Academia.eduAcademia.edu

Outline

Fundamentals of Process Safety Engineering

2021

https://doi.org/10.1201/9781003107873

Abstract
sparkles

AI

This textbook serves as a crucial resource for understanding Process Safety Engineering (PSE) in chemical and petrochemical industries, addressing common failures and lessons from major industrial disasters, such as Bhopal. It emphasizes the importance of engineers being well-versed in hazard management and risk assessment to prevent accidents through proper design, operation, and maintenance of safety barriers. The authors aim to fill the educational gap in engineering curricula related to PSE, providing both a technical foundation and practical guidance for future professionals in the field.

References (426)

  1. Causes, Circumstances, and Consequences ............... 17
  2. Lessons/Recommendations ........................................ 17
  3. Flixborough, UK ..................................................................... 18 2.3.1 Brief Description of Facility and Process .................. 18 2.3.2 The Accident .............................................................. 19
  4. Causes, Circumstances, and Consequences ...............20
  5. Lessons/Recommendations ........................................ 21
  6. Seveso, Italy ............................................................................. 22 2.4.1 Brief Description of Facility and Process .................. 22 2.4.2 The Accident ..............................................................24
  7. Causes, Circumstances, and Consequences ...............24
  8. Lessons/Recommendations ........................................25
  9. Qatar, Persian Gulf ..................................................................26 2.5.1 Brief Description of Facility and Process ..................26 2.5.2 The Accident ..............................................................26 2.5.3 Causes, Circumstances, and Consequences ...............26 2.5.4 Lessons/Recommendations ........................................ 27
  10. Caracas, Venezuela .................................................................. 27 2.6.1 Brief Description of Facilities and Process ................ 27 2.6.2 The Accident .............................................................. 27
  11. Causes, Circumstances, and Consequences ...............28
  12. Lessons/Recommendations ........................................28
  13. Mexico City ............................................................................. 29 2.7.1 Brief Description of Facility and Process .................. 29 2.7.2 The Accident .............................................................. 29
  14. Causes, Circumstances, and Consequences ............... 30
  15. Lessons/Recommendations ........................................ 31
  16. 8 Bhopal, India ........................................................................... 32 2.8.1 Brief Description of Facilities and Process ................ 32 2.8.2 The Accident ..............................................................34
  17. Causes, Circumstances, and Consequences ...............34
  18. Lessons/Recommendations ........................................ 35
  19. 9 Offshore Oil Rig Piper Alpha, North Sea ............................... 37 2.9.1 Brief Description of Facility and Process .................. 38 2.9.2 The Accident ..............................................................40
  20. Causes, Circumstances, and Consequences ............... 41
  21. Lessons/Recommendations ........................................ 42
  22. Bharat Petroleum Refinery, Bombay, India ............................. 43 2.10.1 Description of Facility and Process ........................... 43 2.10.2 The Accident ..............................................................44 2.10.3 Causes, Circumstances, and Consequences ...............44 2.10.4 Lessons/Recommendations ........................................ 45
  23. 11 Petrochemical Complex, Phillips Petroleum, Pasadena, USA ....46 2.11.1 Brief Description of Facility and Processes ...............46 2.11.2 The Accident ..............................................................46 2.11.3 Causes, Circumstances, and Consequences ...............46
  24. Lessons/Recommendations ........................................ 48 vii Contents 2.12 LPG Import Terminal Hindustan Petroleum, Vishakhapatnam, India .........................................
  25. 12.1 Brief Description of the Facility and the Process ......
  26. 12.2 The Accident ..............................................................
  27. Causes, Circumstances, and Consequences ...............
  28. Lessons/Recommendations ........................................
  29. Grande Paroisse, Ammonium Nitrate Facility Toulouse, France ......................................................................
  30. 13.1 Brief Description of Facility and Process ..................
  31. 13.2 The Accident ..............................................................
  32. 13.3 Causes, Circumstances, and Consequences of the Accident ................................................................
  33. Lessons/Recommendations ........................................
  34. 14 Space Shuttle Columbia, NASA Florida ................................. 2.14.1 Brief Description of Space Program and the Shuttle .....
  35. 14.2 The Accident ..............................................................
  36. Causes, Circumstances, and Consequences ...............
  37. Lessons/Recommendations ........................................
  38. 15 LNG Liquefaction Facility, Skikda, Algeria ........................... 2.15.1 Brief Description of Facility and the Process ............
  39. 15.2 The Accident ..............................................................
  40. 15.3 Causes, Circumstances, and Consequences ...............
  41. Lessons/Recommendations ........................................
  42. 16 BP Refinery, Texas City, Texas, USA ......................................
  43. 16.1 Brief Description of Facility and Process ..................
  44. 16.2 The Accident ..............................................................60 2.16.3 Causes, Circumstances, and Consequences of the Accident ................................................................60
  45. Lessons/Recommendations ........................................
  46. 17 Imperial Sugar, Port Wentworth, Georgia, USA .....................
  47. 17.1 Brief Description of Facility and Process ..................
  48. 17.2 The Accident ..............................................................
  49. Causes, Circumstances, and Consequences ...............
  50. Lessons/Recommendations ........................................64
  51. Indian Oil Corporation Product Tank Farm, Jaipur, Rajasthan, India ...........................................................
  52. 18.1 Description of Facility and Process ...........................
  53. 18.2 The Accident ..............................................................
  54. Causes, Circumstances, and Consequences ...............
  55. Lessons/Recommendations ........................................
  56. 19 BP Deepwater Horizon Offshore Rig ......................................
  57. 19.1 Description of Facility and Process ...........................
  58. 19.2 The Accident ..............................................................
