Academia.eduAcademia.edu

Outline

A notion of weak convergence in metric spaces

Abstract

We discuss some basic properties of polar convergence in metric spaces. Polar convergence is closely connected with the notion of Delta-convergence of T.C. Lim known for several years. Possible existence of a topology which induces polar convergence is also investigated. Some applications of polar convergence follow.

References (39)

  1. Adimurthi, C. Tintarev, On the Brezis-Lieb Lemma without pointwise convergence, preprint, arXiv:1408.4654.
  2. M. Bacak, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Series in Nonlinear Analysis and Applications 22, De Gruyter, 2014.
  3. M. Bacak, Convergence of semigroups under nonpositive curvature, Trans. Amer. Math. Soc. 367 (2015), 3929-3953.
  4. J.-B. Baillon, R. E. Bruck and S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), 1-9.
  5. N. Bourbaki, Elements of Mathematics -General Topology -part 1, Springer, 1966.
  6. H. Brezis,Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
  7. H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88 (1983), 486-490.
  8. M. Bridson, A. Haefliger, Metric Subspaces of Non-Positive Curvature, Springer-Verlag, 1999.
  9. F. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. N. A. S. 54 (1965), 1041-1044.
  10. R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators, Houston J. Math. 3 (1977), 459-470.
  11. I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990.
  12. S. Dhompongsa, W.A. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal. 8 (2007) 35-45.
  13. S. Dhompongsa, W.A Kirk, B. Sims, Fixed points of uniformly Lipschitzian mappings, Non- linear Anal. 65 (2006), 762-772.
  14. M. Edelstein, The construction of an asymptotic center with a fixed-point property, Bull. Amer. Math. Soc. 78 (1972), 206-208.
  15. R. Espinola, A. Fernandez-Leon, CAT(k)-spaces, weak convergence and fixed points. J. Math. Anal. Appl. 353 (2009), 410-427.
  16. T. Foertsch, Ball versus distance convexity of metric spaces. Beiträge Algebra Geom. 45 (2004), 481-500.
  17. K. Goebel, W. A. Kirk, Topics in Metric Fixed Point Theory (Cambridge Studies in Advanced Mathematics), Cambridge University Press, 1990.
  18. K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
  19. W. B. Johnson, J. Lindenstrauss, Handbook of the Geometry of Banach Spaces, Vol. 1, Elsevier, 2001.
  20. J. Jost, Equilibrium maps between metric spaces, Calc. Var. 2 (1994) 173-204.
  21. J. Jost, Nonpositive Curvature: Geometric and Analytic Aspects, (Lectures in Mathematics: ETH Zurich) Birkhäuser, 1997.
  22. W. A. Kirk, Fixed point theory for nonexpansive mappings II, Contemporary Math. 18 (1983), 121-140.
  23. W. A. Kirk, B. Panyanak, A concept of convergence in geodesic space, Nonlinear Analysis 68 (2008), 3689-3696.
  24. T. Kuczumow, An almost convergence and its applications, Ann. Univ. Mariae Curie- Sklodowska Sect. A 32 (1978), 79-88.
  25. T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179-182.
  26. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related 29 Areas], Vol. 97, Springer, Berlin, 1979.
  27. F. Maddalena, S. Solimini, Synchronic and asynchronic descriptions of irrigation problems. Adv. Nonlinear Stud. 13 (2013) no. 3, 583-623.
  28. N. Monod, Superrigidity for irreducible lattices and geometric splitting. J. Amer. Math. Soc. 19 (2006), 781-814.
  29. N. Monod, Y. Shalom, Cocycle superrigidity and bounded cohomology for negatively curved spaces, J. Diff. Geom. 67 (2004), 395-455.
  30. K. Menger, Undersuchungen über allgemeine Metrik, I, II, III, Math. Ann. 100 (1928), 75-163.
  31. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
  32. S. Reich, Remarks on fixed points, II, Atti Accad. Naz. Lincei 53 (1972), 250-254.
  33. S. Reich, Bull. Amer. Math. Soc. 26 (1992), 367-370.
  34. S. Reich, I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 (1990), 537-558.
  35. S. Solimini, C. Tintarev, Concentration analysis in Banach spaces, Comm. Contemp. Math. 2015, available online.
  36. E. N. Sosov, On analogues of weak convergence in a special metric space. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. 2004, no. 5, 84-89; translation in Russian Math. (Iz. VUZ) 48 (2004), 79-83.
  37. J. Staples, Fixed point theorems in uniformly rotund metric spaces, Bull. Austral. Math. Soc. 14 (1976), 181-192.
  38. D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, J. London Math. Soc. (2) 25 (1982), 139-144. giuseppe.devillanova@poliba.it, Politecnico di Bari, via Amendola, 126/B, 70126
  39. Bari, Italy sergio.solimini@poliba.it, Politecnico di Bari, via Amendola, 126/B, 70126 Bari, Italy tintarev@math.uu.se, Uppsala University, box 480, 761 06 Uppsala, Sweden