Hamiltonicity in Split Graphs - A Dichotomy
2017, Lecture Notes in Computer Science
https://doi.org/10.1007/978-3-319-53007-9_28Abstract
In this paper, we investigate the well-studied Hamiltonian cycle problem (HCYCLE), and present an interesting dichotomy result on split graphs. T. Akiyama et al. (1980) have shown that HCYCLE is NP-complete in planar bipartite graphs with maximum degree 3. Using this reduction, we show that HCYCLE is NP-complete in split graphs. In particular, we show that the problem is NPcomplete in K1,5-free split graphs. Further, we present polynomial-time algorithms for Hamiltonian cycle in K1,3-free and K1,4-free split graphs. We believe that the structural results presented in this paper can be used to show similar dichotomy result for Hamiltonian path problem (HPATH) and other variants of HCYCLE.
References (24)
- A.A.Bertossi, M.A.Bonuccelli: Hamiltonian circuits in interval graph generalizations. Information Processing Letters, 23(4), 195-200, (1986)
- A.Kemnitz, I.Schiermeyer: Improved degree conditions for Hamiltonian properties. Discrete Mathematics, 312(14), 2140 -2145, (2012)
- A.Malakis: Hamiltonian walks and polymer configurations. Statistical Mechanics and its Applications Physica (A), 84(2), 256-284, (1976)
- C.M.H.deFigueiredo: The P versus NP-complete dichotomy of some challenging problems in graph theory. Dis- crete Applied Mathematics, 160(18), 2681 -2693, (2012)
- D.Bauer, H.J.Broersma, J.Heuvel, H.J.Veldman: Long cycles in graphs with prescribed toughness and minimum degree. Discrete Mathematics, 141(1), 1 -10, (1995)
- D.B.West: Introduction to Graph Theory. 2 edn. Prentice Hall, (2003)
- D.Dorninger: Hamiltonian circuits determining the order of chromosomes. Discrete Applied Mathematics, 50(2), 159 -168, (1994)
- D.Kratsch, J.Lehel, H.Muller: Toughness, hamiltonicity and split graphs. Discrete Mathematics, 150(1), 231 - 245, (1996)
- G.Irina, O.Halskau, G.Laporte, M.Vlcek: General solutions to the single vehicle routing problem with pickups and deliveries. Euro. Jour. of Operational Research, 180(2), 568-584, (2007)
- H.J.Broersma: On some intriguing problems in Hamiltonian graph theory -a survey. Discrete Mathematics, 251(1), 47-69, (2002)
- H.Muller: Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics, 156(1), 291-298, (1996)
- J.M.Keil: Finding hamiltonian circuits in interval graphs. Information Processing Letters, 20(4), 201-206, (1985)
- M.Illuri, P.Renjith, N.Sadagopan: Complexity of steiner tree in split graphs -dichotomy results, In: Algorithms and Discrete Applied Mathematics -Second International Conference, CALDAM 2016. 308-325 (2016)
- M.R.Garey, D.S.Johnson, R.E.Tarjan: Planar hamiltonian circuit problem is NP-complete. SIAM Journal on Computing, 5(4), 704-714, (1976)
- N.D.Tan, L.X.Hung: On the Burkard-Hammer condition for hamiltonian split graphs. Discrete Mathematics, 296(1), 59-72, (2005)
- N.S.Narayanaswamy, N.Sadagopan: Connected (s, t)-vertex separator parameterized by chordality. J. Graph Algorithms Appl., 19(1), 549-565, (2015)
- R.E.Burkard, P.L.Hammer: A note on Hamiltonian split graphs. Journal of Combinatorial Theory, Series B, 28(2), 245 -248, (1980)
- R.J.Gould: Updating the Hamiltonian problem -a survey. Journal of Graph Theory, 15(2), 121-157, (1991)
- R.J.Gould: Advances on the Hamiltonian problem -a survey. Graphs and Combinatorics, 19(1), 7-52, (2003)
- R.W.Hung, M.S.Chang: Linear-time algorithms for the hamiltonian problems on distance-hereditary graphs. Theoretical Computer Science, 341(1), 411-440, (2005)
- R.W.Hung, M.S.Chang: An efficient certifying algorithm for the hamiltonian cycle problem on circular-arc graphs. Theoretical Computer Science, 412(39), 5351-5373, (2011)
- T.Akiyama, T.Nishizeki, N.Saito: NP-completeness of the Hamiltonian cycle problem for bipartite graphs. Journal of Information Processing, 3(2), 73-76, (1980)
- V.Chvátal: Tough graphs and hamiltonian circuits. Discrete Mathemetics, 306(10), 910-917, (2006)
- W.K.Shih, T.C.Chern, W.L.Hsu: An O(n 2 log n) algorithm for the hamiltonian cycle problem on circular-arc graphs. SIAM Journal on Computing, 21(6), 1026-1046, (1992)