Abstract
Goal Recognition is the task of recognizing the intended goal of autonomous agents or humans by observing their behavior in an environment. Over the past years, most existing approaches to goal and plan recognition have been ignoring the need to deal with imperfections regarding the domain model that formalizes the environment where autonomous agents behave. In this work, we introduce the problem of goal recognition over imperfect domain models, and develop solution approaches that explicitly deal with two distinct types of imperfect domains models: (1) incomplete discrete domain models that have possible, rather than known, preconditions and effects in action descriptions; and (2) approximate continuous domain models, where the transition function is approximated from past observations and not well- defined. We develop novel goal recognition approaches over imperfect domains models by leveraging and adapting existing recognition approaches from the literature. Experiments and evalu...
References (106)
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Goodfellow, I. J.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Józefowicz, R.; Kaiser, L.; Kudlur, M.; Levenberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D. G.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Talwar, K.; Tucker, P. A.; Vanhoucke, V.; Vasudevan, V.; Viégas, F. B.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng, X. "Tensorflow: Large-scale machine learning on heterogeneous distributed systems", Computing Research Repository (CoRR), vol. abs/1603.04467, Mar 2016, pp. 1-19.
- Amado, L.; Pereira, R. F.; Aires, J. P.; Magnaguagno, M.; Granada, R.; Licks, G. P.; Meneguzzi, F. "Latrec: Recognizing goals in latent space". In: Proceedings of the System Demonstrations and Exhibits at the International Conference on Automated Planning and Scheduling (ICAPS), 2019, pp. 1-2.
- Amado, L.; Pereira, R. F.; Aires, J. P.; Magnaguagno, M.; Granada, R.; Meneguzzi, F. "Goal recognition in latent space". In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), 2018, pp. 1-8.
- Armentano, M. G.; Amandi, A. "Plan recognition for interface agents", Artificial Intelligence Review, vol. 28-2, Aug 2007, pp. 131-162.
- Asai, M.; Fukunaga, A. "Classical Planning in Deep Latent Space: Bridging the Subsymbolic-Symbolic Boundary". In: Proceedings of the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2018, pp. 6094-6101.
- Avrahami-Zilberbrand, D.; Kaminka, G. A. "Fast and Complete Symbolic Plan Recognition". In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2005, pp. 653-658.
- Avrahami-Zilberbrand, D.; Kaminka, G. A. "Incorporating observer biases in keyhole plan recognition (efficiently!)". In: Proceedings of the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2007, pp. 944-949.
- Baker, C. L.; Joshua B. Tenenbaum, J. B.; Saxe, R. "Action understanding as inverse planning", Cognition, vol. 113-3, Jul 2009, pp. 329-349.
- Bemporad, A.; Morari, M.; Dua, V.; N. Pistikopoulos, E. "The explicit linear quadratic regulator for constrained systems", Automatica, vol. 38, Jan 2002, pp. 3-20.
- Bertsekas, D. P. "Dynamic Programming and Optimal Control". Athena Scientific, 2017, 4th ed., 520p.
- Beteto, M. A.; Assunção, E.; Teixeira, M. C.; Silva, E. R.; Buzachero, L. F.; Caun, R. P. "New Design of Robust LQR-State Derivative Controllers via LMIs", International Federation of Automatic Control, vol. 51-25, Nov 2018, pp. 422-427.
- Blum, A. L.; Furst, M. L. "Fast Planning Through Planning Graph Analysis", Journal of Artificial Intelligence Research, vol. 90, Feb 1997, pp. 281-300.
- Borrelli, F.; Bemporad, A.; Morari, M. "Predictive control for linear and hybrid systems". Cambridge University Press, 2017, 1st ed., 440p.
- Bryce, D.; Kambhampati, S. "A Tutorial on Planning Graph Based Reachability Heuristics", AI Magazine, vol. 28-1, Mar 2007, pp. 47-83.
- Bueno, T. P.; Barros, L.; Maua, D. D.; Sanner, S. "Deep reactive policies for planning in stochastic nonlinear domains". In: Proceedings of the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2019, pp. 7530-7537.
- Calafiore, G. C.; El-Ghaoui, L. "Optimization Models". Cambridge University Press, 2014, 1st ed., 650p.
- Davidov, D.; Markovitch, S. "Multiple-goal heuristic search", Journal of Artificial Intelligence Research, vol. 26, Aug 2006, pp. 417-451.