  59. Causes, Circumstances, and Consequences ...............
  60. Lessons/Recommendations ........................................
  61. 20 Summary and Conclusions ...................................................... References .......................................................................................... viii Contents Chapter 3 Fundamentals of Fire Processes ......................................................... 77 3.1 How Fire Starts ........................................................................ 77 3.1.1 Flammability Limits .................................................. 79
  62. 1.1.1 Pure Fuels ................................................... 79 3.1.1.2 Dependence of LFL and UFL on Pressure and Temperature ..........................80
  63. 1.1.3 Mixture of Fuels in Air ................................ 81
  64. 1.1.4 Flammability Range in Oxygen .................. 83
  65. 1.1.5 Effect of Addition of Inert Gases ................ 83
  66. 1.2 Flash Point .................................................................. 86
  67. 1.3 Fire Point .................................................................... 88
  68. 2 Heat Balance in Flames ........................................................... 88
  69. 3 Types of Flames ....................................................................... 88 3.3.1 Premixed and Diffusion Flames ................................ 88
  70. 3.2 Pool Fire ..................................................................... 89
  71. 3.3 Jet Fire ........................................................................ 89 3.3.4 Vapor Cloud Fire ........................................................ 89
  72. 3.5 Fireball .......................................................................90
  73. 4 Ignition ....................................................................................90 3.4.1 Requirements and Characteristics of Ignition Sources ..........................................................90
  74. 4.2 Hot Work .................................................................... 91
  75. 4.3 Electrical Equipment ..................................................92
  76. Static Electricity .........................................................92
  77. 5 Effect of Thermal Radiation .................................................... 93 3.5.1 Effect on the Human Body ......................................... 93
  78. 5.2 Effect on Plant and Machinery................................... 95
  79. 6 Fire Prevention Systems ..........................................................96 3.6.1 Good Housekeeping ...................................................96
  80. 6.2 Control of Flammable Materials ................................96
  81. 6.3 Control of Sources of Ignition ....................................96 3.6.4 Fire Hazards Awareness .............................................97
  82. 6.5 Monitoring ..................................................................97
  83. 7 Fire Protection Systems ...........................................................97 3.7.1 Passive Fire Protection ...............................................97
  84. 7.2 Active Fire Protection ................................................97 3.7.2.1 Detection of Flammable Material .............. 98
  85. 7.2.2 Detection of Fire .........................................99
  86. 7.2.3 Cooling by Water ...................................... 100
  87. 7.2.4 Fire Extinguishing .................................... 100
  88. Firefighting Plan ....................................... 103
  89. References ........................................................................................ 103
  90. Chapter 4 Static Electricity ............................................................................... 105 4.1 Historical Background of Static Electricity .......................... 105
  91. 2 Basic Concepts of Static Electricity ...................................... 106 ix Contents 4.3 Conductors and Insulators .....................................................
  92. 3.1 Liquids ......................................................................
  93. 3.2 Solids ........................................................................
  94. 4 Generation of Electrostatic Charge .......................................
  95. 4.1 Mechanisms of Charge Generation ..........................
  96. 4.1.1 Relative Movement at Material Interfaces ...
  97. 4.1.2 Induction ...................................................
  98. 4.1.3 Charge Transfer ........................................
  99. 4.2 Quantitative Relationships for Charge Generation ......
  100. 4.2.1 Charge Generation on Liquids ..................
  101. 4.2.2 Charge Generation in Powders .................
  102. 5 Accumulation of Electrostatic Charge ..................................
  103. 5.1 Accumulation in Liquids ..........................................
  104. 5.2 Accumulation on Insulated Conductors ...................
  105. 5.3 Accumulation on Lined/Coated Containers .............
  106. 5.4 Accumulation on Powders ........................................
  107. 6 Electrostatic Discharge ..........................................................
  108. 6.1 Spark Discharge .......................................................
  109. Corona Discharge .....................................................
  110. 6.3 Brush Discharge .......................................................
  111. 6.4 Propagating Brush Discharge ...................................
  112. 6.5 Bulking Brush Discharge .........................................
  113. 7 Ignition of Flammable Vapors and Dusts by Electrostatic Discharge ..........................................................
  114. 7.1 Hybrid Mixtures .......................................................
  115. 8 Hazards from People and Clothing .......................................
  116. 9 Earthing and Bonding ...........................................................
  117. 10 Examples of Static Ignition ...................................................
  118. 10.1 Draining Flammable Liquids into Buckets ..............
  119. 10.2 Removing Synthetic Clothing from Body ................
  120. 10.3 Charging High-Resistivity Flakes/Powders .............
  121. 10.4 Filling Polyethylene Granules into a Silo .................
  122. 11 Summary of Common Precautionary Measures for Static Hazards ........................................................................
  123. References ........................................................................................ Chapter 5 Pool Fire ........................................................................................... 5.1 Size and Shape of Flames ......................................................
  124. 1.1 Confined Pool Fire on Land .....................................
  125. 1.1.1 Pool Diameter ...........................................
  126. 1.1.2 Burning Rate .............................................
  127. 1.1.3 Flame Height ............................................
  128. Unconfined Pool Fire on Land .................................
  129. 1.3 Pool Fire on Water ....................................................
  130. Tank Fire ..................................................................
  131. 2 Modeling for Radiation Intensity ..........................................
  132. x Contents 5.2.
  133. Surface Emissive Power of Flames ..........................
  134. 2.2 View Factor between a Flame and a Target .............
  135. 2.2.1 Case 1: Pool Fire and Target at Ground Level ............................................
  136. 2.2.2 Case 2: Tank Fire with Target at Ground Level/Elevated Position ...............
  137. Atmospheric Transmissivity .....................................
  138. 2.4 Assessment of Safety Distance ................................ References ........................................................................................ Chapter 6 Jet Fire ..............................................................................................
  139. 1 Flow through a Hole (Free Expansion) .................................
  140. 1.1 Theoretical Basis ......................................................
  141. 1.2 Compressibility Factor and Enthalpy for Real Gases....172
  142. 1.3 Release Rate Calculation ..........................................
  143. 1.3.1 Bernoulli's Equation .................................
  144. 1.3.2 Sonic Velocity ...........................................
  145. 1.3.3 C p , C v , and γ = C p /C v Ratio .......................
  146. 1.3.4 Density ......................................................
  147. 1.3.5 Velocity .....................................................
  148. 1.4 Additional Examples ................................................
  149. 1.5 Flashing of Liquids ..................................................
  150. 1.6 Flashing of Pure Components ..................................
  151. 2 Thermodynamics of Fluid Phase Equilibria .........................
  152. 2.1 Phase Equilibria in Hydrocarbon Mixtures .............
  153. 2.2 Phase Equilibria in Chemical Mixtures ...................
  154. 2.3 Flash Calculations for Mixtures ...............................
  155. 2.4 Laboratory Measurements Versus Estimation Methods in Phase Equilibria ..................
  156. 2.5 Commercial Process Simulators ..............................
  157. 2.6 Release of a Liquefied Gas: Two-Phase Flashing Flow ...........................................................
  158. 2.7 Concluding Remarks for Release Rate Calculations ....
  159. 3 Calculations for Jet Fires .......................................................200 6.3.1 Size and Shape of Flames ........................................
  160. Hawthorn, Weddell, and Hottel Model ........
  161. 3.1.2 API Model ................................................202
  162. Shell Model ...............................................207
  163. 4 Estimation of Radiation Intensity ..........................................
  164. 4.1 Fractional Radiation .................................................
  165. 4.2 Radiation Intensity by the API method ....................
  166. 4.3 Radiation Intensity by the Shell Method ..................
  167. References ........................................................................................ xi Contents Chapter 7 Vapor Cloud Fire .............................................................................. 7.1 Flash Fire Accidents and Experiments ..................................
  168. 2 Flame Speed ..........................................................................224 7.2.1 Premixed Flame .......................................................
  169. 2.2 Nonpremixed Flame .................................................
