Academia.eduAcademia.edu

Outline

The Complexity of Toughness in Regular Graphs

Abstract

Let t # 1 be an integer. We show that it is NP-hard to determine if an r-regular graph is t-tough for any fixed integer r # 3 t.Wealso discuss the complexity of recognizing if an r-regular graph is t-tough, for any rational t # 1. Keywords : toughness, regular graph, NP-completeness AMS Subject Classifications (1991) : 68R10, 05C38 # Supported in part by the National Science Foundation under Grant DMS9206991. 1 1 Introduction We begin with a few definitions and some notation. A good reference for any undefined terms in graph theory is [7] and for computational complexity is [12]. We consider only undirected graphs with no loops or multiple edges. Let G be a graph. Then G is hamiltonian if it has a Hamilton cycle, i.e., a cycle containing all of its vertices. It is traceable if it has a path containing all of its vertices. Let #(G) denote the number of components of G.We say G is t-tough if |S|#t #(G - S) for every subset S of the vertex set V (G)ofG with #(G - S) > 1...

References (20)

  1. D. Bauer, H. J. Broersma, and H. J. Veldman. Not every 2-tough graph is hamiltonian. To appear in Discrete Appl. Math.
  2. D. Bauer, S. L. Hakimi, and E. Schmeichel. Recognizing tough graphs is NP-hard. Discrete Appl. Math., 28 : 191 -195, 1990.
  3. D. Bauer, J. van den Heuvel, A. Morgana, and E. Schmeichel. The complexity of recognizing tough cubic graphs. Discrete Appl. Math., 79 : 35 -44, 1997.
  4. D. Bauer, E. Schmeichel, and H. J. Veldman. Some recent results on long cycles in tough graphs. In Y. Alavi, G. Chartrand, O. R. Oeller- mann, and A. J. Schwenk, editors, Graph Theory, Combinatorics, and Applications -Proceedings of the Sixth Quadrennial International Con- ference on the Theory and Applications of Graphs, pages 113 -121. John Wiley & Sons, Inc., New York, 1991.
  5. D. Bauer, E. Schmeichel, and H. J. Veldman. Cycles in tough graphs -Updating the last four years. In Y. Alavi and A. J. Schwenk, edi- tors, Graph Theory, Combinatorics, and Applications -Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs, pages 19 -34. John Wiley & Sons, Inc., New York, 1995.
  6. D. Bauer, E. Schmeichel, and H. J. Veldman. Progress on tough graphs -Another four years. In Y. Alavi, D. Jones, H. Gavlas, A. Schwenk, and M. Schultz, editors, The Proceedings of the Eighth Quadrennial In- ternational Conference on Graph Theory, Combinatorics, Algorithms and Applications. John Wiley & Sons, Inc. To appear.
  7. G. Chartrand and L. Lesniak. Graphs and Digraphs. Chapman and Hall, London, 1996.
  8. V. Chvátal. Private communication.
  9. V. Chvátal. Tough graphs and hamiltonian circuits. Discrete Math., 5 : 215 -228, 1973.
  10. V. Chvátal. Hamiltonian cycles. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, editors, The Traveling Sales- man Problem, A Guided Tour of Combinatorial Optimization, Ch. 11, pp. 403 -429. John Wiley & Sons, Chichester, 1985.
  11. H. Enomoto, B. Jackson, P. Katerinis, and A. Saito. Toughness and the existence of k-factors. J. Graph Theory, 9 : 87 -95, 1985.
  12. M. R. Garey and D. S. Johnson. Computers and Intractability. Free- man, San Francisco, CA, 1979.
  13. W. Goddard and H. Swart. On some extremal problems in connectiv- ity.
  14. In Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J. Schwenk, editors, Graph Theory, Combinatorics, and Applications -Proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs, pages 535 -551. John Wiley & Sons, Inc., New York, 1991.
  15. I. Holyer. The NP-completeness of edge coloring. SIAM J. Comput., 10 : 718 -720, 1981.
  16. B. Jackson and P. Katerinis. A characterization of 3/2-tough cubic graphs. Ars Combinatoria, 38 : 145 -148, 1994.
  17. D. Leven and Z. Galil. NP-completeness of finding the chromatic index of regular graphs. J. Algorithms, 4 : 35 -44, 1983.
  18. M. M. Matthews and D. P. Sumner. Hamiltonian results in K 1,3 -free graphs. J. Graph Theory, 1 : 139 -146, 1984.
  19. J. Petersen. Die Theorie der regulären Graphen. Acta Math., 15 : 193 -220, 1891.
  20. C. Thomassen. Long cycles in digraphs. Proc. London Math. Soc., 42(3) : 231 -251, 1981.