Abstract
Let f (n) denote the number of unordered factorizations of a positive integer n into factors larger than 1. We show that the number of distinct values of f (n), less than or equal to x, is at most exp C log x log log x (1 + o(1)) , where C = 2π 2/3 and x is sufficiently large. This improves upon a previous result of the first author and F. Luca.
References (6)
- R. Balasubramanian and F. Luca, On the number of factorizations of an integer, Integers 11 (2011), A12, 5, MR 2798647.
- E. R. Canfield, P. Erdős and C. Pomerance, On a problem of Oppenheim concerning "factorisatio numero- rum", J. Number Theory 17 (1983), 1-28.
- F. Luca, A. Mukhopadhyay and K. Srinivas, Some results on Oppenheim's "Factorisatio Numerorum" function, Acta Arithmetica 142 (2010), no. 1, 41-50, MR2601047.
- A. Maroti, On elementary lower bounds for the partition function, Integers 3 (2003), A10.
- M. B. Nathanson, Elementary Methods in Number theory, Springer-Verlag, 1999.
- A. Oppenheim, On an arithmetic function, J. London Math. Soc. 1 (1926), 205-211; part II in 2 (1927), 123-130. Institute of Mathematical Sciences, Taramani, Chennai, India-600113 and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India-400094. E-mail address, R. Balasubramanian: balu@imsc.res.in E-mail address, Priyamvad Srivastav: priyamvads@imsc.res.in