  170. 3 Flame Dimensions .................................................................
  171. 4 Effect of Flame Exposure ...................................................... References ........................................................................................
  172. 8 Fireball .............................................................................................
  173. 1 BLEVE ..................................................................................
  174. 2 Diameter and Duration of Fireball ........................................
  175. 3 Intensity of Thermal Radiation .............................................
  176. 3.1 Fractional Radiation .................................................
  177. 3.2 Surface Emissive Power ...........................................
  178. 3.3 View Factor ..............................................................
  179. Atmospheric Transmissivity .....................................
  180. 4 Measures to Prevent BLEVE .................................................
  181. 4.1 Cooling the Vessel by Water Deluge or Spray .........
  182. 4.2 Insulation of the Vessel ............................................
  183. 4.3 Providing an Earth Mound around the Vessel .........
  184. 5 Measures in Case of Imminent BLEVE ................................ References ........................................................................................
  185. 9 Explosion ..........................................................................................
  186. 1 Kinds and Types of Explosions .............................................
  187. 2 Explosion Mechanisms ..........................................................
  188. 2.1 Deflagration ..............................................................
  189. 2.2 Detonation ................................................................
  190. 2.3 DDT ..........................................................................244
  191. VCE .......................................................................................244 9.3.1 TNT Equivalent Model ............................................
  192. 3.2 TNO Correlation Model ...........................................248
  193. 9.3.3 TNO Multienergy Model ..........................................
  194. Baker-Strehlow-Tang (BST) Method .......................
  195. 3.5 Congestion Assessment Method ...............................
  196. 3.6 CFD Models .............................................................
  197. 3.6.1 FLACS (FLame ACceleration Simulator) ...
  198. 3.6.2 EXSIM ™ (EXplosion SIMulator) .............
  199. 3.6.3 AutoReaGas Model ...................................
  200. 3.7 Comparison of Various Models................................
  201. xii Contents
  202. 3.8 Precautionary Measures to Prevent and Minimize Damage in VCEs .....................................
  203. 9 Damage Caused by VCE ..........................................
  204. 3.9.1 Damage to Structures -TNO ...................
  205. 3.9.2 Damage to Structures -Major Hazard Assessment Panel (IChemE, U.K.) ...........
  206. 3.9.3 Damage to Storage Tanks -TNO .............
  207. 3.9.4 Effect on People -Major Hazard Assessment Panel (IChemE U.K.) ............
  208. 4 Condensed Phase Explosion ..................................................
  209. 4.1 Precautionary Measures to Minimize Damage in Condensed Phase Explosion .....................................280
  210. 4.2 Formation of Explosive Mixture -Ammonium Nitrate (AN) .............................................................
  211. 4.3 Effect of Mechanical or Electrical Shock ................
  212. 5 Explosions in a Chemical Reactor .........................................
  213. 6 Dust Explosion .......................................................................
  214. 7 Physical Explosion ................................................................. References ........................................................................................ Chapter 10 Toxic Releases .................................................................................. 10.1 Process Safety Concerns -Acute Effects/Emergency Exposure Limits .................................................................... 10.1.1 Emergency Response Planning Guidelines ..............
  215. 1.2 Toxic Endpoints ........................................................
  216. 1.3 Acute Exposure Guideline Levels ............................
  217. 1.3.1 Level 1 ......................................................
  218. 1.3.2 Level 2 ......................................................
  219. 1.3.3 Level 3 ......................................................
  220. 2 Occupational Safety Concerns -Toxicity Measures and Assessment ............................................................................
  221. 2.1 Median Lethal Dose (LD 50 ) ......................................
  222. 2.2 Median Lethal Concentration (LC 50 ) .......................
  223. 2.2.1 Toxic Load ................................................290
  224. 2.3 Immediately Dangerous to Life and Health .............
  225. 3 Regulatory Controls .............................................................. 10.3.1 Occupational Exposure Standards ...........................
  226. 4 Emergency Planning .............................................................. References ........................................................................................ Chapter 11 Dispersion of Gases and Vapors ....................................................... 11.1 Purpose of Dispersion Studies ............................................... 11.2 Emission Source Models .......................................................
  227. 2.1 Liquid Releases ........................................................
  228. 2.2 Gas Jet Releases ....................................................... 298 11.2.3 Two-Phase Releases ................................................. 298 11.2.4 Evaporation from Liquid Pools ................................300 11.2.4.1 Evaporation of Cryogenic Liquids ............ 301 11.2.4.2 Evaporation of High Boiling Liquids .......302
  229. 3 Dispersion Models .................................................................304 11.3.1 Passive Dispersion ....................................................304 11.3.1.1 Factors Affecting Passive Dispersion .......304 11.3.1.2 Dispersion Calculations ............................307
  230. 3.2 Dense Gas Dispersion .............................................. 314
  231. 3.3 Jet Dispersion ........................................................... 321 11.3.3.1 Dense Gas Jet Dispersion ......................... 321 11.3.3.2 Positively Buoyant Jet Dispersion ............. 323
  232. 4 Computational Fluid Dynamics Modelling ........................... 325
  233. References ........................................................................................ 325 Chapter 12 Hazard Identification ........................................................................ 327 12.1 Framework for Hazard Management ..................................... 327 12.2 Hazard Identification Methods .............................................. 328 12.2.1 Safety Audit .............................................................. 328 12.2.2 What-If Checklist ..................................................... 329 12.2.3 HAZOP Study .......................................................... 331 12.2.3.1 Basic Concepts of the Study ......................331 12.2.3.2 Study Procedure.........................................336 12.2.
  234. Failure Modes and Effects Analysis (FMEA).......... 338
  235. 2.5 Fault Tree and Event Tree Analysis..........................348 12.3 Comments on Choice of the Method .....................................348
  236. References ........................................................................................ 349 Chapter 13 Risk Assessment and Control ........................................................... 351 13.1 Methods of Expressing Risks ................................................ 351 13.1.1 Fatal Accident Rate .................................................. 351 13.1.2 Individual Risk ......................................................... 352 13.1.3 Average Individual Risk ........................................... 352 13.1.4 Societal Risk ............................................................. 353
  237. 2 Layer of Protection Analysis ................................................. 353 13.2.1 LOPA Process .......................................................... 355 13.2.2 Select Criteria for Consequence Screening .............. 355 13.2.3 Select Consequence Analysis Scenarios for LOPA. .. 355 13.2.4. Identify Initiating Events and Frequencies............... 356 13.2.5 Identify IPLs ............................................................. 358 13.2.6 Risk Estimation ........................................................ 359 13.2.7 Risk Evaluation ........................................................ 363
  238. xiv Contents 13.2.8 LOPA Summary Sheet: An Example .......................364
  239. 9 Advantages of LOPA ................................................364
  240. 3 Barrier Analysis ..................................................................... 366 13.3.1 Barrier failure and Catastrophic Accidents .............. 367 13.3.2 Important Definitions Related to Barrier Management ............................................................. 367
  241. 3.3 Independence of Barriers ......................................... 371 13.3.