- Dennett, D. "Intentional systems in cognitive ethology: The "panglossian paradigm defended"", Behavioral and Brain Sciences, vol. 6, Sep 1983, pp. 343-390.
- E.-Martín, Y.; R.-Moreno, M. D.; Smith, D. E. "A Fast Goal Recognition Technique Based on Interaction Estimates". In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2015, pp. 761-768.
- Fernández-González, E.; Williams, B. C.; Karpas, E. "Scottyactivity: Mixed discrete- continuous planning with convex optimization", Journal of Artificial Intelligence Research, vol. 62, Jul 2018, pp. 579-664.
- Fikes, R. E.; Nilsson, N. J. "STRIPS: A new approach to the application of theorem proving to problem solving", Artificial Intelligence, vol. 2-3, Sep 1971, pp. 189-208.
- Freedman, R. G.; Fung, Y. R.; Ganchin, R.; Zilberstein, S. "Towards quicker probabilistic recognition with multiple goal heuristic search". In: The Workshop on Plan, Activity, and Intent Recognition (PAIR) at the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2018, pp. 1-8.
- Garland, A.; Lesh, N. "Plan evaluation with incomplete action descriptions". In: Proceedings of the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2002, pp. 461-467.
- Geffner, H.; Bonet, B. "A Concise Introduction to Models and Methods for Automated Planning". Morgan & Claypool, 2013, 1st ed., 141p.
- Geib, C. W. "Problems with Intent Recognition for Elder Care". In: Proceedings of the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2002, pp. 13-17.
- Geib, C. W.; Goldman, R. P. "Plan Recognition in Intrusion Detection Systems". In: Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX), 2001, pp. 46-55.
- Geib, C. W.; Goldman, R. P. "A Probabilistic Plan Recognition Algorithm Based on Plan Tree Grammars", Artificial Intelligence, vol. 173-11, Jul 2009, pp. 1101-1132.
- Ghallab, M.; Nau, D. S.; Traverso, P. "Automated Planning -Theory and Practice." Elsevier, 2004, 1st ed., 635p.
- Ghallab, M.; Nau, D. S.; Traverso, P. "Automated Planning and Acting". Elsevier, 2016, 1st ed., 368p.
- Goodfellow, I.; Bengio, Y.; Courville, A. "Deep Learning". MIT Press, 2016, 1st ed., 775p.
- Granada, R.; Pereira, R. F.; Monteiro, J.; Barros, R.; Ruiz, D.; Meneguzzi, F. "Hybrid Activity and Plan Recognition for Video Streams". In: The Workshop on Plan, Activity, and Intent Recognition (PAIR) at the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2017, pp. 1-8.
- Hajiyev, C. "LQR Controller with Kalman Estimator Applied to UAV Longitudinal Dynamics", Positioning, vol. 04, Jan 2013, pp. 36-41.
- Halpern, J. Y. "Actual Causality". The MIT Press, 2016, 1st ed., 229p.
- Hoffmann, J.; Nebel, B. "The FF Planning System: Fast Plan Generation Through Heuristic Search", Journal of Artificial Intelligence Research, vol. 14, May 2001, pp. 253- 302.
- Hoffmann, J.; Porteous, J.; Sebastia, L. "Ordered Landmarks in Planning", Journal of Artificial Intelligence Research, vol. 22-1, Nov 2004, pp. 215-278.
- Hong, J. "Goal recognition through goal graph analysis", Journal of Artificial Intelligence Research, vol. 15, Jul 2001, pp. 1-30.
- Jae Weon Choi; Young Bong See; Wan Suk Yoo; Man Hyung Lee. "LQR approach using Eigenstructure assignment with an active suspension control application". In: Proceedings of the IEEE International Conference on Control Applications, 1998, pp. 1235-1239.
- Kambhampati, S. "Model-lite planning for the web age masses: The challenges of planning with incomplete and evolving domain models". In: Proceedings of the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2007, pp. 1601-1604.
- Kaminka, G. A.; Vered, M.; Agmon, N. "Plan recognition in continuous domains". In: Proceedings of the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2018, pp. 6202-6210.
- Keren, S.; Gal, A.; Karpas, E. "Goal Recognition Design". In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), 2014, pp. 1-8.
- Keren, S.; Gal, A.; Karpas, E. "Goal Recognition Design for Non-Optimal Agents". In: Proceedings of the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2015, pp. 3298-3304.
