: a breast cancer detection case. Artificial Intelligence in Medicine, 20(3):183-204.
  1984. Wiemer, J., Burwick, T., and Seelen, W. (2000). Self-organized maps for visual feature representation based on natural binocular stimuli. Biological Cybernetics, 82(2):97-110.
  1985. Wilfert, H. H., Voigtlander, K., and Erlich, I. (2001). Dynamic coherency identification of generators using self-organising feature maps. Control Engineering Practice, 9(7):769-775.
  1986. Wilinski, P. (1999). Neuro-Markovian modeling and segmentation of remotely sensed images. In International Symposium on Pattern Recognition 'In Memoriam Pierre Devijver'. Royal Mil. Acad, Brussels, Belgium, pages 72-7.
  1987. Williams, M. D. and Lake, S. (2000). Artificial neural network classification of UK hospitals using national health service indicators. In Proceedings of the International Conference on Artificial Intelligence. IC-AI'2000. CSREA Press, Athens, GA, USA, volume 2, pages 967-73.
  1988. Williamson, J. R. (2001). Self-organization of topographic mixture networks using attentional feedback. Neu- ral Computation, 13:563-93.
  1989. Wilppu, E. (1999). Controlling Distribution with Neural Networks. A-11. Turku School of Economics and Business Administration.
  1990. Wismueller, A., Vietze, F., Dersch, D. R., Leinsinger, G. L., Pfluger, T., and Hahn, K. (1998). Automatic segmentation and volumetry of multispectral MRI data sets of the human brain by self organizing neural networks. Radiology, 209P:1156-1156.
  1991. Wismuller, A., Dersch, D. R., Lipinski, B., Hahn, K., and D., A. (2000a). Hierarchical clustering of functional MRI time-series by deterministic annealing. In Medical Data Analysis. First International Symposium, ISMDA 2000. Proceedings (Lecture Notes in Computer Science Vol.1933). Springer-Verlag, Berlin, Germany, pages 49-54.
  1992. Wismuller, A., Vietze, F., Dersch, D. R., Hahn, K., and H., R. (2000b). A neural network approach to adaptive pattern analysis-the deformable feature map. In 8th European Symposium on Artificial Neural Networks. ESANN"2000. Proceedings. D-Facto, Brussels, Belgium, pages 189-94.
  1993. Wismuller, A., Vietze, F., Dersch, D. R., Hahn, K., and Ritter, H. (1998). The deformable feature map- adaptive plasticity for function approximation. In Niklasson, L., Bodén, M., and Ziemke, T., editors, Proceed- ings of ICANN98, the 8th International Conference on Artificial Neural Networks, volume 1, pages 123-128. Springer, London.
  1994. Wlitsukura, Y., Fukumi, M., and Akamatsu, N. (2000). A design of genetic fog occurrence forecasting system by using LVQ network. In SMC 2000 Conference Proceedings. 2000 IEEE International Conference on Systems, Man and Cybernetics. 'Cybernetics Evolving to Systems, Humans, Organizations, and their Complex Interactions'. IEEE, Piscataway, NJ, USA, volume 3895, pages 3678-81.
  1995. Wong, K. W. and Gedeon, T. (2000). Modular signal processing model for permeability prediction in petroleum reservoir. Neural Networks for Signal Processing-Proceedings of the IEEE Workshop, 2:906-915.
  1996. Wriggers, W., Milligan, R. A., Schulten, K., and McCammon, J. A. (1998). Self organizing neural networks bridge the biomolecular resolution gap. Journal of Molecular Biology, 284:1247-1254.
  1997. Wu, C., Polte, T., and Rehfeldt, D. (2002a). Kohonen network system for process monitoring in gas metal arc welding. Chinese Journal of Mechanical Engineering, 38:131-4.
  1998. Wu, C. S., Polte, T., and Rehfeldt, D. (2000). Gas metal arc welding process monitoring and quality evaluation using neural networks. Science and Technology of Welding and Joining, 5(5):324-328.
  1999. Wu, D. and Linders, J. (2000). Comparison of three different methods to select feature for discriminating forest cover types using SAR imagery. International Journal of Remote Sensing, 21(10):2089-2099*.
  2000. Wu, H., Liu, Y., Ding, Y., and Zhang, X. (2002b). Application study of SOM artificial neural net in airliner fault diagnosis. Journal of Nanjing University of Aeronautics & Astronautics, 34:31-4.
