Academia.eduAcademia.edu

Outline

Toughness, hamiltonicity and split graphs

1996, Discrete Mathematics

https://doi.org/10.1016/0012-365X(95)00190-8

Abstract

Related to Chvfital's famous conjecture stating that every 2-tough graph is hamiltonian, we study the relation of toughness and hamiltonieity on special classes of graphs. First, we consider properties of graph classes related to hamiltonicity, traceability and toughness concepts and display some algorithmic consequences. Furthermore, we present a polynomial time algorithm deciding whether the toughness of a given split graph is less than one and show that deciding whether the toughness of a bipartite graph is exactly one is coNP-complete. We show that every 3-tough split graph is hamiltonian and that there is a sequence of nonhamiltonian split graphs with toughness converging to 3.

Key takeaways
sparkles

AI

  1. Every 3-tough split graph is hamiltonian, confirming a significant property of this graph class.
  2. A polynomial-time algorithm decides if a split graph's toughness is less than one.
  3. Determining if a bipartite graph's toughness is exactly one is coNP-complete.
  4. Chvátal's conjecture suggests every 2-tough graph is hamiltonian, influencing graph toughness properties.
  5. A sequence of non-hamiltonian split graphs exists with toughness approaching 3.

References (29)

  1. S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Appl. Math. 23 (1989) 11-24.
  2. J.L. Balcazfir, J. D[az and J. Gabarrr, Structural Complexity I (Berlin, 1988).
  3. D. Bauer, S.L. Hakimi and E. Schmeichel, Recognizing tough graphs is NP-hard, Discrete Appl. Math. 28 (1990) 191-195.
  4. D. Bauer and E. Schmeichel, Toughness, minimum degree, and the existence of 2-factors, J. Graph Theory 18 (1994) 241-256.
  5. D. Bauer, E. Schmeicbel and H.J. Veldman, Some recent results on long cycles in tough graphs, in: Y. Alavi, G. Chartrand, O.R. Ollermann and A.J. Schwenk, eds., Offprints from Graph Theory, Combinatorics, and Applications (Wiley, New York, 1991 ) 113-123.
  6. D. Bauer, E. Schmeichel and H.J. Veldman, Cycles in tough graphs --Updating the last four years, in Kalamazoo Conf. (1992).
  7. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (New York, 1976).
  8. A. Brandst~idt, Special graph classes --a survey (Preliminary version), Schriftenreihe des FB Mathematik, Universit~it Duisburg, SM-DU-199, 1993.
  9. H.J. Broersma, J. Van den Heuvel and H.J. Veldman (eds), Updated contributions to the Twente Workshop on Hamiltonian graph theory (6-10 April, 1992), Memorandum No. 1076, University of Twente (The Netherlands) 1992.
  10. V. Chvfital, Tough graphs and hamiltonian circuits, Discrete Math. 5 (1973) 215-228.
  11. P. Damaschke, Zur Kompliziertheit von hamiltonschen Problemen in speziellen Graphenklassen, Ph.D. Thesis (in German), F.-Schiller-Universitfit Jena, 1990.
  12. P. Damaschke, J.S. Deogun, D. Kratsch and G. Steiner, Finding hamiltonian paths in cocomparability graphs using the bump number algorithm, Order 8 (1992) 383-391.
  13. J.S. Deogun, D. Kratsch and G. Steiner, l-tough cocomparability graphs are hamiltonian. Technical Report No. 94-05, McMaster University, Hamilton, Canada, 1994.
  14. J.S. Deogun and G. Steiner, Hamiltonian cycle is polynomial on cocomparability graphs, SIAM J. Comput. 23 (1994) 520-552.
  15. H. Enomoto, B. Jackson, P. Katerinis and A. Saito, Toughness and the existence of k-factors, J. Graph Theory 9 (1985) 87-95.
  16. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness. (San Francisco, 1979).
  17. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (New York, 1980).
  18. J. Harant, Toughness and nonhamiltonicity of polyhedral graphs, Discrete Math. 113 (1993) 249-253.
  19. J. Hopcroft and R.M. Karp, An n 5/2 algorithm for maximum matching in bipartite graphs. SIAM J. Computing 2 (1973) 225-231.
  20. D.S. Johnson, The NP-completeness column: an ongoing guide, J. Algorithms 6 (1985) 434--451.
  21. P. Katerinis, Two sufficient conditions for a 2-factor in a bipartite graph, J. Graph Theory 11 (1987) 1-6.
  22. M. Keil, Finding hamiltonian circuits in interval graphs, Inform. Process. Letters 20(1985) 201-206.
  23. J. Lehel, The path partition of cocomparability graphs, manuscript, 1991.
  24. L. Lovfisz and M.D. Plummer, Matching Theory (Budapest 1986).
  25. G.K. Manacher, T.A. Mankus and C.J. Smith, An optimum O(n log n) algorithm for finding a canonical Hamiltonian path and a canonical Hamiltonian circuit in a set of intervals, Inform. Process. Lett. 35 (1990) 205-211.
  26. H. Miiller, The NP-completeness of HAMILTONIAN CIRCUIT for chordal bipartite graphs, Forschungsergebnisse N/87/36, F.-Schiller-Universitfit Jena, 1987.
  27. C.St.J.Williams, Hamiltonian circuits in graphs and digraphs, in: G. Chartrand, S.G, Kapoor, eds., The Many Facets of Graph Theory (Berlin, 1969) 237-243.
  28. R.E. Tarjan, Depth-first-search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146-160.
  29. W.T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952) 314~328.