On the prime power factorization of n
2003, Journal of Number Theory
https://doi.org/10.1016/S0022-314X(03)00102-1Abstract
In this paper we prove two results. The first theorem uses a paper of Kim [8] to show that for fixed primes p 1 , .
References (10)
- D. Berend, On the parity of exponents in the factorization of n!, J. Number Theory 64 (1997), 13-19.
- J. Bésineau, Indépendance statistique d'ensembles liés à la fonction "somme des chiffres", Acta Arithmetica 20 (1972), 401-416.
- Y. Bilu, G. Hanrot, P.M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte. J. Reine Angew. Math. 539 (2001), 75-122.
- Y.-G. Chen, On the parity of exponents in the standard factorization of n!, J. Number Theory, to appear.
- Y.-G. Chen, Y.-C. Zhu, On the prime power factorization of n!, J. Number Theory 82 (2000), 1-11.
- P. Erdős, R.L. Graham, Old and New Problems and Results in Combinatorial Number Theory, L'Enseignement Mathématique, Imprimerie Kundig, Geneva, 1980.
- A.O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arithmetica 13 (1968), 259-265.
- D.-H. Kim, On the joint distribution of q-additive functions in residue classes, J. Number Theory 74 (1999), 307-336.
- J.W. Sander, On the parity of exponents in the prime factorization of factorials, J. Number Theory 90 (2001), 316-328.
- R. F. Tichy, J.M. Thuswaldner, An Erdős-Kac theorem for systems of q-additive functions, Indag. Mathem. 11 (2000), 283-291.