Fifteen problems in number theory
Abstract
In this paper we collected problems, which was either proposed or follow directly from results in our papers.
Key takeaways
AI
AI
- The paper discusses unresolved problems in number theory, particularly in recursive sequences and Thue equations.
- The only known perfect powers in the Fibonacci sequence are 0 and 144, proven by Siksek in 2006.
- Tribonacci numbers yield specific squares up to n ≤ 2·10^6, yet the problem remains unsolved beyond this limit.
- The Lang-Waldschmidt conjecture is pivotal for understanding solutions of Thue equations in parametrized families.
- Shift radix systems (SRS) and their complexity present significant challenges, potentially not solvable in polynomial time.
References (25)
- S. Akiyama, T. Borbély, H. Brunotte, A. Pethő, J. M. Thuswaldner, Generalized radix representations and dynamical systems I, Acta Math. Hungar., 108 (2005), 207-238.
- S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner, Generalized radix representations and dynamical systems II, Acta Arith., 121 (2006), 21-61.
- S. Akiyama, H. Brunotte, A. Pethő, J. M. Thuswaldner, Generalized radix representations and dynamical systems IV, Indag. math., to appear.
- S. Akiyama, H. Brunotte, A. Pethő, W. Steiner, Remarks on a conjec- ture on certain integer sequences, Periodica Mathematica Hungarica, 52 (2006), 1-17.
- S. Akiyama, H. Brunotte, A. Pethő, W. Steiner, Periodicity of certain piecewise affine planar maps, Tsukuba J. Math., 32 (2008), 197-251.
- A. Bérczes, L. Hajdu, A. Pethő, Arithmetic progressions in the solution sets of norm form equations, Rocky Mountain J. Math., to appear.
- A. Bérczes and A. Pethő, On norm form equations with solutions forming arithmetic progressions, Publ. Math. Debrecen, 65 (2004), 281-290.
- H. Brunotte, On trinomial bases of radix representations of algebraic integers, Acta Sci. Math. (Szeged), 67 (2001), 521-527.
- Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect pow- ers, Annals of Math., 163 (2006), 969-1018.
- P. Corvaja, U. Zannier, Some new applications of the subspace theorem, Compositio Math., 131 (2002), 319-340.
- A. Dujella, A. Pethő, P. Tadić, On arithmetic progressions on Pellian equations, Acta Math. Hungar., 120 (2008), 29-38.
- Cl. Fuchs, A. Pethő, R. F. Tichy, On the diophantine equation G n (x) = G m (P(x)): higher order linear recurrences, Trans. Amer. Math. Soc., 355 (2003), 4657-4681.
- F. Halter-Koch, G. Lettl, A. Pethő, R. F. Tichy, Thue equations asso- ciated with Ankeny-Brauer-Chowla number fields, J. London Math. Soc. (2), 60 (1999), 1-20.
- C. Heuberger, On a conjecture of E. Thomas concerning parametrized Thue equations, Acta Arith., 98 (2001), 375-394.
- A. Kovács, Generalized binary number systems, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput., 20 (2001), 195-206.
- A. Pethő, Full cubes in the Fibonacci sequences, Publ. Math. Debrecen, 30 (1983), 117-127.
- A. Pethő, Diophantine properties of linear recurrence sequences I., In: "Applications of Fibonacci Numbers, Volume 7", Ed.: G.E. Bergum, Kluwer Academic Publishers, 1998, pp. 295-309.
- A. Pethő, Diophantine properties of linear recursive sequences. II., Acta. Math. Acad. Paed. Nyíregyháziensis, 17 (2001), 81-96.
- A. Pethő, On a family of recursive sequences of order four, (Hungarian), Acta Acad. Paed. Agriensis, Sect. Math., 30 (2003), 115-122.
- A. Pethő, On the boundary of the set of the closure of contractive poly- nomials, Integers, 9 (2009), 311-325.
- A. Pethő, V. Ziegler, Arithmetic progressions on Pell equations, J. Num- ber Theory, 128 (2008), 1389-1409.
- W. M. Schmidt, Norm form equations, Ann. of Math., 96 (1972), 526- 551.
- T. N. Shorey, C.L. Stewart, On the Diophantine equation ax 2t + bx t y + cy 2 = d and pure powers in recurrences, Math. Scand., 52 (1983), 24-36.
- E. Thomas, Complete solutions to a family of cubic Diophantine equa- tions. J. Number Theory, 34 (1990), 235-250.
- E. Thomas, Solutions to certain families of Thue equations, J. Number Theory, 43 (1993), 319-369. Received: January 10, 2010; Revised: April 17, 2010