  2001. Wu, Q., Iyengar, S. S., and Zhu, M. (2001). Web image retrieval using self-organizing feature map. Journal of the American Society for Information Science and Technology, 52(10):868-875.
  2002. Wu, Y. and Yan, P. (1999). A study on structural adapting self-organizing neural network. Acta Electronica Sinica, 27:55-8.
  2003. Wuertz, R. P., Konen, W., and Behrmann, K. O. (1999). On the performance of neuronal matching algorithms. Neural Networks, 12(1):127-134.
  2004. Wunstell, M., Polani, D., Uthmann, T., and Perl, J. (2001). Behavior classification with self-organizing maps. RoboCup 2000: Robot Soccer World Cup IV (Lecture Notes in Artificial Intelligence Vol.2019). Springer- Verlag, Berlin, Germany; 2001; xvii+658 pp.p.108-18, pages 108-18.
  2005. Xiang-Yun, Y., Fei-Hu, Q., and Jun, J. (1998). Adaptive image segmentation based on selective multiresolu- tional Kohonen neural network. Journal of Infrared and Millimeter Waves, 17(1):48-53.
  2006. Xiao, R., Chandrasekar, V., Liu, H., and Gorgucci, E. (1998). Detection of rain/no rain condition on ground from radar data using a Kohonen neural network. In Stein, T. I., editor, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings, volume 1, pages 159-61. IEEE, New York, NY, USA.
  2007. Xiaodan, W., Hua, J., and Rongchun, Z. (2000). Texture segmentation method based on incomplete tree structured wavelet transform and fuzzy kohonen clustering network. In Proceedings of the 3rd World Congress on Intelligent Control and Automation. IEEE, Piscataway, NJ, USA, volume 4, pages 2684-7.
  2008. Xie, T., Chen, H., and Zhang, Y. (2000). Optimal statistical clustering for high dimensional fault sample using evolution strategies. Tuijin Jishu/Journal of Propulsion Technology, 21(5):34-37, 52.
  2009. Xiong, Q., Hirasawa, K., Hu, J., and Murata, J. (2000). Growing RBF structures using self-organizing maps. In Proceedings 9th IEEE International Workshop on Robot and Human Interactive Communication. IEEE RO-MAN 2000. IEEE, Piscataway, NJ, USA, pages 107-11.
  2010. Xu, L. (2001). An overview on unsupervised learning from data mining perspective. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 181-209. Springer.
  2011. Xu, S. and Zhang, M. (1997). A SOM network group for DOMM financial prediction system. In 1997 IEEE International Conference on Intelligent Processing Systems, volume 1, pages 482-4. IEEE, New York, NY, USA.
  2012. Xu, Y., En-hong, C., and Wang, X.-f. (2001). Neural network based web user behavior cluster analysis. Mini Micro Systems, 22:699-702.
  2013. Xu, Z. M., Ivanusic, J. J., Bourke, D. W., Butler, E. G., and Horne, M. K. (1999). Automatic detection of bursts in spike trains recorded from the thalamus of a monkey performing wrist movements. Journal of Neuroscience Methods, 91:123-33.
  2014. Xue, J. Q., Li, Q. B., and Zhao, Y. H. (2001). Automatic classification of stellar spectra using the SOFM method. Chinese Astronomy and Astrophysics, 25(1):120-131.
  2015. Yacoub, M., Badran, F., and Thiria, S. (2001). A topological hierarchical clustering: Application to ocean color classification. In Artificial Neural Networks-ICANN 2001, Proceedings, pages 492-499.
  2016. Yamada, T., Hattori, M., Morisawa, M., and Ito, H. (1999). Sequential learning for associative memory using Kohonen feature map. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 3, pages 1920-3, Piscataway, NJ. IEEE Service Center.
  2017. Yamakawa, T. and Horio, K. (1998). New design method of fuzzy logic controller using self-organizing relationship. In Yamakawa, T. and Matsumoto, G., editors, Methodologies for the Conception, Design and Application of Soft Computing. Proceedings of IIZUKA'98, volume 1, pages 155-158. World Scientific.
  2018. Yamakawa, T. and Horio, K. (1999a). A nonlinear control system established by self-organizing relationship (SOR) network. In Misra, J. C. and Sinha, S. B., editors, Mathematical Modelling of Nonlinear Systems, volume 1, pages 23-5.
