Academia.eduAcademia.edu

Outline

Weak convergences of probability measures: A uniform principle

1998

Abstract

We consider a set of probability measures on a locally compact separable metric space. It is shown that a necessary and sufficient condition for (relative) sequential compactness of in various weak topologies (among which the vague, weak and setwise topologies) has the same simple form; i.e. a uniform principle has to hold in. We also extend this uniform principle to some Köthe function spaces.

References (13)

  1. R.B. Ash, Real Analysis and Probability, Academic Press, New York, 1972. MR 55:8280
  2. E.J. Balder, On compactness of the space of policies in stochastic dynamic programming, Stoch. Proc. Appl. 32, pp. 141-150, 1989. MR 91b:90212
  3. J. Dieudonné, Sur la convergence des suites de mesures de Radon, Anais Acad. Brasil. Ci. 23, pp. 21-38, 1951. MR 13:121a
  4. A.G. Bhatt, V. Borkar, Occupation measures for controlled Markov processes: characteriza- tion and optimality, Ann. Prob. 24 (1996), 1531-1562. MR 97i:90105
  5. J.L. Doob, Measure Theory, Springer-Verlag, New York, 1994. MR 95c:28001
  6. N. Dunford, J.T. Schwartz, Linear Operators. Part I: General Theory, Interscience Publish- ers, Inc., New York, 1957. MR 90g:47001a
  7. W.H. Fleming, D. Vermes, Convex duality approach to the optimal control of diffusions, SIAM J. Contr. Optim. 27, pp. 1136-1155, 1989. MR 90i:49016
  8. O. Hernandez-Lerma, J.B. Lasserre, Discrete-Time Markov Control Processes: Basic Opti- mality Criteria, Springer-Verlag, New York, 1996. MR 96k:93001
  9. M. Kurano, M. Kawai, Existence of optimal stationary policies in discounted decision pro- cesses, Comp. Math. Appl. 27, pp. 95-101, 1994. MR 95a:90197
  10. J. Lindenstrauss, L. Tzafriri, Classical Banach spaces I and II, Springer-Verlag, Berlin, 1977. MR 81c:46001; MR 58:17766
  11. E. Mascolo, L. Migliaccio, Relaxation methods in control theory, Appl. Math. Optim. 20, pp. 97-103, 1989. MR 90c:49059
  12. J.E. Rubio, The global control of nonlinear diffusion equations, SIAM J. Contr. Optim. 33, pp. 308-322, 1995. MR 90b:49009
  13. K. Yosida, Functional Analysis, Springer-Verlag, New York, 1980. MR 82i:46002