Academia.eduAcademia.edu

Outline

On the Number of Factorizations of an Integer

2011, Integers

https://doi.org/10.1515/INTEG.2011.012

Abstract

Let f (n) denote the number of unordered factorizations of a positive integer n into factors larger than 1. We show that the number of distinct values of f (n), less than or equal to x, is at most exp C log x log log x (1 + o(1)) , where C = 2π 2/3 and x is sufficiently large. This improves upon a previous result of the first author and F. Luca.

References (6)

  1. R. Balasubramanian and F. Luca, On the number of factorizations of an integer, Integers 11 (2011), A12, 5, MR 2798647.
  2. E. R. Canfield, P. Erdős and C. Pomerance, On a problem of Oppenheim concerning "factorisatio numero- rum", J. Number Theory 17 (1983), 1-28.
  3. F. Luca, A. Mukhopadhyay and K. Srinivas, Some results on Oppenheim's "Factorisatio Numerorum" function, Acta Arithmetica 142 (2010), no. 1, 41-50, MR2601047.
  4. A. Maroti, On elementary lower bounds for the partition function, Integers 3 (2003), A10.
  5. M. B. Nathanson, Elementary Methods in Number theory, Springer-Verlag, 1999.
  6. A. Oppenheim, On an arithmetic function, J. London Math. Soc. 1 (1926), 205-211; part II in 2 (1927), 123-130. Institute of Mathematical Sciences, Taramani, Chennai, India-600113 and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India-400094. E-mail address, R. Balasubramanian: balu@imsc.res.in E-mail address, Priyamvad Srivastav: priyamvads@imsc.res.in