  2019. Yamakawa, T. and Horio, K. (1999b). Self-organising relationship (SOR) network. IEICE Trans. Fundamen- tals, E82-A(8):1674-77.
  2020. Yamakawa, T., Horio, K., Izumi, S., and Miki, T. (2001a). A new method of Hough transform by using SOM with input vector transformation. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 167-72. Springer.
  2021. Yamakawa, T., Horio, K., and Kubota, R. (2000). Modified adaptive subspace self-organizing map and its application to speaker classification. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 215-20.
  2022. Yamakawa, T., Horio, K., and Kubota, R. (2001b). A SOM association network. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 15-20. Springer.
  2023. Yamakawa, T., Horio, K., Oosako, Y., and Miki, T. (2001c). A new interpolation algorithm employing a self organising map. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 118-23. Springer.
  2024. Yamakawa, T., Nakamura, M., and Uchino, E. (1997). An adaptive self organization network and it's applica- tion to a distributed temperature control system. In 13th Fuzzy Symposium (Toyama, June 4-6, 1997), pages 673-674. in Japanese.
  2025. Yamakawa, T., Nakamura, M., and Uchino, E. (1998). An adaptive self organization network and it's applica- tion to a distributed control system. In Phuong, N. H. and Ohsato, A., editors, VJFUZZY'98: Vietnam-Japan Bilateral Symposium on Fuzzy Systems and Applications, Halong Bay, Vietnam, 30th September-2nd Octo- ber, 1998, pages 33-38.
  2026. Yamakawa, T., Nakamura, Y., Suetake, N., and Miki, T. (1999). Independent component analysis based on marginal entropy maximization employing self-organizing maps. In 15th Fuzzy System Symposium (Osaka, June 2-5, 1999), pages 323-326. in Japanese.
  2027. Yamamoto, T. (2001). Vector quantization for image compression using circular structured self-organization feature map. In IEEE International Conference on Image Processing, volume 2, pages 443-446. Univ. of Maryland at College Park, Dept. of Electrical and Comp. Eng.
  2028. Yamauchi, K., Takeichi, M., and Ishii, N. (1999a). Restoration of images via self-organizing feature map. In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cyber- netics., volume 2, pages 942-7, Piscataway, NJ. IEEE Service Center.
  2029. Yamauchi, T., Hasegawa, T., Kuroda, H., Kondoh, K., Takagi, H., Ohta, K., Okazaki, S., and Fukushima, T. (1999b). Japanese full-address recognition algorithm for carrier sequence OCR sorter. NEC Research and Development, 40:142-7.
  2030. Yan, X., Chen, D., Chen, Y., and Hu, S. (2001). SOM integrated with CCA for the feature map and classifica- tion of complex chemical patterns. Computers and Chemistry, 25(6):597-605.
  2031. Yanez-Suarez, O. and Azimi Sadjadi, M. R. (1999). Unsupervised clustering in hough space for identification of partially occluded objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(9):946- 950.
  2032. Yang, C. C., Chen, H., and Hong, K. (2002). Internet browsing: visualizing category map by fisheye and fractal views. In Proceedings International Conference on Information Technology: Coding and Computing. IEEE Comput. Soc, Los Alamitos, CA, USA, pages 34-9.
  2033. Yang, C. C., Chen, H., and Hong, K. K. (1999a). Visualization tools for self-organizing maps. In Digital 99 Libraries. Fourth ACM Conference on Digital Libraries. ACM, New York, NY, USA, pages 258-9.
  2034. Yang, C.-H. (2001a). Morse code recognition using learning vector quantization for persons with physical disabilities. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E84-A(1):356-362.
  2035. Yang, H. C. (2001b). Shaped-based image retrieval by spatial topology distances. In Proceedings of the ACM International Multimedia Conference and Exhibition, pages 38-41. Department of Information Management, Chang Jung University.
  2036. Yang, H.-C. and Lee, C.-H. (2000a). Automatic category generation for text documents by self-organizing maps. In Proceedings of the International Joint Conference on Neural Networks, volume 3, pages 581-586, Piscataway, NJ. Chang Jung Univ, IEEE.
