Academia.eduAcademia.edu

Outline

I - convergence on cone metric spaces

2013, Sarajevo Journal of Mathematics

https://doi.org/10.5644/SJM.09.1.07

Abstract

The concept of I-convergence is an important generalization of statistical convergence which depends on the notion of an ideal I of subsets of the set N of positive integers. In this paper we introduce the ideas of I-Cauchy and I *-Cauchy sequences in cone metric spaces and study their properties. We also investigate the relation between this new Cauchy type condition and the property of completeness. 2000 Mathematics Subject Classification. 40A05, 40D25. Key words and phrases. Cone metric space, I and I *-convergence, I and I *-Cauchy condition, condition (AP).

References (16)

  1. M. Balacerzak, K. Dems and A. Kowissarski, Statistical convergence and ideal con- vergence for sequences of functions, J. Math. Anal. Appl., 328 (1) (2007), 715-729.
  2. Pratulananda Das and S. K. Ghosal, Some further result on I-Cauchy sequences and condition (AP), Comp. Math. Appl., 59 (2010), 2597-2600.
  3. Pratulananda Das, P. Kostyrko, W. Wilezynski and P. Malik, I and I * -convergence of double sequences, Math. Slovaca, 58 (2008), 605-620.
  4. K. Dems, On I-Cauchy sequences, Real Anal. Exch., 30 (1), (2004/2005), 123-128.
  5. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
  6. J. A. Fridy, On statistical convergence, Analiysis, 5 (1985), 301-313.
  7. P. Kostyrko, T. Šalát and W. Wilczyński, I-convergence, Real Anal. Exch., 26 (2)(2000/2001), 669-686.
  8. B. K. Lahiri and Pratulananda Das, Further results on I-limit superior and I-limit inferior, Math. Commun., 8 (2003), 151-156.
  9. B. K. Lahiri and Pratulananda Das, I and I * -convergence in topological spaces, Math. Bohemica, 130 (2) (2005), 153-160.
  10. H. Long-Guang and Z. Xian, Cone metric spaces and fixed point theorems of contrac- tive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.
  11. H. Long-Guang and X. Zhang, Cone metric spaces and fixed point theorems of con- tractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.
  12. A. Nabiev, S. Pehlivan and M. Gurdal, On I-Cauchy sequences, Tainanese J. Math., 12 (2)(2007), 569-576.
  13. A. Sahiner, M. Gurdal, S. Sultan and H. Gunawar, Ideal convergence in 2-normed spaces, Taiwanese J. Math., 11 (5) (2007), 1477-1484.
  14. T. Sǎlát, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.
  15. H. Steinhaus, Sur la convergence ordinate et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
  16. D.Turkoglu and M. Abuloha, Cone metric spaces and fixed point theorems in diamet- rically contractive mappings, to appear in Acta Math. Sin. (Received: December 25, 2011) Sudip Kumar Pal S/O-Tarak Nath Pal, P.O. -Rajhat Dist: Hoogly, Pin -712123, West Bengal India E-mail: sudipkmpal@yahoo.co.in Ekrem Savas Istanbul Ticaret University Department of Mathematics Üsküdar-Istanbul Turkey E-mail: ekremsavas@yahoo.com Huseyin Cakalli Department of Mathematics Maltepe University Maltepe-Istanbul Turkey E-mail:hcakalli@@maltepe.edu.tr