  242. Barrier Management Process ................................... 373
  243. 4 QRA ....................................................................................... 377 13.4.1 Estimation of Frequency of a Hazardous Event ....... 378 13.4.1.1 Fault Tree Methodology ............................ 380 13.4.1.2 Event Tree Methodology ........................... 390
  244. 4.2 Estimation of Risk .................................................... 392 13.4.2.1 Individual Risk ......................................... 394 13.4.2.2 Societal Risk (F-N Curve) ........................ 395
  245. Risk Determination .................................................. 396
  246. Risk Acceptability .................................................... 396 13.4.4.1 Individual Risk -Acceptability Criteria .... 397 13.4.4.2 Societal Risk -Acceptability Criteria ...... 397
  247. 4.5 Risk Reduction and ALARP .................................... 398
  248. 5 Functional Safety ...................................................................400 13.5.1 SIS ............................................................................400 13.5.2 SRS -Safety Requirement Specification ................. 401
  249. 5.3 SIL ............................................................................402 13.5.3.1 SIL Verification ........................................402 13.5.3.2 SIL Validation ...........................................402
  250. 6 Database for Failure Frequencies and Probabilities ..............403 13.6.1 Failure Frequencies for Tanks and Vessels ..............403 13.6.2 Failure Frequencies of Process Pipework ................403 13.6.3 Failure Frequencies of Cross-Country Pipelines .....404 13.6.4 Failure Rates of Loading Arms ................................404 13.6.5 Failure Frequencies for Valves .................................404 13.6.6 Failure Probabilities for Protective Equipment ........404 13.6.7 Probabilities of Human Error ...................................406 13.6.8 Ignition Probability of Flammable Liquid Releases ........................................................406
  251. 9 Ignition of Gas Clouds .............................................406 13.7 Application of LOPA, Barrier Analysis, and QRA ...............406
  252. References ........................................................................................407 Chapter 14 Human Factors in Process Safety .....................................................409 14.1 Accidents and Human failures .............................................. 410 14.2 Human Role in Hazard Control ............................................. 411 14.3 Types of Human Errors ......................................................... 411 14.4 Human Factors in Safety (HFs) ............................................. 412 xv Contents 14.5 Human Error Identification ................................................... 14.6 HFs -A Core Element ........................................................... 14.7 Human Reliability Analysis (HRA) ...................................... 14.8 HRA Adoption....................................................................... 14.
  253. 9 Human Development ............................................................. 14.10 Industry Response ................................................................. References ........................................................................................ Chapter 15 Process Safety and Manufacturing Excellence ................................ 15.1 Process Safety Leadership ..................................................... 15.2 Process Safety Laws and Regulations ................................... 15.3 Process Safety vis-à-vis Personnel Safety ............................. 15.4 The Role of Process and Equipment Design in Ensuring Process Safety ........................................................
  254. 5 Strategies for Implementation of Process Safety Programs ... 15.5.1 Sensor Validation ..................................................... 15.5.2 Sample Time Recording ........................................... 15.5.3 Control System Hardware and Configuration .......... 15.5.4 Control Valves .......................................................... 15.5.5 Control System Configuration .................................. 15.5.6 Regulatory Control Tuning ......................................
  255. 6 Higher-Level Multivariable Control and Optimization Applications ....................................................
  256. 7 Online Calculations/Equipment Health Monitoring ............. 15.7.1 Fired Heater Radiant Section Duty .......................... 15.7.2 Heat Exchanger Duty ............................................... 15.7.2.1 No Phase Change ...................................... 15.7.2.2 Condensing or Boiling ..............................
  257. 7.3 Distillation Column Pressure-Compensated Temperature ..............................................................
  258. 7.4 Distillation Column Approach to Flooding .............
  259. 7.5 Pump/Compressor/Turbine Efficiency and Vibration ...................................................................
  260. Compressor Efficiency .............................................
  261. 7.7 Turbine Efficiency ....................................................
  262. Pump Efficiency .......................................................
  263. 8 Smart Sensors/Inferential Calculations .................................
  264. 9 Multivariable, Optimal Predictive Control (MPC) ...............440 15.9.1 Using Dynamic Simulation for Developing MPC Models ............................................................
  265. 9.2 Closing Remarks on Model-Predictive Control (MPC) .........................................................
  266. Closed-Loop, Real-Time, Optimization (CLRTO) ................ 15.10.1 Open-Equation Modeling for a Counter-Flow Heat Exchanger ................................. Hazards in the Process Industries
  267. Mannan, S. : Lees' Loss Prevention in the Process Industries (4th Ed., Butterworth-Heinemann, Oxford, 2012).
  268. Mannan, S. : Lees' Loss Prevention in the Process Industries (4th Ed., Butterworth-Heinemann, Oxford, 2012).
  269. Lemoff, T. C. : LNG Incident, Cleveland (NFPA, October 20, 1944). API-625: Tank Systems for Refrigerated Liquefied Gas Storage. API-620: Design and Construction of Large, Welded, Low-Pressure Storage Tanks. NFPA-59A: Standard for the Production, Storage, and Handling of Liquefied Natural Gas (LNG). EN/BS-7777: Flat-Bottomed, Vertical, Cylindrical Storage Tanks for Low-Temperature Service. Guide to the General Provisions Applying for Design, Construction, Installation, and Operation. EN 1473: Installation and Equipment for Liquefied Natural Gas. Design of Onshore Installations. ACI 376-11: Code Requirement for Design & Construction of Concrete Structures for Containment of Refrigerated Liquefied Gases. EN 14620: Design and Manufacture of Site Built, Vertical, Cylindrical, Flat-Bottom Steel Tanks.
  270. Burn, A. : Aker Solutions & Hailwood Mar LUBW Germany, Loss Prevention Bulletin, Issue 251 (IChemE October, 2016).
  271. Kumar, R. L. : Petroleum Laws, An Encyclopedic Work on the Petroleum Act, Rules and Allied Laws along with Important Control Orders (Law Publishers (India) Private Limited, Allahabad, 1996). CENELEC: Technical Report CLC/TR 50404, Electrostatics -Code of Practice for the Avoidance of Hazards Due to Static Electricity(June, 2003). Loss Prevention Bulletin, Issue 251 (October, 2016).
  272. Parke, R. J. : The Flixborough Disaster: Report of the Court of Inquiry (Her Majesty's Stationery Office,London, 1975). BS 3351: Specification Piping Systems for the Petroleum Industry.