  2037. Yang, H.-C. and Lee, C.-H. (2000b). Automatic category structure generation and categorization of chinese text documents. In Principles of Data Mining and Knowledge Discovery. 4th European Conference, PKDD 2000. Proceedings (Lecture Notes in Artificial Intelligence Vol.1910). Springer-Verlag, Berlin, Germany, pages 673-8.
  2038. Yang, H.-C. and Lee, C.-H. (2001). Automatic hypertext construction through a text mining approach by self-organizing maps. In Advances in Knowledge Discovery and Data Mining. 5th Pacific-Asia Conference, PAKDD 2001. Proceedings (Lecture Notes in Artificial Intelligence Vol.2035). Springer-Verlag, Berlin, Ger- many, pages 108-13.
  2039. Yang, H. S., Jegla, J. D., and Griffiths, P. R. (1998). Classification and recognition of compounds in low resolution open path FT IR spectrometry by Kohonen self organizing maps. Fresenius' Journal of Analytical Chemistry, 362:25-33.
  2040. Yang, H. S., Lewis, I. R., and Griffiths, P. R. (1999b). Raman-spectrometry and neural networks for the classification of wood types-2-Kohonen self-organizing map. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55(14):2783-2791.
  2041. Yang, H. T. and Huang, Y. C. (1998). Intelligent decision support for diagnosis of incipient transformer faults using self organizing polynomial networks. IEEE Transactions on Power Systems, 13:946-952.
  2042. Yang, H. T., Liao, C. C., and Chou, J. H. (2001a). Fuzzy learning vector quantization networks for power transformer condition assessment. IEEE Transactions on Dielectrics and Electrical Insulation, 8(1):143-149.
  2043. Yang, M. H., Kriegman, D., and Ahuja, N. (2001b). Face detection using multimodal density models. Com- puter Vision and Image Understanding, 84:264-84.
  2044. Yang, M.-H., Kriegman, D., and Ahuja, N. (2001c). Face detection using multimodal density models. Com- puter Vision and Image Understanding, 84(2):264-284.
  2045. Yang, Z. R. (2001c). Analysing health iequalities using SOM. In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 47-53. Springer.
  2046. Yao, K. C., Mignotte, M., Collet, C., Galerne, P., and Burel, G. (2000). Unsupervised segmentation using a self-organizing map and a noise model estimation in sonar imagery. Pattern Recognition, 33(9):1575-1584.
  2047. Yasumatsu, K., Takeda, Y., Murakoshi, H., and Funakubo, N. (1999). Distributed processing system by history for load balancing. In Control in Natural Disasters (CND'98) Proceedings volume from the IFAC Workshop. Elsevier Sci, Kidlington, UK.
  2048. Yasunaga, M., Hachiya, I., Moki, K., and Kim, J. H. (1998). Fault-tolerant self-organizing map implemented by wafer-scale integration. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 6(2):257-65.
  2049. Yasunaga, M., Moki, K., Kim, J. H., and Yoshihara, I. (2000). A bus-based neuro-COmputer for high speed SOM calculation and its fault tolerance against defective circuits. In 6 th International Conference on Soft Computing, IIZUKA2000, Iizuka, Fukuoka, Japan, October 1-4, 2000, pages 264-271.
  2050. Yasunaga, M., Tominaga, K., and Kim, J. H. (1999). Parallel self-organization map using multiple stimuli. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 2, pages 1127-30, Piscataway, NJ. IEEE Service Center.
  2051. Yata, Y., Tokutaka, H., and Fujimura, K. (1998). Learning of simple oscillating wave form by adaptive subspace SOM. In Proceedings of the Fifth International Conference on Neural Information Processing, pages 1157-1159, Kitakyushu, Japan.
  2052. Ye, H. and Lo, B. W. N. (1999). A self-classification scheme for software reuse. In Proceedings of the Sev- enteenth IASTED International Conference. Applied Informatics, pages 358-61, Anaheim, CA, USA. ACTA Press.
  2053. Ye, H. and Lo, B. W. N. (2000a). A visualised software library: Nested self-organising maps for retrieving and browsing reusable software assets. Neural Computating & Applications, 9(4):266-279.
  2054. Ye, H. and Lo, B. W. N. (2001). Towards a self-structuring software library. IEE Proceedings: Software, 148(2):45-55.
  2055. Ye, H. L. and Lo, B. W. N. (2000b). Feature competitive algorithm for dimension reduction of the self- organizing map input space. Applied Intelligence, 13(3):215-230.
