Academia.eduAcademia.edu

Outline

Polarization Constant for the Numerical Radius

2020, Mediterranean Journal of Mathematics

https://doi.org/10.1007/S00009-020-01597-1

Abstract

We introduce and investigate the mth polarization constant of a Banach space X for the numerical radius. We first show the difference between this constant and the original mth polarization constant associated with the norm by proving that the new constant is minimal if and only if X is strictly convex, and that there exists a Banach space which does not have an almost isometric copy of 2 1 , such that the second polarization constant for the numerical radius is maximal. We also give a negative answer for complex Banach spaces to the question of Choi and Kim (J Lond Math Soc (2) 54(1):135-147, 1996) whether m k=1 k m (m k) m! is the optimal upper bound for the mth polarization constant for arbitrary m ∈ N. Finally, we generalize the result of García et al.

References (25)

  1. Aron, R.M., Berner, P.D.: A Hahn-Banach extension theorem for analytic map- pings Bull. Soc. Math. France 106(1), 3-24 (1978)
  2. Banach, S.: Über homogene Polynome in (L 2 ). Studia Math. 7, 36-44 (1938)
  3. Bonsall, F.F., Duncan, J.: Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge (1971)
  4. Bonsall, F.F., Duncan, J.: Numerical Ranges II. London Math. Soc. Lecture Note Ser. 10, Cambridge (1973)
  5. Boyko, K., Kadets, V., Martín, M., Merí, J.: Properties of lush spaces and applications to Banach spaces with numerical index 1. Studia Math. 190, 117- 133 (2009)
  6. Boyko, K., Kadets, V., Martín, M., Werner, D.: Numerical index of Banach spaces and duality. Math. Proc. Camb. Philos. Soc. 142, 93-102 (2007)
  7. Benítez, C., Sarantopoulos, Y.: Characterization of real inner product spaces by means of symmetric bilinear forms. J. Math. Anal. Appl. 180(1), 207-220 (1993)
  8. Chica, M., Martín, M., Merí, J.: Numerical radius of rank-1 operators on Ba- nach spaces Q. J. Math. 65(1), 89-100 (2014)
  9. Choi, Y.S., Kim, S.G.: Norm or numerical radius attaining multilinear map- pings and polynomials. J. Lond. Math. Soc. (2) 54(1), 135-147 (1996)
  10. Choi, Y.S., García, D., Kim, S.G., Maestre, M.: The polynomial numerical index of a Banach space. Proc. Edinb. Math. Soc. (2) 49(1), 39-52 (2006)
  11. Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. Springer, London (1999)
  12. García, D., Grecu, B.C., Maestre, M., Martín, M., Merí, J.: Polynomial nu- merical indices of C(K) and L1(μ) Proc. Amer. Math. Soc. 142(4), 1229-1235 (2014)
  13. Harris, L.A.: The numerical range of holomorphic functions in Banach spaces. Am. J. Math. 93, 1005-1019 (1971)
  14. Kadets, V., Martín, M., Merí, J., Payá, R.: Convexity and smoothness of Ba- nach spaces with numerical index one. Illinois J. Math. 53, 163-182 (2009)
  15. Kadets, V., Martín, M., Payá, R.: Recent progress and open questions on the numerical index of Banach spaces. Rev. R. Acad. Cien. Serie A. Mat. 100, 155-182 (2006)
  16. Kirwan, P., Sarantopoulos, Y., Tonge, A.M.: Extremal homogeneous polyno- mials on real normed spaces. Approx. Theory 97(2), 201-213 (1999)
  17. Kim, S.G.: Three kinds of numerical indices of a Banach spaces Math. Proc. R. Ir. Acad. 112A(1), 21-35 (2012)
  18. Kim, S.G.: Three kinds of numerical indices of a Banach spaces II Quaest. Math. 39(2), 153-166 (2016)
  19. Kim, S.G., Martín, M., Merí, J.: On the polynomial numerical index of the real spaces c0, 1 and ∞. J. Math. Anal. Appl. 337(1), 98-106 (2008)
  20. Lee, H.J., Martín, M.: Polynomial numerical indices of Banach spaces with 1-unconditional bases. Linear Algebra Appl. 437(8), 2001-2008 (2012)
  21. Martin, R.S.: Thesis, California Inst. of Tech. (1932)
  22. Sarantopoulos, I.: Estimates for polynomial norms on Lp(μ) spaces. Math. Proc. Camb. Philos. Soc. 99(2), 263-271 (1986)
  23. Sarantopoulos, I.: Extremal multilinear forms on Banach spaces. Proc. Am. Math. Soc. 99(2), 340-346 (1987)
  24. Papadiamantis, M.K., Sarantopoulos, Y.: Polynomial estimates on real and complex Lp(μ) spaces. Studia Math. 235(1), 31-45 (2016)
  25. Javier Falcó, Domingo García and Manuel Maestre Departamento de Análisis Matemático Universidad de Valencia Doctor Moliner 50 46100 Burjassot Valencia Spain e-mail: francisco.j.falco@uv.es Domingo García e-mail: domingo.garcia@uv.es Manuel Maestre e-mail: manuel.maestre@uv.es