- Keren, S.; Gal, A.; Karpas, E. "Goal Recognition Design with Non-Observable Actions". In: Proceedings of the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2016, pp. 3152-3158.
- Kerkez, B.; Cox, M. T. "Case-Based Plan Recognition with Incomplete Plan Libraries". In: Proceedings of the Conference of the Association for the Advancement of Artificial Intelligence (AAAI) Fall Symposium on Intent Inference, 2002, pp. 52-54.
- Keyder, E.; Richter, S.; Helmert, M. "Sound and complete landmarks for and/or graphs". In: Proceedings of the European Conference on Artificial Intelligence (ECAI), 2010, pp. 335-340.
- Kong, K.; Tomizuka, M. "Nominal model manipulation for enhancement of stability robustness for disturbance observer-based control systems", International Journal of Control, Automation and Systems, vol. 11, Jan 2013, pp. 12-20.
- Lee, J.-J.; McCartney, R. "Partial Plan Recognition with Incomplete Information". In: Proceedings of International Conference on Multi Agent Systems, 1998, pp. 445-446.
- Ljung, L. "System identification". In: Signal Analysis and Prediction, Springer, 1998, pp. 163-173.
- Masters, P.; Sardiña, S. "Cost-Based Goal Recognition for Path-Planning". In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2017, pp. 750-758.
- Masters, P.; Sardiña, S. "Cost-based goal recognition in navigational domains", Journal of Artificial Intelligence Research, vol. 64, Feb 2019, pp. 197-242.
- Masters, P.; Sardiña, S. "Goal recognition for rational and irrational agents". In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), 2019, pp. 440-448.
- McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.; Veloso, M.; Weld, D.; Wilkins, D. "PDDL -The Planning Domain Definition Language". In: Proceedings of the International Conference on Artificial Intelligence Planning Systems (AIPS), 1998, pp. 1-8.
- Mirsky, R.; Gal, Y. K.; Shieber, S. M. "CRADLE: An Online Plan Recognition Algorithm for Exploratory Domains", ACM Transactions on Intelligent Systems and Technology, vol. 8-3, Apr 2017, pp. 45:1-45:22.
- Mirsky, R.; Gal, Y. K.; Tolpin, D. "Session analysis using plan recognition". In: The Workshop on User Interfaces and Scheduling and Planning at the International Conference on Automated Planning and Scheduling (ICAPS), 2017, pp. 1-7.
- Mirsky, R.; Stern, R.; Gal, K.; Kalech, M. "Sequential plan recognition: An iterative approach to disambiguating between hypotheses", Artificial Intelligence, vol. 260, Jul 2018, pp. 51-73.
- Mirsky, R.; Stern, R.; Gal, Y. K.; Kalech, M. "Sequential Plan Recognition". In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2016, pp. 401-407.
- Mitrovic, D.; Klanke, S.; Vijayakumar, S. "Adaptive optimal feedback control with learned internal dynamics models", From Motor Learning to Interaction Learning in Robots, vol. 264, Jan 2010, pp. 65-84.
- Montufar, G. F.; Pascanu, R.; Cho, K.; Bengio, Y. "On the number of linear regions of deep neural networks". In: Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), 2014, pp. 1-9.
- M'Sirdi, N.; Rabhi, A.; Naamane, A. "A Nominal Model for Vehicle Dynamics and Estimation of Input Forces and Tire Friction". In: International Conference on Control Systems and Computer Science (CSC), 2007, pp. 1-7.
- Nair, V.; Hinton, G. E. "Rectified linear units improve restricted boltzmann machines". In: Proceedings of the International Conference on Machine Learning (ICML), 2010, pp. 807-814.
- Nguyen, T.; Sreedharan, S.; Kambhampati, S. "Robust Planning with Incomplete Domain Models", Artificial Intelligence, vol. 245, Apr 2017, pp. 134 -161.
- Nguyen, T. A.; Kambhampati, S. "A Heuristic Approach to Planning with Incomplete STRIPS Action Models". In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), 2014, pp. 190-198.
- Patra, J. C.; Pal, R. N.; Chatterji, B. N.; Panda, G. "Identification of nonlinear dynamic systems using functional link artificial neural networks", IEEE Transactions on Systems, Man, and Cybernetics, vol. 29-2, Apr 1999, pp. 254-262.
- Pattison, D.; Long, D. "Domain Independent Goal Recognition." In: Proceedings of the Starting AI Researcher Symposium (STAIRS), 2010, pp. 1-10.