  273. Marshall, V. C. : Major Chemical Hazards (Ellis Horwood, Chichester, 1987).
  274. Milnes, M.H. : Formation of 2,3,7,8-Tetrachloro-Dibenzo-Dioxin by Thermal Decomposition of Sodium 2,4,5-Trichlorophenate, Nature, 232, pp. 395-396 (1971).
  275. Wilson, D. C. : Lessons from Seveso, Chemistry in Britain (July, 1982). NFPA 58: Liquid Petroleum Gas Code. Loss Prevention Bulletin (No. 063): Bhopal: The Company's Report (based on Union Carbide Corporation's Report -March 1985) (IIChE, June, 1985).
  276. Bhushan, B. and Subramanian, A. : Bhopal: What Really Happened? (Business India, No. 102, February 25-March 10, 1985).
  277. Shrivastava, P. : Bhopal: Anatomy of a Crisis (Ballinger, Cambridge, MA, 1987).
  278. Kelkar, A. S. : Investigation of Large Magnitude Events. Bhopal as a Case Study (Paper presented in IChemE Conference, London, England, 1988). Report of Varadarajan Committee, Constituted by the Government of India. The Hon Lord Cullen: The Public Inquiry into the Piper Alpha Disaster, Volumes 1 and 2(October, 1990).
  279. Drysdale, D. D. and Sylvester-Evans, R. : The Explosion and Fire on the Piper Alpha Platform, A Case Study (July 6, 1988).
  280. Ganesan, G. K. : Light Naphtha Tank Fire at BPCL (Paper presented at the Oil Industry Safety Seminar, New Delhi, October 15, 1990). Federal Emergency Management Agency: Report Phillips Petroleum Chemical Plant Explosion and Fire Pasadena, Texas.
  281. Ghosal, S. : Analysis of Unusual Events in LPG Installations. Toulouse Chemical Factory Explosion (Wikipedia). Report of French Ministry of Sustainable Development -DGPR/SRT/BARPI:Explosion in AZF Fertilizer Plant, Toulouse. Space Shuttle Columbia Disaster (Wikipedia).
  282. Columbia Case History: Building Process Safety Culture: Tools to Enhance Process Safety Performance. Federal Energy Regulatory Commission and U. S. Department of Energy: Report on the U.S. Government Team Site Inspection of the Sonatrach Skikda LNG Plant in Skikda, Algeria (March 12-16, 2004).
  283. B.P.: Final Investigation Report on BP Texas City Refinery Explosion(December 9, 2005). Texas City Refinery Explosion -Background (Wikipedia).
  284. U.S. Chemical Safety and Hazard Investigation Board Investigation: Sugar Dust Explosion and Fire (Report No. 2008-05-I-GA, September, 2009). Report of Investigation Committee constituted by MoPNG Govt. of India, Indian Oil Terminal Fire at Jaipur India. Report of GL Noble Delton: Characteristics of the Vapor Cloud Explosion Incident at the IOC Terminal in Jaipur. BP-Deepwater Horizon Accident Investigation Report September 8, 2010 (b) The Bureau of Ocean Energy Management, Regulation and Enforcement Regarding the April 20, 2010, Macondo Well Blowout September 14, 2011.
  285. Theophanous T.G. : A Physico-Chemical Mechanism for the Ignition of the Seveso Accident, Nature, 291, pp. 640-642 (1981).
  286. Johnson, D. M. : GL Noble Denton, Characteristics of the Vapor Cloud Explosion Incident at IOC Terminal at Jaipur, Report Number: 11510 (October 29, 2009). Fundamentals of Fire Processes Spontaneous Ignition of Hydrogen: Research Report RR615 by the Health and Safety Laboratory for the Health and Safety Executive (2008).
  287. Mannan, S. : Lees' Loss Prevention in the Process Industries (4th Ed., Butterworth-Heinemann, Oxford, 2012).
  288. Strehlow, R. A. : Combustion Fundamentals (McGraw-Hill, New York, 1984).
  289. Zabetakis, M. G. : Flammability Characteristics of Combustible Gases and Vapors (U.S. Bureau of Mines Bulletin 627, Pittsburgh, PA, 1965).
  290. Crowl, D. A. and Louvar, J. F. : Chemical Process Safety: Fundamentals with Applications (Prentice Hall, Englewood Cliffs, NY, 1990).
  291. Zabetakis, M. G. : Fire and Explosion Hazards at Temperature and Pressure Extremes, (AIChE Symposium Series 2, 1965).
  292. Drysdale, D. : An Introduction to Fire Dynamics (2nd Ed., Wiley, New York, 1999).
  293. Lees, F. P. : Loss Prevention in the Process Industries (2nd Ed., Butterworth-Heinemann, Oxford, 1996). TNO: Methods for the Determination of Possible Damage (Green Book) (16th Ed., CPR, The Hague, 1992). TNO: Methods for the Calculation of Physical Effects (Yellow Book) (14th Ed., CPR, The Hague, 1992). Health and Safety Executive, UK: The Selection and Use of Flammable Gas Detectors. Kletz, T. : What Went Wrong (3rd Ed., Gulf, Houston, TX, 1995). NFPA 15: Standard for Water Spray Fixed Systems for Fire Protection (1996). NFPA 11: Standard for Low-Expansion Foam (1994). NFPA 11A: Standard for Medium-and High-Expansion Foam Systems (1994). NFPA 11C: Standard for Mobile Foam Apparatus (1995). NPA 16: Standard for the Installation of Deluge Foam-Water Sprinkler and Foam-Water Spray Systems (1995).
  294. NFPA 16A: Standard for the Installation of Closed-Head Foam-Water Sprinkler Systems (1994). ICI Fire Protection Guide No. 11: Fire Prevention and Protection for Warehouses (1984). Static Electricity
  295. Mannan, S. : Lees' Loss Prevention in the Process Industries (4th Ed., Butterworth-Heinemann, Oxford, 2012).
  296. Nelkon, M and Parker, P. : Advanced Level Physics (4th Ed., Heinemann, London, 1982). NFPA 77: Recommended Practice on Static Electricity, 2007 Edition.
  297. Reppermund, J. and Britton, L. G. : Hazards of Static Accumulating Flammable Liquids (Paper presented at SCHC Spring Meeting, Houston, TX, 2009).
  298. Britton, L. G. : Avoiding Static Ignition Hazards in Chemical Operations (Center for Chemical Process Safety (CCPS), AIChE, New York, 1999). CENELEC: Technical Report CLC/TR 50404, Electrostatics -Code of Practice for the Avoidance of Hazards due to Static Electricity (June, 2003).
  299. API Recommended Practice 2003: Protection against Ignitions Arising Out of Static, Lightning and Stray Currents (September, 1998).
