Academia.eduAcademia.edu

Outline

Fifteen problems in number theory

Abstract

In this paper we collected problems, which was either proposed or follow directly from results in our papers.

Key takeaways
sparkles

AI

  1. The paper discusses unresolved problems in number theory, particularly in recursive sequences and Thue equations.
  2. The only known perfect powers in the Fibonacci sequence are 0 and 144, proven by Siksek in 2006.
  3. Tribonacci numbers yield specific squares up to n ≤ 2·10^6, yet the problem remains unsolved beyond this limit.
  4. The Lang-Waldschmidt conjecture is pivotal for understanding solutions of Thue equations in parametrized families.
  5. Shift radix systems (SRS) and their complexity present significant challenges, potentially not solvable in polynomial time.

References (25)

  1. S. Akiyama, T. Borbély, H. Brunotte, A. Pethő, J. M. Thuswaldner, Generalized radix representations and dynamical systems I, Acta Math. Hungar., 108 (2005), 207-238.
  2. S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner, Generalized radix representations and dynamical systems II, Acta Arith., 121 (2006), 21-61.
  3. S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner, Generalized radix representations and dynamical systems IV, Indag. math., to appear.
  4. S. Akiyama, H. Brunotte, A. Pethő, W. Steiner, Remarks on a conjec- ture on certain integer sequences, Periodica Mathematica Hungarica, 52 (2006), 1-17.
  5. S. Akiyama, H. Brunotte, A. Pethő, W. Steiner, Periodicity of certain piecewise affine planar maps, Tsukuba J. Math., 32 (2008), 197-251.
  6. A. Bérczes, L. Hajdu, A. Pethő, Arithmetic progressions in the solution sets of norm form equations, Rocky Mountain J. Math., to appear.
  7. A. Bérczes and A. Pethő, On norm form equations with solutions forming arithmetic progressions, Publ. Math. Debrecen, 65 (2004), 281-290.
  8. H. Brunotte, On trinomial bases of radix representations of algebraic integers, Acta Sci. Math. (Szeged), 67 (2001), 521-527.
  9. Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect pow- ers, Annals of Math., 163 (2006), 969-1018.
  10. P. Corvaja, U. Zannier, Some new applications of the subspace theorem, Compositio Math., 131 (2002), 319-340.
  11. A. Dujella, A. Pethő, P. Tadić, On arithmetic progressions on Pellian equations, Acta Math. Hungar., 120 (2008), 29-38.
  12. Cl. Fuchs, A. Pethő, R. F. Tichy, On the diophantine equation G n (x) = G m (P(x)): higher order linear recurrences, Trans. Amer. Math. Soc., 355 (2003), 4657-4681.
  13. F. Halter-Koch, G. Lettl, A. Pethő, R. F. Tichy, Thue equations asso- ciated with Ankeny-Brauer-Chowla number fields, J. London Math. Soc. (2), 60 (1999), 1-20.
  14. C. Heuberger, On a conjecture of E. Thomas concerning parametrized Thue equations, Acta Arith., 98 (2001), 375-394.
  15. A. Kovács, Generalized binary number systems, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput., 20 (2001), 195-206.
  16. A. Pethő, Full cubes in the Fibonacci sequences, Publ. Math. Debrecen, 30 (1983), 117-127.
  17. A. Pethő, Diophantine properties of linear recurrence sequences I., In: "Applications of Fibonacci Numbers, Volume 7", Ed.: G.E. Bergum, Kluwer Academic Publishers, 1998, pp. 295-309.
  18. A. Pethő, Diophantine properties of linear recursive sequences. II., Acta. Math. Acad. Paed. Nyíregyháziensis, 17 (2001), 81-96.
  19. A. Pethő, On a family of recursive sequences of order four, (Hungarian), Acta Acad. Paed. Agriensis, Sect. Math., 30 (2003), 115-122.
  20. A. Pethő, On the boundary of the set of the closure of contractive poly- nomials, Integers, 9 (2009), 311-325.
  21. A. Pethő, V. Ziegler, Arithmetic progressions on Pell equations, J. Num- ber Theory, 128 (2008), 1389-1409.
  22. W. M. Schmidt, Norm form equations, Ann. of Math., 96 (1972), 526- 551.
  23. T. N. Shorey, C.L. Stewart, On the Diophantine equation ax 2t + bx t y + cy 2 = d and pure powers in recurrences, Math. Scand., 52 (1983), 24-36.
  24. E. Thomas, Complete solutions to a family of cubic Diophantine equa- tions. J. Number Theory, 34 (1990), 235-250.
  25. E. Thomas, Solutions to certain families of Thue equations, J. Number Theory, 43 (1993), 319-369. Received: January 10, 2010; Revised: April 17, 2010