- Pearl, J. "Causality: Models, Reasoning and Inference". Cambridge University Press, 2009, 1st ed., 464p.
- Pereira, R. F.; Meneguzzi, F. "Landmark-Based Plan Recognition". In: Proceedings of the European Conference on Artificial Intelligence (ECAI), 2016, pp. 1706-1707.
- Pereira, R. F.; Meneguzzi, F. "Goal and Plan Recognition Datasets using Classical Planning Domains". (Accessed July 2019), 2017.
- Pereira, R. F.; Meneguzzi, F. "Goal Recognition in Incomplete Domain Models". In: Proceedings of Association for the Advancement of Artificial Intelligence (AAAI), 2018, pp. 8127-8128.
- Pereira, R. F.; Meneguzzi, F. "Goal Recognition in Incomplete STRIPS Domain Models". In: The Workshop on Plan, Activity, and Intent Recognition (PAIR) at the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2018, pp. 1-8.
- Pereira, R. F.; Oren, N.; Meneguzzi, F. "Detecting Commitment Abandonment by Monitoring Sub-Optimal Steps During Plan Execution". In: Proceedings of the Conference on Autonomous Agents and MultiAgent Systems (AAMAS), 2017, pp. 1685- 1687.
- Pereira, R. F.; Oren, N.; Meneguzzi, F. "Landmark-Based Heuristics for Goal Recognition". In: Proceedings of the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2017, pp. 3622-3628.
- Pereira, R. F.; Oren, N.; Meneguzzi, F. "Monitoring Plan Optimality using Landmarks and Domain-Independent Heuristics". In: The Workshop on Plan, Activity, and Intent Recognition (PAIR) at the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2017, pp. 1-8.
- Pereira, R. F.; Oren, N.; Meneguzzi, F. "Landmark-based approaches for goal recognition as planning", Artificial Intelligence, vol. 279, Feb 2020, pp. 1-32.
- Pereira, R. F.; Oren, N.; Meneguzzi, F. "Using sub-optimal plan detection to identify commitment abandonment in discrete environments", ACM Transactions on Intelligent Systems and Technology, vol. 11, Feb 2020, pp. 1-26.
- Pereira, R. F.; Pereira, A. G.; Meneguzzi, F. "Landmark-enhanced heuristics for goal recognition in incomplete domain models". In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), 2019, pp. 329-337.
- Pereira, R. F.; Vered, M.; Meneguzzi, F.; Ramírez, M. "Online probabilistic goal recognition over nominal models". In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2019, pp. 5547-5553.
- Pynadath, D. V.; Wellman, M. P. "Accounting for Context in Plan Recognition, with Application to Traffic Monitoring", Computing Research Repository (CoRR), vol. abs/1302.4980, Aug 2013, pp. 472-481.
- Ramírez, M.; Geffner, H. "Plan Recognition as Planning". In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2009, pp. 1778-1783.
- Ramírez, M.; Geffner, H. "Probabilistic Plan Recognition Using Off-the-Shelf Classical Planners". In: Proceedings of the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2010, pp. 1121-1126.
- Rasmussen, C. E.; Williams, C. K. I. "Gaussian Processes for Machine Learning". MIT Press, 2006, 1st ed., 245p.
- Richter, S.; Helmert, M.; Westphal, M. "Landmarks Revisited". In: Proceedings of the Conference of the Association for the Advancement of Artificial Intelligence (AAAI), 2008, pp. 975-982.
- Richter, S.; Westphal, M. "The LAMA Planner: Guiding Cost-based Anytime Planning with Landmarks", Journal of Artificial Intelligence Research, vol. 39-1, Jan 2010, pp. 127-177.
- Russell, S.; Norvig, P. "Artificial intelligence: A Modern Approach". Prentice Hall, 2010, 3 ed., 1132p.
- Sanner, S. "Relational Dynamic Influence Diagram Language (RDDL): Language Description", Technical Report, Australian National University, 2011, 25p.
- Say, B.; Sanner, S. "Planning in factored state and action spaces with learned binarized neural network transition models". In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2018, pp. 4815-4821.
- Say, B.; Wu, G.; Zhou, Y. Q.; Sanner, S. "Nonlinear hybrid planning with deep net learned transition models and mixed-integer linear programming". In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2017, pp. 750-756.