  2056. Ye, X. and Li, Z. (1998). Hybrid neural networks for gray image recognition. In Proceedings of the SPIE-The International Society for Optical Engineering, volume 3561, pages 7-13.
  2057. Yin, H. (2001). Visualisation induced SOM (viSOM). In Allinson, N., Yin, H., Allinson, L., and Slack, J., editors, Advances in Self-Organising Maps, pages 81-88. Springer.
  2058. Yin, H. (2002). ViSOM-a novel method for multivariate data projection and structure visualization. IEEE Transactions on Neural Networks, 13(1):237-243.
  2059. Yin, H. and Allinson, N. M. (1999). Interpolating self-organizing map (iSOM). Electronics Letters, 35(19):1649-1650.
  2060. Yin, H. and Allinson, N. M. (2001a). Bayesian self-organising map for gaussian mixtures. IEE Proceedings: Vision, Image and Signal Processing, 148(4):234-240.
  2061. Yin, H. and Allinson, N. M. (2001b). Self-organizing mixture networks for probability density estimation. IEEE Transactions on Neural Networks, 12(2):405-411.
  2062. Ying, W., Qiong, L., and Huang, T. S. (1999). Robust real-time human hand localization by self-organizing color segmentation. In Proceedings International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems. In Conjunction with ICCV'99, pages 161-6, Los Alamitos, CA, USA. IEEE Computer Society.
  2063. Yli-Rantala, E., Ojala, T., and Vuorimaa, P. (1996). Vector quantization of residual images using self-organizing map with sample weighted training. In Fourth European Congress on Intelligent Techniques and Soft Computing Proceedings, EUFIT '96, volume 1, pages 325-8. Verlag Mainz, Aachen, Germany.
  2064. Yonezu, H., Tsuji, K., Sudo, D., and Shin, J. K. (1998). Self-organizing network for feature-map formation: analog integrated circuit robust to device and circuit mismatch. Computers & Electrical Engineering, 24(1- 2):63-73.
  2065. Yong, L., Bin, Z., Shaowei, X., and Ming, S. Z. (1999). A self-organizing network with fuzzy hyperellipsoidal classifying and its application in handwritten numeral recognition. In IJCNN'99. International Joint Confer- ence on Neural Networks. Proceedings., volume 4, pages 2859-62, Piscataway, NJ. IEEE Service Center.
  2066. Yoon, Y.-H., Jeon, Y.-J., and Kim, J.-C. (1998). A Kohonen network for fault diagnosis of power transformers using dissolved gas analysis. Transactions of the Korean Institute of Electrical Engineers, 47(6):741-5.
  2067. Yoshida, H., Shinoi, H., and Yana, K. (1999). Phonocardiogram classification using self-organizing map with learning vector quantization. In Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings, volume 2, page 929.
  2068. Yoshimura, H., Etoh, M., Kondo, K., and Yokoya, N. (2000). Gray-scale character recognition by gabor jets projection. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 2, pages 335-8.
  2069. Youssefi, M. and Faez, K. (1999). Fabric handle prediction using neural networks. In Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP'99). Bogazici Univ, Instanbul, Turkey, volume 2, pages 731-2.
  2070. Yu, D., Wang, J., and Wang, G. (2001). Leak fault identification of rocket engine using self-organizing feature map network. Tuijin Jishu/Journal of Propulsion Technology, 22(1):47-49.
  2071. Yu, I. K., Kim, C. I., and Song, Y. H. (2000). Industrial load forecasting using the kohonen neural network and the wavelet transform. Proceedings of the Universities Power Engineering Conference, page 107.
  2072. Yu, Q., Kashiwamura, T., Shiratori, M., and Satoh, K. (1997). Reliability and structure optimization of BGA packages. In Advances in Electronic Packaging 1997. Proceedings of the Pacific Rim/ASME International Intersociety Electronic and Photonic Packaging Conference. INTERpack '97. ASME, New York, NY, USA, volume 2, pages 1761-5.
  2073. Yu, W., Yokoi, H., and Nishikawa, D. (1998). Adaptive electromyographic (EMG) prosthetic hand control using reinforcement learning. Intelligent Autonomous Systems. IAS-5. IOS Press, Amsterdam, Netherlands; 1998; xiii+799 pp.p.266-71, pages 266-71.
