The distance between certainn-dimensional Banach spaces
1981, Israel Journal of Mathematics
https://doi.org/10.1007/BF02762849Abstract
AI
AI
This study investigates the distance between certain n-dimensional Banach spaces, particularly focusing on the properties of symmetric bases and other structural elements within these spaces. Key results include the establishment of universal constants that bound the distances, as well as a focus on specific operator classes that influence these distances. The findings contribute to the understanding of Banach space geometry and the implications for functional analysis.
References (28)
- E. Asplund, Comparison between plane symmetric convex bodies and parallelograms, Math. Scand. 8 (1960), 171-180.
- Y. Benyamini and Y. Gordon, Random ]actorizations of operators between Banach spaces, J. Analyse Math., to appear.
- S. Chevet, S&ies de variables al~atoires Gaussiens h valeurs dans E ~, F, Seminaire Maurey-Schwartz, 1977-78, exp. XIX.
- W. Davis and P. Enflo, The distance of a symmetric space to I~ n~, in Banach Spaces o[ Analytic Functions, Lecture Notes, 604, Springer-Verlag, 1977.
- A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192-197.
- T. Figiel, J. Lindenstrauss and V. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94.
- T. Figiel and N. Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33 (1979), 155-171.
- T. Figiel and W. B. Johnson, Large subspaces of l'~ and estimates of the Gordon-Lewis constants, Israel J. Math. 37 (1980), 92-112.
- D. J. H. Garling and Y. Gordon, Relations between some constants associated with finite dimensional Banach spaces, Israel J. Math. 9 (1971), 346--361.
- V. I. Gurarii, M. I. Kadee and V. I. Masaev, Distances between finite-dimensional analogs of the Lp-spaces, Mat. Sb. 70 (112) (1966), 481-489 (Russian).
- V. I. Gurarii, M. I. Kadee and V. I. Masaev, Dependence of certain properties of Minkowski spaces on asymmetry, Mat. Sb. 71 (113) (1%6), 24-29 (Russian).
- F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, Interscience, New York, 1948, pp. 187-204.
- J. P. Kahane, Some Random Series of Functions, Heath, 1%8.
- B. S. Kashin, Diameters o[ some finite-dimensional sets and classes o,f smooth .functions (Russian), Izv. Akad. Nauk SSSR, Ser. Math. 41 (1977), 334--351.
- H. Konig, J. Retherford and N. Tomczak-Jaegermann, On the eigenvalues o,f (p, 2)-summing operators, J. Functional Analysis 37 (1980), 88-126.
- D. R. Lewis, Ellipsoids defined by Banach ideal norms, Mathematika 26 (1979), 18-29.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Volume II, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
- M. B. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Center for Statistics and Probability, Northwestern University, No. 44, 1980.
- J. Mela, Mesures e-idempotentes de norme born~e, preprint.
- A. Pelczynski, A characterization of Hilbert-Schmidt operators, Studia Math. 28 (1966/7), 355-360.
- A. Pietsch, Operator Ideals, Berlin, 1979.
- G. Pisier, Sur les espaces de Banach K-convexes, Seminaire d'Analyse Fonctionelle, Ecole Polytechnique, 1979-80.
- G. Pisier, Un th~or~me sur les op4rateurs lindaires entre espaces de Banach qui se ,factorisent par un espace de Hilbert, Ann. Sci. Ecole Norm. Sup. 13 (1980), 23-43.
- W. Stromquist, The maximum distance between two dimensional spaces, Math. Seand., to appear.
- S. T. Szarek, On Kashin's almost Euclidean orthogonal decomposition of IT, Bull. Acad. Polon. Sci. 26 (1978).
- N. Tomczak-Jaegermann, The Banach-Mazur distance between the trace classes C~,, Proc. Amer. Math. Soc. 72 (1978), 305-308.
- N. Tomczak-Jaegermann, Computing 2-summing norms with .few vectors, Ark. Mat. 17 (1979), 273-279.
- N. Tomczak-Jaegermann, On the Banach-Mazur distance between symmetric spaces. Bull. Acad. Sci. Polon 27 (1979), 273-276.