  300. Asano, K. : Electrostatic Potential and Field in a Cylindrical Tank Containing Charged Liquid, Proceedings of the Institution of Electrical Engineers, 124, pp. 1277-1281 (1977). BS 595: British Standard: Code of Practice for Control of Undesirable Static Electricity, Part 1: General Considerations and Part 2: Recommendations for Particular Industrial Situations (1991). Walmsley, H. L. , and Kalisvaart, P. : The Avoidance of Electrostatic Hazards in the Petroleum Industry, Journal of Electrostatics, 27, pp. 1-193 (1991).
  301. Britton, L. G. : Static Ignition Hazards of Conductive Liquids during Container Filling, Process Safety Progress, 29, pp. 98-102 (2010).
  302. Klinkenberg, A. and Van der Minne, J. L. : Electrostatics in the Petroleum Industry, A Royal Dutch/Shell Research and Development Report (Elsevier, Amsterdam, 1958). NFPA 704: Standard System for the Identification of the Hazards of Materials for Emergency Response, National Fire Protection Association, Boston, MA (2007).
  303. Kletz, T. : What Went Wrong (3rd Ed., Gulf, Houston, TX, 1995). ICI Fire Protection Guide No. 11:Fire Prevention and Protection for Warehouses (1984).
  304. Pool Fire Burgess, D. and Hertzberg, M. : Radiation from Pool Flames, in N. H. Afgan and J. M. Beer : Heat Transfer in Flames, Chapter 27 (Scripta Book Company, Washington, DC, 1974). Design Institute for Physical Property Research (DIPPR), American Institute of Chemical Engineers (2020)
  305. Mannan, S. : Lees' Loss Prevention in the Process Industries (4thEd., Butterworth-Heinemann, Oxford, 2012).
  306. Thomas, P. H. : The Size of Flames from Natural Fires, 9th Symposium on Combustion (Academic Press, New York, pp. 844-859, 1963).
  307. Heskestad, G. : Luminous Heights of Turbulent Diffusion Flames, Fire Safety Journal, 5, pp. 103-108 (1983).
  308. Crocker, W. P. and Napier, D. H. : Thermal Radiation Hazards of Liquid Pool Fires and Tank Fires (Institution of Chemical Engineers Symposium No. 97, University of Manchester Institute for Science and Technology, England, 1986).
  309. Welker, J. R. and Sliepcevich, C. M. : Bending of Wind-blown Flames from Liquid Pools, Fire Technology, 2, pp. 127-135 (1966).
  310. Moorhouse, J. and Pritchard, M. J. : Thermal Radiation Hazards from Large Pool Fires and Fireballs (Institution of Chemical Engineers Symposium Series No. 71, Manchester, 1982).
  311. Cline, D. and Koenig, L. N. : The Transient Growth of an Unconfined Pool Fire, Fire Technology, 19, pp. 149-162 (1983). TNO: Methods for the Calculation of Physical Effects (Yellow Book) (3rd Ed., CPR 14E, Parts 1 and 2, TNO, The Hague, 1997).
  312. Hottel, H. C. and Sarofim, A. F. : Radiative Transfer (McGraw-Hill, New York, 1967).
  313. Modest, M.F. : Radiative Heat Transfer (McGraw-Hill, New York, 1993).
  314. Rhine, J. M. and Tucker, R. J. : Modelling of Gas-Fired Furnaces and Boilers (British Gas, in association with McGraw-Hill, New York, 1991).
  315. Stannard, J. H. : Thermal Radiation Hazards associated with Marine LNG Spills, Fire Technology, 13, pp. 35-41 (1977).
  316. Mudan, K. S. : Geometric View Factors for Thermal Radiation Hazard Assessment, Fire Safety Journal, 12, pp. 89-96 (1987).
  317. Houston Chronicle: Spill From Tank Farm Fire Closes Houston Ship Channel (March 25, 2019). TNO: Methods for the Calculation of Physical Effects (Yellow Book) (2nd Ed., CPR 14E, TNO, The Hague, 1992).
  318. Jet Fire Hougen, O. A. and Watson, K. M. : Chemical Process Principles (1st Ed., Part II, p. 551, John Wiley & Sons, New York, and 2nd Ed. with Ragatz, R. A. Vol. II, p. 653, Chapman and Hall, London, 1947, and 1959).
  319. Elliott, J. R. and Lira, C. T. : Introductory Chemical Engineering Thermodynamics (2nd Ed., pp. 68-69, Pearson Education, Inc. publishing as Prentice Hall, Old Tappan, NJ, 2012).
  320. Klein, S. and Nellis, G. : Thermodynamics (1st Ed., p. 168, Cambridge University Press, Cambridge, 2011).
  321. Himmelblau, D. M. and Riggs, J. B. : Basic Principles and Calculations in Chemical Engineering (8th Ed., Fig. 9.18, Item 3, p. 525, Pearson Education, Upper Saddle River, NJ, 2012). Lewis, G.N. , and M. Randall : Thermodynamics (2nd Ed., Revised by K. E. Pitzer and L. Brewer , p. 48, McGraw-Hill, New York, 1961).
  322. Cutlip, M. B. and Shacham, M. : Problem Solving in Chemical and Biochemical Engineering with POLYMATH, Excel, and MATLAB (2nd Ed., Prentice-Hall, Upper Saddle River, NJ, 2007). Aspen Plus Process Simulator (Aspen Technology, Cambridge, MA).
  323. PRO II Process Simulator (Aveva, Cambridge, UK).
  324. VMGSim Process Simulator (Virtual Materials Group, a Schlumberger Company, Calgary).
  325. Lee, B. I. and Kesler, M. G. : A Generalized Thermodynamic Correlation Based on Three Parameter Corresponding State, AIChE Journal, 21, p. 510 (1975).
  326. Brzustowski, T. A. and Sommer, E. C. Jr. : Predicting Radiant Heating from Flares (Proceedings -Division of Refining, Vol. 53, pp. 865-893, American Petroleum Institute, Washington, DC, 1973). Excel® Spreadsheet Program (Microsoft Corp., 2019).
  327. Mathcad 2001 Professional: Mathcad User's Guide with Reference Manual (Mathsoft Engineering and Education, Inc., Cambridge, 2001).
  328. Freund, S.M. , M. Jones , and J.L. Starks : Microsoft Excel 2013: Complete (1st Ed., Shelly Cashman Series, Course Technology, Boston, MA, 2013).
  329. Crowl, D. A. and Louvar, J. F. : Chemical Process Safety (3rd Ed., pp. 130-131, Pearson Education, Englewood Cliffs, NY, 2011).
  330. Green, D. W. and Perry, R. H. : Perry's Chemical Engineers' Handbook (8th Ed., Section 6, pp. 23-24, McGraw-Hill, New York, 2008). Symmetry Process Simulator (Virtual Materials Group, a Schlumberger Company, Calgary). National Institute of Standards and Technology (NIST): REFPROP -Computer Program for Thermodynamic and Transport Properties (Release 10, 2018).
