Weak convergences of probability measures: A uniform principle
1998
Abstract
We consider a set of probability measures on a locally compact separable metric space. It is shown that a necessary and sufficient condition for (relative) sequential compactness of in various weak topologies (among which the vague, weak and setwise topologies) has the same simple form; i.e. a uniform principle has to hold in. We also extend this uniform principle to some Köthe function spaces.
References (13)
- R.B. Ash, Real Analysis and Probability, Academic Press, New York, 1972. MR 55:8280
- E.J. Balder, On compactness of the space of policies in stochastic dynamic programming, Stoch. Proc. Appl. 32, pp. 141-150, 1989. MR 91b:90212
- J. Dieudonné, Sur la convergence des suites de mesures de Radon, Anais Acad. Brasil. Ci. 23, pp. 21-38, 1951. MR 13:121a
- A.G. Bhatt, V. Borkar, Occupation measures for controlled Markov processes: characteriza- tion and optimality, Ann. Prob. 24 (1996), 1531-1562. MR 97i:90105
- J.L. Doob, Measure Theory, Springer-Verlag, New York, 1994. MR 95c:28001
- N. Dunford, J.T. Schwartz, Linear Operators. Part I: General Theory, Interscience Publish- ers, Inc., New York, 1957. MR 90g:47001a
- W.H. Fleming, D. Vermes, Convex duality approach to the optimal control of diffusions, SIAM J. Contr. Optim. 27, pp. 1136-1155, 1989. MR 90i:49016
- O. Hernandez-Lerma, J.B. Lasserre, Discrete-Time Markov Control Processes: Basic Opti- mality Criteria, Springer-Verlag, New York, 1996. MR 96k:93001
- M. Kurano, M. Kawai, Existence of optimal stationary policies in discounted decision pro- cesses, Comp. Math. Appl. 27, pp. 95-101, 1994. MR 95a:90197
- J. Lindenstrauss, L. Tzafriri, Classical Banach spaces I and II, Springer-Verlag, Berlin, 1977. MR 81c:46001; MR 58:17766
- E. Mascolo, L. Migliaccio, Relaxation methods in control theory, Appl. Math. Optim. 20, pp. 97-103, 1989. MR 90c:49059
- J.E. Rubio, The global control of nonlinear diffusion equations, SIAM J. Contr. Optim. 33, pp. 308-322, 1995. MR 90b:49009
- K. Yosida, Functional Analysis, Springer-Verlag, New York, 1980. MR 82i:46002