On the Estimate of the Distance to Non-Invertibility
2019, Vietnam Journal of Mathematics
https://doi.org/10.1007/S10013-019-00352-8Abstract
In this article, we estimate the spectral radius of linear bounded operators on Banach spaces when they are subjected to perturbations of the single or multi-block structured form. Then, we derive formulae and bounds for structured distance to non-invertibility (resp. non-left, non-right invertible operator) of an invertible (resp. left, right invertible) operator on Banach spaces. Some special cases of that estimate will also be considered.
References (11)
- Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211-218 (1936)
- Franck, P.: Generalisation a un espace de Banach d'une proppriete sur la plus courte distance d'une matrice aux matrices singulieres de meme ordre. C. R. Acad. Sci. Paris Ser. I Math. 262, 1379-1380 (1966)
- Gurvits, L., Rodman, L., Spitkovsky, I.: Spectral assignment for Hilbert space operators. Houst. J. Math. 17, 501-523 (1991)
- Lewis, A.S.: The structured distance to ill-posedness for conic systems. Math. Oper. Res. 29, 776-785 (2004)
- Makai, E.Jr.., Zemánek, J.: The surjectivity radius, packing numbers and bounded below of linear operators. Integr. Equ. Oper. Theory 6, 372-384 (1983)
- Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras. Basel, Birkhäuser-Verlag (2007)
- Peña, J.: A characterization of the distance to infeasibility under block-structured perturbations. Linear Algebra Appl. 370, 193-216 (2003)
- Peña, J.: On the block-structured distance to non-surjectivity of sublinear mappings. Math. Program. 103, 561-573 (2005)
- Renegar, J.: Linear programming, complexity theory and elementary functional analysis. Math. Program. 70, 279-351 (1995)
- Son, N.K., Thuan, D.D.: The structured distance to non-surjectivity and its application to calculating the controllability radius of descriptor systems. J. Math. Anal. Appl. 388, 272-281 (2012)
- Wu, P.Y.: Approximation by invertible and noninvertible operators. J. Approx. Theory 56, 267-276 (1989)