  331. Walas, S. : Phase Equilibria in Chemical Engineering (Butterworth-Heinemann, Boston, MA, 1985). Pitzer, K. S. : Origin of the Acentric Factor, in T. S. Storvick and S. I. Sandler : Phase Equilibria and Fluid Properties in the Chemical Industry (ACS Symposium Series 60, pp. 1-10, American Chemical Society, Washington, DC, 1977).
  332. Hougen, O. A. , Watson, K. M. , and Ragatz, R. A. : Chemical Process Principles, Part 2, Thermodynamics (2nd Ed., Wiley, New York, 1954).
  333. Prausnitz, J. M. , Lichtenthaler, R. N. , and Gomes de Azevedo, E. : Molecular Thermodynamics of Fluid Phase Equilibria (3rd Ed., Prentice-Hall, Upper Saddle River, NJ, 1999).
  334. Benedict, M. , Webb, G. B. , and Rubin, L. C. : An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and their Mixtures I. Methane, Ethane, Propane and nButane. The Journal of Chemical Physics, 8, p. 334 (1940).
  335. Benedict, M. , Webb, G. B. , and Rubin, L. C. : An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and their Mixtures II. Methane, Ethane, Propane and nButane. The Journal of Chemical Physics, 10, p. 747 (1942).
  336. Starling, K. E. : Fluid Thermodynamic Properties of Light Petroleum Systems (Gulf Publishing, Houston, TX, 1973).
  337. Plöcker, U. , Knapp, H. , and Prausnitz, J. M. : Calculation of High-Pressure Vapor-Liquid Equilibria from a Corresponding-State Correlation with Emphasis on Asymmetric Mixtures, Industrial & Engineering Chemistry Process Design and Development, 17, p. 324 (1978).
  338. Peneloux, A. , Rauzy, E. , and Freze, R. : A Consistent Correction for Redlich-Kwong-Soave Volumes, Fluid Phase Equilibria, 8, p. 7 (1982). Hysys Process Simulator (Aspen Technology, Cambridge, MA).
  339. Seader, J. D. , Henley, E. J. , and Roper, D. K. : Separation Process Principles, Chapter 2 (3rd Ed., Wiley, New York, 2011).
  340. Prausnitz, J. M. , Anderson, T. F. , Grens, E. A. , Eckert, C. A. , Hsieh, R. , and O'Connell, J. P. : Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria (Prentice- Hall, Englewood Cliffs, NJ, 1980).
  341. Fredenslund, A. , Gmehling, J. , and Rasmussen, P. : Vapor Liquid Equilibria Using UNIFAC (Elsevier, Amsterdam, 1977).
  342. Russell, R. A. : PD-PLUS Process Simulator (Deerhaven Technical Software, Burlington, MA). Dortmund Databank and Software Technologies (DDBST), Dortmund, Germany (2018).
  343. Russell, R. A. : PD-PLUS Process Simulator (Deerhaven Technical Software, Burlington, MA, 2019).
  344. Gmehling, J. , Li, J. , and Schiller, M. A. : A Modified UNIFAC model. 2. Present Parameter Matrix and Results for Different Thermodynamic Properties, Industrial & Engineering Chemistry Research, 32, pp. 178-193 (1993).
  345. Larsen, B. L. , Rasmussen, P. , and Fredenslund, A. : A Modified UNIFAC Group-Contribution Model for the Prediction of Phase Equilibria and Heats of Mixing, Industrial & Engineering Chemistry Research, 26, pp. 2274-2286 (1987). PROSIM Process Simulator (PROSIM, Labege).
  346. Fredenslund, A. , Jones, R. L. , and Prausnitz, J. M. : Group Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures, AIChE Journal, 21, pp. 1086-1098 (1975).
  347. Hawthorne, W. R. , Weddell, D. S. , and Hottel, H. C. : Mixing and Combustion in Turbulent Gas Jets (Third Symposium on Combustion, Flame and Explosion Phenomena, Williams and Wilkins, Baltimore, MD, 1949).
  348. ANSI/API Standard 521: Pressure-Relieving and Depressuring Systems, 5th Ed. (2014).
  349. Cook, J. , Bahrami, Z. , and Whitehouse, R. J. : A Comprehensive Program for Calculation of Flame Radiation Levels, Journal of Loss Prevention in Process Industries (UK), 3, pp. 150-155
  350. Baron, T. : The Turbulent Diffusion Flame, Chemical Engineering Progress, 50(2), pp. 73-76, (AIChE, New York, 1954).
  351. Chamberlain. G. A. : Developments in Design Methods for Predicting Thermal Radiation from Flares, Chemical Engineering, Research and Design, 65, pp. 299-309 (1987).
  352. Johnson, A. D. , Brightwell, H. M. and Carsley, A. J. : A Model for Predicting the Thermal Radiation Hazards from Large-Scale Horizontally Released Natural Gas Jet Fires, Process Safety and Environmental Protection, 72, pp. 157-166 (1994).
  353. Mudan, K.S. : Geometric View Factors for Thermal radiation Hazard Assessment, Fire Safety Journal, 12, pp. 89-96 (1987) Vapor Cloud Fire
  354. Raj, P.P.K. and Hammons, H. W. : On the Burning of a Large Flammable Vapor Cloud (Paper presented at the joint technical meeting of the Western and Central State Sections of the Combustion Institute, San Antonio, TX, April, 1975).
  355. Mannan, S. : Lees' Loss Prevention in the Process Industries (4th Ed., Butterworth-Heinemann, Oxford, 2012).
  356. Rew, P. J. , Deaves, D. M. , Hockey, S. M. , and Lines, I. G. : Review of Flash Fire, HSE Contract Research Report No. 94, Modelling (1996).
  357. AIChE/CCPS: Guidelines for Vapor Cloud Explosion, Pressure Vessel Burst, BLEVE and Flash Fires (July, 2010).
  358. AIChE/CCPS: Guidelines for Use of Vapor Cloud Dispersion Models (1996).
  359. Reid, R. C. : Superheated Liquids, American Scientist, 64, pp. 146-156 (1976).
  360. Mannan, S. : Lees' Loss Prevention in the Process Industries (4th Ed., Butterworth-Heinemann, Oxford, 2012).
  361. Marshall, V. C. : Major Chemical Hazards (Ellis Horwood, Chichester, 1987).
  362. AIChE/CCPS: Guidelines for Chemical Process Quantitative Risk Analysis (2nd Ed., AIChE, New York, 2000).
  363. Loss Prevention Bulletin (No. 068): The Effect of Explosions in the Process Industries by Overpressure Working Party, Major Hazards Assessment Panel (The Institution of Chemical Engineers, April, 1986).
  364. Roberts, A. F. : Thermal Radiation Hazards from Release of LPG from Pressurized Storage, Fire Safety Journal, 4, pp. 197-212 (1982). TNO: Methods for the Calculation of Physical Effects (Yellow Book) (3rd Ed., CPR 14E, Parts 1 and 2, TNO, The Hague, 1997).