- Schmidt, C. F.; Sridharan, N. S.; Goodson, J. L. "The Plan Recognition Problem: An Intersection of Psychology and Artificial Intelligence", Journal of Artificial Intelligence Research, vol. 11-1-2, May 1978, pp. 45-83.
- Sohrabi, S.; Riabov, A. V.; Udrea, O. "Plan Recognition as Planning Revisited". In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2016, pp. 3258-3264.
- Sukthankar, G.; Goldman, R. P.; Geib, C.; Pynadath, D. V.; Bui, H. H. "Plan, Activity, and Intent Recognition: Theory and Practice". Elsevier, 2014, 1st ed., 424p.
- Sutton, R. S.; Barto, A. G. "Reinforcement Learning: An Introduction". USA: A Bradford Book, 2018, 1st ed., 552p.
- Tassa, Y.; Erez, T.; Todorov, E. "Synthesis and stabilization of complex behaviours through online trajectory optimization". In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS), 2012, pp. 4906-4913.
- Uzan, O.; Dekel, R.; Seri, O.; Gal, Y. K. "Plan Recognition for Exploratory Learning Environments Using Interleaved Temporal Search", AI Magazine, vol. 36-2, Aug 2015, pp. 10-21.
- Vered, M.; Kaminka, G. A.; Biham, S. "Online goal recognition through mirroring: Humans and agents". In: Proceedings of the Annual Conference on Advances in Cognitive Systems (ACS), 2016, pp. 1-12.
- Vered, M.; Pereira, R. F.; Magnaguagno, M.; Meneguzzi, F.; Kaminka, G. A. "Towards Online Goal Recognition Combining Goal Mirroring and Landmarks". In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2018, pp. 2112-2114.
- Vidal, V.; Geffner, H. "Solving Simple Planning Problems with More Inference and No Search". In: Proceedings of the Conference on Principles and Practice of Constraint Programming (CP), 2005, pp. 682-696.
- Warren, C. W. "Global path planning using artificial potential fields". In: Proceedings of the International Conference on Robotics and Automation (ICRA), 1989, pp. 316-321.
- Weber, C.; Bryce, D. "Planning and Acting in Incomplete Domains". In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), 2011, pp. 1-8.
- Wu, G.; Say, B.; Sanner, S. "Scalable planning with tensorflow for hybrid nonlinear domains". In: Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), 2017, pp. 6273-6283.
- Yamaguchi, A.; Atkeson, C. G. "Neural networks and differential dynamic programming for reinforcement learning problems". In: Proceedings of the International Conference on Robotics and Automation (ICRA), 2016, pp. 5434-5441.
- Zhang, T. "Solving large scale linear prediction problems using stochastic gradient descent algorithms". In: Proceedings of the International Conference on Machine Learning (ICML), 2004, pp. 919-926.
- Zhu, L.; Givan, R. "Landmark extraction via planning graph propagation". In: Proceedings of the Doctoral Consortium at the International Conference on Automated Planning and Scheduling (ICAPS), 2003, pp. 1-7.
- Zhuo, H. H. "Recognizing Multi-Agent Plans When Action Models and Team Plans Are Both Incomplete", ACM Transactions on Intelligent Systems and Technology, vol. 10-3, May 2019, pp. 1-24.
- Zhuo, H. H.; Li, L. "Multi-agent plan recognition with partial team traces and plan libraries". In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2011, pp. 484-489.
- Zhuo, H. H.; Nguyen, T. A.; Kambhampati, S. "Refining incomplete planning domain models through plan traces". In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2013, pp. 2451-2458.
- Zhuo, H. H.; Yang, Q.; Kambhampati, S. "Action-Model Based Multi-agent Plan Recognition". In: Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), pp. 377-385.
- = 0.44. In this case, Algorithm 5 correctly estimates RED to be the intended goal since it has the highest heuristic value.
- § ¤ -( and ( clear B ) ( on B E ) ( on E D ) ( ontable D ) ) = 6.33 [(on E D)] = 0.5, [(clear D) (holding E)] = 0.5, [(on E A) (clear E) (handempty)] = 0.33, [( ontable D ) ] = 0.33 , [(on D B) (clear D) (handempty)] = 0.33, [( holding D ) ] = 0.33 , [(clear B) (ontable B) (handempty)] = 1.0, [( on B E ) ] = 1.0 , [( clear B ) ] = 1.0 , [( clear E ) ( holding B ) ] = 1.0