Academia.eduAcademia.edu

Outline

On the Polynomials Congruent Modulo P^a

Abstract

In this paper, the author presents a special polynomial function ( ) 1 ( ) ( ) a P r n n r r fx x r φ = = − ∏ , { } 1 ( ) , , a P r r rφ ∈ L , φ is Euler's function. 1 ( ) , , a P r rφ L are integer numbers relatively prime to the a P and n is odd integer, then he obtains its value congruent modulo a P where P and a denote an odd optional prime and a natural number respectively so ( 1) ( 1) ( ) ( 1) (mod ) a P n P n a f x x P − − ⎡ ⎤ ≡ + − ⎣ ⎦ , x Z ∈ and ( ) [ ] f x Z x ∈ .Here, the extended coefficients of the function, summation, and multiplication of all the members of the reduced residue system congruent modulo a P are also obtained. A special problem is proved by two methods: 1-multiplicative method 2-using groups and rings theory.

References (11)

  1. K. Davis and W. Webb, A Binomial Coefficient Modulo Prime Powers, J. Number Theory 43, MR. 1200804(93m: 11016) pp. 20-23. 1993.
  2. A. Granville, Arithmetic Properties of Binomial Coefficients. I. Binomial Coefficients Modulo Prime Powers, in: Organic Mathematics (Burnaby, BC, 1995), pp. 253-276, CMS Conf. Proc., 20, Amer. Math. Soc. Providence, RI, 1997. MR. 1483922(99h: 11016).
  3. Z.W. Sun, On the Sum
  4. Z.W. Sun, General Congruences for Bernoulli Polynomials, Discrete Math.
  5. Z.W. Sun, Polynomial Extension of Fleck's Congruence, Acta Arith. 122, MR. 2217327 (2007d: 11019) pp. 91-100. 2006.
  6. Z.W. Sun and D.M. Davis, Combinatorial Congruences Modulo Prime Powers, Trans. Amer. Math. Soc. 359. pp. 5525-5553. 2007.
  7. C. S. Weisman, Some Congruences for Binomial Coefficients, Michigan Ma- th.
  8. J. 24, MR. 0463093 (57:3055) pp.41-51.1977.
  9. W. Fouché, A Reciprocity Law for Polynomials with Bernoulli Coefficients, Trans. Amer. Math. Soc. 288, No.1. pp. 59-67. 1985.
  10. W.W. Adams and L.J. Goldstein, Introduction to Number Theory, Prentice- Hall, Inc. 1975.
  11. W. Narkiewicz, Elementary and Analytic Theory of numbers, 2 nd edition, Springer-Verlag and PWN-Polish Scientific Publishers, Warsaw,MR. 1055830 (91h: 11107). 1990.