Academia.eduAcademia.edu

Outline

On the Estimate of the Distance to Non-Invertibility

2019, Vietnam Journal of Mathematics

https://doi.org/10.1007/S10013-019-00352-8

Abstract

In this article, we estimate the spectral radius of linear bounded operators on Banach spaces when they are subjected to perturbations of the single or multi-block structured form. Then, we derive formulae and bounds for structured distance to non-invertibility (resp. non-left, non-right invertible operator) of an invertible (resp. left, right invertible) operator on Banach spaces. Some special cases of that estimate will also be considered.

References (11)

  1. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211-218 (1936)
  2. Franck, P.: Generalisation a un espace de Banach d'une proppriete sur la plus courte distance d'une matrice aux matrices singulieres de meme ordre. C. R. Acad. Sci. Paris Ser. I Math. 262, 1379-1380 (1966)
  3. Gurvits, L., Rodman, L., Spitkovsky, I.: Spectral assignment for Hilbert space operators. Houst. J. Math. 17, 501-523 (1991)
  4. Lewis, A.S.: The structured distance to ill-posedness for conic systems. Math. Oper. Res. 29, 776-785 (2004)
  5. Makai, E.Jr.., Zemánek, J.: The surjectivity radius, packing numbers and bounded below of linear operators. Integr. Equ. Oper. Theory 6, 372-384 (1983)
  6. Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras. Basel, Birkhäuser-Verlag (2007)
  7. Peña, J.: A characterization of the distance to infeasibility under block-structured perturbations. Linear Algebra Appl. 370, 193-216 (2003)
  8. Peña, J.: On the block-structured distance to non-surjectivity of sublinear mappings. Math. Program. 103, 561-573 (2005)
  9. Renegar, J.: Linear programming, complexity theory and elementary functional analysis. Math. Program. 70, 279-351 (1995)
  10. Son, N.K., Thuan, D.D.: The structured distance to non-surjectivity and its application to calculating the controllability radius of descriptor systems. J. Math. Anal. Appl. 388, 272-281 (2012)
  11. Wu, P.Y.: Approximation by invertible and noninvertible operators. J. Approx. Theory 56, 267-276 (1989)