A notion of weak convergence in metric spaces
Abstract
We discuss some basic properties of polar convergence in metric spaces. Polar convergence is closely connected with the notion of Delta-convergence of T.C. Lim known for several years. Possible existence of a topology which induces polar convergence is also investigated. Some applications of polar convergence follow.
References (39)
- Adimurthi, C. Tintarev, On the Brezis-Lieb Lemma without pointwise convergence, preprint, arXiv:1408.4654.
- M. Bacak, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Series in Nonlinear Analysis and Applications 22, De Gruyter, 2014.
- M. Bacak, Convergence of semigroups under nonpositive curvature, Trans. Amer. Math. Soc. 367 (2015), 3929-3953.
- J.-B. Baillon, R. E. Bruck and S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), 1-9.
- N. Bourbaki, Elements of Mathematics -General Topology -part 1, Springer, 1966.
- H. Brezis,Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
- H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88 (1983), 486-490.
- M. Bridson, A. Haefliger, Metric Subspaces of Non-Positive Curvature, Springer-Verlag, 1999.
- F. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. N. A. S. 54 (1965), 1041-1044.
- R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators, Houston J. Math. 3 (1977), 459-470.
- I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990.
- S. Dhompongsa, W.A. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal. 8 (2007) 35-45.
- S. Dhompongsa, W.A Kirk, B. Sims, Fixed points of uniformly Lipschitzian mappings, Non- linear Anal. 65 (2006), 762-772.
- M. Edelstein, The construction of an asymptotic center with a fixed-point property, Bull. Amer. Math. Soc. 78 (1972), 206-208.
- R. Espinola, A. Fernandez-Leon, CAT(k)-spaces, weak convergence and fixed points. J. Math. Anal. Appl. 353 (2009), 410-427.
- T. Foertsch, Ball versus distance convexity of metric spaces. Beiträge Algebra Geom. 45 (2004), 481-500.
- K. Goebel, W. A. Kirk, Topics in Metric Fixed Point Theory (Cambridge Studies in Advanced Mathematics), Cambridge University Press, 1990.
- K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
- W. B. Johnson, J. Lindenstrauss, Handbook of the Geometry of Banach Spaces, Vol. 1, Elsevier, 2001.
- J. Jost, Equilibrium maps between metric spaces, Calc. Var. 2 (1994) 173-204.
- J. Jost, Nonpositive Curvature: Geometric and Analytic Aspects, (Lectures in Mathematics: ETH Zurich) Birkhäuser, 1997.
- W. A. Kirk, Fixed point theory for nonexpansive mappings II, Contemporary Math. 18 (1983), 121-140.
- W. A. Kirk, B. Panyanak, A concept of convergence in geodesic space, Nonlinear Analysis 68 (2008), 3689-3696.
- T. Kuczumow, An almost convergence and its applications, Ann. Univ. Mariae Curie- Sklodowska Sect. A 32 (1978), 79-88.
- T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179-182.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related 29 Areas], Vol. 97, Springer, Berlin, 1979.
- F. Maddalena, S. Solimini, Synchronic and asynchronic descriptions of irrigation problems. Adv. Nonlinear Stud. 13 (2013) no. 3, 583-623.
- N. Monod, Superrigidity for irreducible lattices and geometric splitting. J. Amer. Math. Soc. 19 (2006), 781-814.
- N. Monod, Y. Shalom, Cocycle superrigidity and bounded cohomology for negatively curved spaces, J. Diff. Geom. 67 (2004), 395-455.
- K. Menger, Undersuchungen über allgemeine Metrik, I, II, III, Math. Ann. 100 (1928), 75-163.
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
- S. Reich, Remarks on fixed points, II, Atti Accad. Naz. Lincei 53 (1972), 250-254.
- S. Reich, Bull. Amer. Math. Soc. 26 (1992), 367-370.
- S. Reich, I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 (1990), 537-558.
- S. Solimini, C. Tintarev, Concentration analysis in Banach spaces, Comm. Contemp. Math. 2015, available online.
- E. N. Sosov, On analogues of weak convergence in a special metric space. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 2004, no. 5, 84-89; translation in Russian Math. (Iz. VUZ) 48 (2004), 79-83.
- J. Staples, Fixed point theorems in uniformly rotund metric spaces, Bull. Austral. Math. Soc. 14 (1976), 181-192.
- D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J. London Math. Soc. (2) 25 (1982), 139-144. giuseppe.devillanova@poliba.it, Politecnico di Bari, via Amendola, 126/B, 70126
- Bari, Italy sergio.solimini@poliba.it, Politecnico di Bari, via Amendola, 126/B, 70126 Bari, Italy tintarev@math.uu.se, Uppsala University, box 480, 761 06 Uppsala, Sweden