Academia.eduAcademia.edu

Outline

On the prime power factorization of n

2003, Journal of Number Theory

https://doi.org/10.1016/S0022-314X(03)00102-1

Abstract

In this paper we prove two results. The first theorem uses a paper of Kim [8] to show that for fixed primes p 1 , .

References (10)

  1. D. Berend, On the parity of exponents in the factorization of n!, J. Number Theory 64 (1997), 13-19.
  2. J. Bésineau, Indépendance statistique d'ensembles liés à la fonction "somme des chiffres", Acta Arithmetica 20 (1972), 401-416.
  3. Y. Bilu, G. Hanrot, P.M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte. J. Reine Angew. Math. 539 (2001), 75-122.
  4. Y.-G. Chen, On the parity of exponents in the standard factorization of n!, J. Number Theory, to appear.
  5. Y.-G. Chen, Y.-C. Zhu, On the prime power factorization of n!, J. Number Theory 82 (2000), 1-11.
  6. P. Erdős, R.L. Graham, Old and New Problems and Results in Combinatorial Number Theory, L'Enseignement Mathématique, Imprimerie Kundig, Geneva, 1980.
  7. A.O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arithmetica 13 (1968), 259-265.
  8. D.-H. Kim, On the joint distribution of q-additive functions in residue classes, J. Number Theory 74 (1999), 307-336.
  9. J.W. Sander, On the parity of exponents in the prime factorization of factorials, J. Number Theory 90 (2001), 316-328.
  10. R. F. Tichy, J.M. Thuswaldner, An Erdős-Kac theorem for systems of q-additive functions, Indag. Mathem. 11 (2000), 283-291.