  2074. Yuan, C. and Niemann, H. (1999). Object localization in 2D images based on Kohonen's self-organization feature maps. In IJCNN'99. International Joint Conference on Neural Networks. Proceedings., volume 5, pages 3134-7, Piscataway, NJ. IEEE Service Center.
  2075. Yuan, S.-T. and Chang, W.-L. (2001). Mixed-initiative synthesized learning approach for web-based CRM. Expert Systems with Applications, 20(2):187-200.
  2076. Zaremba, M., Niemann, O., St-Laurent, L., and Richardson, D. (2000). Integration of self-organizing maps with spatial indexing for efficient processing of multi-dimensional data. In Li, K., Makki, K., Pissinou, N., and Ravada, S., editors, Proceedings of the ACM Workshop on Advances in Geographic Information Systems, pages 77-82. Departement d'informatique, Universite du Quebec.
  2077. Zemen, T., Clabian, M., and Pfutzner, H. (1998). Classification of sleep apnea events by means of radial basis function networks. In Proceedings of NC 1998. International ICSC/IFAC Symposium on Neural Computation. ICSC Academic Press, Zurich, Switzerland, pages 351-7.
  2078. Zhang, B., Fu, M., Yan, H., and Jabri, M. A. (1999). Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM). IEEE Transactions on Neural Networks, 10(4):939-945.
  2079. Zhang, B.-L. and Gedeon, T. D. (2000). A general hebbian learning for nonlinear neuron with application to laterally interconnected synergetically self-organizing map. Australian Journal of Intelligent Information Processing Systems, 6(2):105-9.
  2080. Zhang, G., Yu, S. Y., and Wang, J. (2001a). Design of image vector quantization using evolutionary strategy. Journal of Shanghai Jiaotong University, 35:205-8.
  2081. Zhang, G.-J., Qiu, J.-J., and Li, J.-H. (2001b). Outlier identification and justification based on neural net- work. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 21(8):104-107+113.
  2082. Zhang, H. X., Zhang, R. S., Liu, M. C., Hu, Z., and Fan, B. T. (2000a). Application of self-organizing maps to the visual classification of the carcinogenicity of polycyclic aromatic hydrocarbons. Chinese Journal of Analytical Chemistry, 28(11):1336-1343.
  2083. Zhang, J., Li, X., and Xie, W. (2000b). Stochastic competitive learning vector quantization algorithm for image coding. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 28(10):23-26.
  2084. Zhang, J. and Xie, W. (1999). A fast fuzzy vector quantization algorithm for image coding. Acta Electronica Sinica, 27:106-8.
  2085. Zhang, Z. and Lu, W. (1999). ECG data compression using self-organizing feature map. Zhongguo Shengwu Yixue Gongcheng Xuebao/Chinese Journal of Biomedical Engineering, 18(1):97-103.
  2086. Zhang, Z. and Sun, S. (2000a). Image data fusion algorithm based on the one-dimensional self-organizing neural network. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 28(9):74-77.
  2087. Zhang, Z. and Sun, S. (2000b). Image fusion based on the self-organizing feature map neural networks. In Proceedings of SPIE-The International Society for Optical Engineering, volume 4052, pages 270-275, Bellingham, WA. Harbin Inst of Technology, Society of Photo-Optical Instrumentation Engineers.
  2088. Zhang, Z. H., Zheng, N. N., Zhang, H. F., and Yu, H. X. (2002). Entropy-constrained generalized learning vector quantization neural network and soft competitive learning algorithm. Acta Automatica Sinica, 28:244- 50.
  2089. Zhang, Z. L. and Sun, S. H. (2001). Image fusion based on the self-organizing feature map neural networks. Chinese Journal of Electronics, 10(1):96-99.
  2090. Zhang, Z. L., Sun, S. H., and Zheng, F. C. (2001c). Image fusion based on median filters and SOFM neural networks: A three-step scheme. Signal Processing, 81(6):1325-1330.
  2091. Zhao, J. and Kulkarni, A. D. (2000). Market segmentation using self-organizing neural networks. In Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems. Vol.10. Proceedings of the Artificial Neural Networks in Engineering Conference (ANNIE 2000). ASME, New York, NY, USA, pages 929-34.
