Binomial Coefficients, Roots of Unity and Powers of Prime Numbers
2022, Bulletin of the Malaysian Mathematical Sciences Society
https://doi.org/10.1007/S40840-022-01266-4Abstract
Let t ∈ N + be given. In this article we are interested in characterizing those d ∈ N + such that the congruence 1 t t−1 s=0 n + dζ s t d − 1 ≡ n d − 1 (mod d) is true for each n ∈ Z. In particular, assuming that d has a prime divisor greater than t, we show that the above congruence holds for each n ∈ Z if and only if d = p r , where p is a prime number greater than t and r ∈ {1,. .. , t}.
Key takeaways
AI
AI
- The congruence holds for all integers n if d = p^r, p > t, r ∈ {1,...,t}.
- The study characterizes d based on congruence conditions involving binomial coefficients and p-adic valuations.
- If d has a prime divisor p with d > tp^ν_p(d), then it fails to satisfy the condition C_t.
- The paper presents a method to classify values of d satisfying the condition C_t for fixed t.
- Various results relate to congruences modulo prime numbers, influencing research in number theory.
References (26)
- D. F. Bailey, Two p 3 variations of Lucas' theorem, J. Number Theory 35 (1990), 208-215.
- J. W. Bruce, A really trivial proof of the Lucas-Lehmer test, Amer. Math. Monthly 100 (1993), 370-371.
- M. Chamberland, K. Dilcher, A binomial sum related to Wolstenholme's theorem, J. Number Theory 129(2009), 2659-2672.
- H. Q. Cao, Z. W. Sun, Some congruences involving binomial coefficients, Colloq. Math. 139 (1) (2015), 127-136.
- K. S. Davis, W. A. Webb, Lucas' theorem for prime powers, European J. Combin. 11 (1990), 229-233.
- K. S. Davis, W. A. Webb, A binomial coefficient congruence modulo prime powers, J. Number Theory 43 (1993), 20-23.
- J. W. L. Glaisher, Congruences relating to the sums of products of the first nnumbers and to the other sums of products, Quart. J. Math. 31 (1900), 1-35.
- A. Granville, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, in: Organic mathematics (Burnady, BC, 1995), 253-276, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997.
- C. Helou, G. Terjanian, On Wolstenholme's theorem and its converse, J. Number Theory 128 (2008), 475-499.
- R. J. McIntosh, On the converse of Wolstenholme's Theorem, Acta Arith. 71 (1995), 381-389.
- R. J. McIntosh, E. L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp. 76 (2007), 2087-2094.
- X. Z. Meng, Z. W. Sun, Proof of a conjectural supercongruence, Finite Fields Appl. 35 (2015), 86-91.
- R. Meštrović, A note on the congruence np k mp k ≡ n m (mod p r ), Czechoslovak Math. J. 62 (1) (2012), 59-65.
- P. Miska, M. Ulas, Arithmetic properties of the number of permutations being products of pairwise disjoint d-cycles, Monatsh. Math. (2020), 59 pp., on-line first 18.03.2020, DOI: 10.1007/s00605-020-01397-5.
- Ø. J. Rødseth, A note on primality tests for N = h • 2 n -1, BIT Numerical Mathematics, 34 (3) (1994), 451-454.
- Z. W. Sun, A congruence for primes, Proc. Amer. Math. Soc. 123 (1995), 1341-1346.
- Z. W. Sun, On the sum k≡r (mod m) n k and related congruences, Israel J. Math., 128 (2002), 135-156.
- Z. W. Sun, Polynomial extension of Fleck's congruence, Acta Arith., 122 (1) (2006), 91-100.
- Z. W. Sun, D. Davis, Combinatorial congruences modulo prime powers, Trans. Amer. Math. Soc., 359 (11) (2007), 5525-5553.
- Z. W. Sun, R. Tauraso, Congruences for sums of binomial coefficients, J. Number Theory 126 (2) (2007), 287-296.
- Z. W. Sun, R. Tauraso, On some new congruences for binomial coefficients, Int. J. Number Theory 7 (3) (2011), 645-662.
- Z. W. Sun, On sums of binomial coefficients modulo p 2 , Colloq. Math. 127 (2012), 39-54.
- Z. W. Sun, Congruences involving generalized central binomial coefficients, Sci. China Math. 57 (2014), 1375- 1400.
- D. Wan, Combinatorial congruences and ψ-operators, Finite Fields Appl., 12 (2006), 693-703.
- J. Zhao, Bernoulli numbers, Wolstenholme's theorem, and p 5 variations of Lucas' theorem, J. Number Theory 123 (2007), 18-26.
- L. L. Zhao, Z. W. Sun, Some curious congruences modulo primes, J. Number Theory 130 (4) (2010), 930-935.