Academia.eduAcademia.edu

Outline

Goal Recognition over Nominal Models

2019

Abstract

This paper revisits probabilistic, model–based goal recognition to study the implications of the use of nominal models to estimate the posterior probability distribution over a finite set of hypothetical goals. Existing model–based approaches rely on expert knowledge to produce symbolic descriptions of the dynamic constraints domain objects are subject to, and these are assumed to produce correct predictions. We abandon this assumption to consider the use of nominal models that are learnt from observations on transitions of systems with unknown dynamics. Leveraging existing work on the acquisition of domain models via deep learning for hybrid planning, we adapt and evaluate existing goal recognition approaches to analyse how prediction errors, inherent to system dynamics identification and model learning techniques have an impact over recognition error rates.

References (33)

  1. Amado, L.; Pereira, R. F.; Aires, J. P.; Magnaguagno, M.; Granada, R.; and Meneguzzi, F. 2018. Goal recognition in latent space. In IJCNN.
  2. Baker, C. L.; Joshua B. Tenenbaum, J. B.; and Saxe, R. 2009. Action understanding as inverse planning. Cognition 113(3):329-349.
  3. Bemporad, A.; Morari, M.; Dua, V.; and N. Pistikopoulos, E. 2002. The explicit linear quadratic regulator for constrained systems. Automatica 38:3-20.
  4. Bertsekas, D. P. 2017. Dynamic Programming and Optimal Control. Athena Scientific, 4th edition.
  5. Bonet, B., and Geffner, H. 2013. A Concise Introduction to Models and Methods for Automated Planning. Morgan & Claypool.
  6. Borrelli, F.; Bemporad, A.; and Morari, M. 2017. Predictive control for linear and hybrid systems. Cambridge University Press.
  7. Bueno, T. P.; Barros, L.; Maua, D. D.; and Sanner, S. 2019. Deep reactive policies for planning in stochastic nonlinear domains. In AAAI.
  8. Calafiore, G. C., and El-Ghaoui, L. 2014. Optimization Models. Cambridge University Press.
  9. Dennett, D. 1983. Intentional systems in cognitive ethol- ogy: The "panglossian paradigm defended". Behavioral and Brain Sciences 6:343-390.
  10. Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep Learning. MIT Press.
  11. Halpern, J. Y. 2016. Actual Causality. The MIT Press.
  12. Kaminka, G. A.; Vered, M.; and Agmon, N. 2018. Plan recognition in continuous domains. In AAAI.
  13. Ljung, L. 1998. System identification. In Signal Analysis and Prediction. Springer. 163-173.
  14. Martin, Y.; Moreno, M. D.; and Smith, D. E. 2015. A fast goal recognition technique based on interaction estimates. In IJCAI.
  15. Mitrovic, D.; Klanke, S.; and Vijayakumar, S. 2010. Adap- tive optimal feedback control with learned internal dynamics models. In From Motor Learning to Interaction Learning in Robots. Springer.
  16. Montufar, G. F.; Pascanu, R.; Cho, K.; and Bengio, Y. 2014. On the number of linear regions of deep neural networks. In NIPS.
  17. Nair, V., and Hinton, G. E. 2010. Rectified linear units improve restricted boltzmann machines. In ICML.
  18. Pearl, J. 2009. Causality: Models, Reasoning and Inference. Cambridge University Press.
  19. Pearl, J. 2019. On the interpretation of do(x). Technical report, University of California Los Angeles.
  20. Pereira, R. F., and Meneguzzi, F. 2018. Goal recognition in incomplete domain models. In AAAI.
  21. Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2017. Landmark- based heuristics for goal recognition. In AAAI.
  22. Ramírez, M., and Geffner, H. 2009. Plan recognition as planning. In IJCAI.
  23. Ramírez, M., and Geffner, H. 2010. Probabilistic plan recog- nition using off-the-shelf classical planners. In AAAI. Rasmussen, C. E., and Williams, C. K. I. 2006. Gaussian Processes for Machine Learning. MIT Press.
  24. Sanchez-Gonzalez, A.; Hess, N.; Springenberg, J. T.; Merel, J.; Riedmiller, M.; Hadsell, R.; and Battaglia, P. 2018. Graph networks as learnable physics engines for inference and con- trol. In ICML.
  25. Sanner, S. 2011. Relational dynamic influence diagram lan- guage (rddl): Language description. Technical report, Aus- tralian National University.
  26. Say, B., and Sanner, S. 2018. Planning in factored state and action spaces with learned binarized neural network transi- tion models. In IJCAI.
  27. Say, B.; Wu, G.; Zhou, Y. Q.; and Sanner, S. 2017. Nonlinear hybrid planning with deep net learned transition models and mixed-integer linear programming. In IJCAI.
  28. Sukthankar, G.; Goldman, R. P.; Geib, C.; Pynadath, D. V.; and Bui, H. H. 2014. Plan, Activity, and Intent Recognition: Theory and Practice. Elsevier.
  29. Tassa, Y.; Erez, T.; and Todorov, E. 2012. Synthesis and sta- bilization of complex behaviours through online trajectory optimization. In Proc. of the IEEE/RSJ Int'l Conference on Intelligent Robots and Systems (IROS).
  30. Vered, M.; Kaminka, G. A.; and Biham, S. 2016. Online goal recognition through mirroring: Humans and agents. In ACS. Warren, C. W. 1989. Global path planning using artificial potential fields. In ICRA.
  31. Weber, C., and Bryce, D. 2011. Planning and acting in incomplete domains. In ICAPS.
  32. Wu, G.; Say, B.; and Sanner, S. 2017. Scalable planning with tensorflow for hybrid nonlinear domains. In NIPS.
  33. Yamaguchi, A., and Atkeson, C. G. 2016. Neural net- works and differential dynamic programming for reinforce- ment learning problems. In ICRA.