Revisiting the Rectangular Constant in Banach Spaces
Bulletin of the Australian Mathematical Society
https://doi.org/10.1017/S0004972721000253Abstract
Let X be a real Banach space. The rectangular constant $\mu (X)$ and some generalisations of it, $\mu _p(X)$ for $p \geq 1$ , were introduced by Gastinel and Joly around half a century ago. In this paper we make precise some characterisations of inner product spaces by using $\mu _p(X)$ , correcting some statements appearing in the literature, and extend to $\mu _p(X)$ some characterisations of uniformly nonsquare spaces, known only for $\mu (X)$ . We also give a characterisation of two-dimensional spaces with hexagonal norms. Finally, we indicate some new upper estimates concerning $\mu (l_p)$ and $\mu _p(l_p)$ .
References (12)
- M. Baronti, 'On some parameters of normed spaces', Boll. Unione Mat. Ital. B (5) 18(3) (1981), 1065-1085.
- B. Beauzamy, Introduction to Banach Spaces and their Geometry, 2nd edn, North-Holland Mathematics Studies, 68 (North-Holland, Amsterdam, 1985).
- W. L. Bynum, 'Weak parallelogram laws for Banach spaces', Canad. Math. Bull. 19(3) (1976), 269-275.
- M. del Río and C. Benítez, 'The rectangular constant for two-dimensional spaces', J. Approx. Theory 19(1) (1977), 15-21.
- J. Desbiens, 'Constante rectangle et biais d'un espace de Banach', Bull. Aust. Math. Soc. 42(3) (1990), 465-482.
- N. Gastinel and J. L. Joly, 'Condition numbers and general projection method', Linear Algebra Appl. 3 (1970), 185-224.
- R. C. James, 'Orthogonality and linear functionals in normed linear spaces', Trans. Amer. Math. Soc. 61 (1947), 265-292.
- J. L. Joly, 'Caractérisations d'espaces hilbertiens au moyen de la constante rectangle', J. Approx. Theory 2 (1969), 301-311.
- J. L. Joly, 'La constante rectangle d'un espace vectoriel normé', C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A36-A38.
- K. Paul, P. Ghosh and D. Sain, 'On rectangular constant in normed linear spaces', J. Convex Anal. 24(3) (2017), 917-925.
- M. BARONTI, Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16100
- Genova, Italy e-mail: baronti@dima.unige.it E. CASINI, Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Via Valleggio 11, 22100 Como, Italy e-mail: emanuele.casini@uninsubria.it P. L. PAPINI, Via Martucci 19, 40136 Bologna, Italy e-mail: pierluigi.papini@unibo.it