  2092. Zhao, X. and Chen, T. (2002). Type of self-organized criticality model based on neural networks. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 65(2 II):261141-261146.
  2093. Zhao, X. and TianLun, C. (2002). Type of self-organized criticality model based on neural networks. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 65:026114.
  2094. Zheng, N., Zhang, Z., Zheng, H., and Gang, S. (2000). Deterministic annealing learning of the radial basis function nets for improving the regression ability of RBF networks. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. IEEE Comput. Soc, Los Alamitos, CA, USA, volume 3, pages 601-7.
  2095. Zheng, X. Z. and Ito, K. (1997). Self-organized learning and its implementation of robot movements. Pro- ceedings of IEEE International Conference on Systems, Man, and Cybernetics., 1:281-286.
  2096. Zhernakov, S. V. (2001). Active expert systems for complex diagnosis and control of the hydromechanical devices of gas-turbine engines. Avtomatizatsiya i Sovremennye Tekhnologii. no.9; 2001; p.20-4, pages 20-4.
  2097. Zhou, W., Zhang, L., and Jiao, L. (2000). Association rules mining based on kohonen network. In 16th World Computer Congress 2000. Proceedings of Conference on Intelligent Information Processing. Publishing House of Electron. Ind, Beijing, China, pages 87-90.
  2098. Zhu, B., Ramsey, M., and Chen, H. (2000a). Creating a large-scale content-based airphoto image digital library. IEEE Transactions on Image Processing, 9(1):163-167.
  2099. Zhu, C., Hua, Y., and Po, L. M. (1997). Optimized feature map finite-state vector quantization for image cod- ing. In WoSPA. Second Australian Workshop on Signal Processing Applications'97. Proceedings. Queensland Univ. Technol, Brisbane, Qld., Australia, pages 55-8.
  2100. Zhu, C., Po, L. M., and Hua, Y. (2000b). Optimised feature map finite-state vector quantisation for image coding. In IEE Proceedings Vision, Image and Signal Processing. vol.147, no.3, volume 147, pages 266-70.
  2101. Zhu, S. H. and Wang, F. (2000). Application of GA based on fuzzy neural network to the identification of dynamic systems. Electric Machines and Control, 4:171-4.
  2102. Zhuang, H. L. and Chiu, M. S. (2001). An extended self-organizing map network for modeling and control of pulse jet fabric filters. Journal of the Air & Waste Management Association, 51(7):1035-1042.
  2103. Zochowski, M. and Liebovitch, L. S. (1999). Self-organizing dynamics of coupled map systems. Physical Review, 59(3):2830-2837.
  2104. Zulkifli, A. H. and Meeran, S. (1999a). Decomposition and recognition of non-orthogonal interacting features using an SOFM neural network. In 7th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media'99. in co-operation with EUROGRAPHICS and IFIP WG 5.10. WSCG'99. Conference Proceedings. Univ. West Bohemia, Plzen, Czech Republic, volume 1, pages 305-12.
  2105. Zulkifli, A. H. and Meeran, S. (1999b). Decomposition of interacting features using a Kohonen self-organizing feature map neural network. Engineering Applications of Artificial Intelligence, 12(1):59-78.
  2106. Zulkifli, A. H. and Meeran, S. (1999c). Recognizing interacting features using a SOFM neural network. Advanced Manufacturing Processes, Systems, and Technologies (AMPST 99), pages 267-76.
  2107. 1995). Neural Networks Research Centre and Laboratory of Computer and Information Science. Annual Report, 1995.
  2108. 1996). Neural Networks: Producing Dependable Systems. Conference Proceedings. Held in Solihull (Eng- land) on November 2, 1995.
  2109. 1997a). Self-Organizing Feature Maps. (Latest Citations from the INSPEC Database). Published Search.
  2110. 1997b). WSOM'97: Workshop on Self-Organizing Maps. Held in Espoo, Finland on June 4-6, 1997. Pro- ceedings.
  2111. 1998). Laboratory of Computer and Information Science, Helsinki University of Technology. Annual Report, 1997.
  2112. 1999). Process unknowns cant hide from Kohonen. Solid State Technology, 42(6):28.
  2113. 2001). Proceedings IEEE ICCV workshop on recognition, analysis, and tracking of faces and gestures in real-time systems. IEEE Comput. Soc, Los Alamitos, CA, USA; 2001; viii+181 pp.