  365. Hymes, I. : SRD R275, The Physiological and Pathological Effects of Thermal Radiation (U.K. Atomic Energy Authority, Culcheth, 1983).
  366. Bagster, D. F. and Pitblado, R. M. : Thermal Hazards in the Process Industry, Chemical Engineering Progress, 85, pp. 69-75 (1989).
  367. Explosion TNO: Methods for the Determination of Possible Damage (Green Book) (1st Ed., CPR 16E, TNO, The Hague, 1992).
  368. Chamberlain G. A. , Oran, E. , and Pekalski, A. : Detonation in Industrial vapor cloud explosion (12th Industrial Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, ISPHMIE, Kansas City, MD, 2018).
  369. Oran, E. S. , Chamberlain, G. , and Pekalski, A. : Mechanisms and occurrence of detonation in vapor cloud explosion, Progress in Energy and Combustion Science, 77, p. 100804 (2019).
  370. Buncefield Major Investigation Board: The Buncefield Incident, 11th December, 2005 (The Final Report of Major Investigation Board, Vol. 2a, 2008).
  371. Johnson D. M. : Vapor cloud Explosion in IOC Oil Terminal in Jaipur, Loss Prevention Bulletin, 229, pp. 11-18 (2013). TNO: Methods for the Calculation of Physical Effects (Yellow Book) (3rd Ed., 2nd Revised Print, CPR 14E, TNO, The Hague, 2005).
  372. Marshall, V.C. : Major Chemical Hazards (Ellis Horwood, Chichester, 1987). Loss Prevention Bulletin (No. 068): The Effect of Explosions in the Process Industries by Overpressure Working Party, Major Hazards Assessment Panel (The Institution of Chemical Engineers, Rugby, 1986).
  373. Brasie, W. C. and Simpson, D. W. : Guidelines for Estimating Damage Explosion (2nd Symposium on Loss Prevention, AIChE, New York, Vol. 1, 1968). TNO: Methods for the Calculation of Physical Effects (Yellow Book) (1st Ed., CPR 14E, TNO, The Hague, 1992).
  374. van den Berg, A. C. : The Multi-Energy Method: A Framework for Vapor Cloud Explosion Blast Prediction, Journal of Hazardous Materials, 12, pp. 1-10 (1985).
  375. Kinsella, K. G. : A Rapid Assessment Methodology for the Prediction of Vapor Cloud Explosion Overpressure (Proceedings of the International Conference and Exhibition on Safety, Health and Loss Prevention in the Oil, Chemical and Process Industries, Singapore, 1993).
  376. Roberts, M. R. and Crowley, W. K. : Evaluation of Flammability Hazards in Nonnuclear Safety Analysis (EFCOG Safety Analysis Workshop, San Francisco, CA, 2004).
  377. Cates A. T. : Fuel Gas Explosion Guidelines (Conference on Fire and Explosion Hazards, Fire Risk Management Institute, Moreton-in-Marsh, U.K., April, 1991).
  378. Cates, A. T. , and Samuels, B. : A Simple Assessment Methodology for Vented Explosions, Journal of Loss Prevention in the Process Industries, 4, pp. 287-296 (1991).
  379. Puttock, J. S. : Fuel Gas Explosion Guidelines -The Congestion Assessment Method (2nd European Conference on Major Hazards Onshore and Offshore, IChemE, Manchester, U.K., 1995). Puttock, J. S. : Improvements in Guidelines for Prediction of Vapor Cloud Explosions (International Conference and Workshop on Modelling and Consequences of Accidental Releases of Hazardous Materials, San Francisco, CA, September-October. Symposium Series No. 151, #2006 Shell Global Solutions International B.V. 14, The Netherlands, 1999). CCPS (Center for Chemical Process Safety, AIChE): Guidelines for Vapor Cloud Explosion, Pressure Vessel Burst, BLEVE, and Flash Fire Hazards (AIChE, Hoboken, NJ, 2011).
  380. Baker, Q. A. , Tang, M. J. , Scheier, E. A. , and Silva, G. J. : Vapor Cloud Explosion Analysis, Process Safety Progress, 15(2), pp. 106-109 (1989).
  381. Tang, N. G. and Baker, Q. A. : A New Set of Blast Curves for Vapor Cloud Explosion,Process Safety Congress, 18(3), pp. 235-240 (1999).
  382. Pierozarieo, J. A. , Thomas, J. K. , Baker, Q. A. , and Ketchum, G. E. : An Update to Baker- Strehlow-Tang Vapor Cloud Explosion Prediction Methodology, Flame Speed Table, Process Safety, 24(1), pp. 59-65 (2005).
  383. Mannan, S. : Lees' Loss Prevention in the Process Industries (4th ed., Butterworth-Heinemann, Oxford, 2012).
  384. Schofield, C. : Guide to Dust Explosion Prevention and Protection, Part 1 -Venting (The Institution of Chemical Engineers, Rugby, 1984).
  385. Schofield, C. and Abbott, J. A. : Guide to Dust Explosion Prevention and Protection, Part 2 - Ignition Prevention, Containment, Inerting, Suppression and Isolation (The Institution of Chemical Engineers, Rugby, 1988).
  386. Loss Prevention Bulletin (No. 082): Calculation of the Intensity of Thermal Radiation from Large Fires, First Report by the Thermal Radiation Work Group of the Major Hazards Assessment Panel (The Institution of Chemical Engineers, Rugby, 1988).
  387. TNO Report, PML 1998-C53: Application of Correlations to Quantify the Source Strength of Vapor Cloud Explosions in Realistic Situations. Final Report for the Project: 'GAMES'. TNO: Methods for the Determination of Possible Damage (Green Book) (2nd Ed., CPR 16E, TNO, The Hague, 2005). Toxic Releases Withers, J. : Major Industrial Hazards (Gower Technical Press, Aldershot, 1988).
  388. Milnes, M. H. : Formation of 2,3,7,8-Tetrachloro-Dibenzo-Dioxin by Thermal Decomposition of Sodium 2,4,5-Trichlorophenate, Nature, 232, pp. 392-396 (1971).
  389. S. Environment Protection Agency: 40 CFR Part 68, Appendix A. TNO: Methods for the Determination of Possible Damage (Green Book) (16th Ed., CPR, TNO, The Hague, 1992).
  390. CCPS (AIChE): Guidelines for Chemical Process Quantitative Risk Analysis (2nd Ed., AIChE, New York, 2000).
  391. American National Institute for Occupational Safety and Health (NIOSH, USA): IDLH Values (2004). Department of Industrial Relations, California (USA): Permissible Exposure Limits for Chemical Contaminants (2012). Health and Safety Executive (UK): EH40/2005 Workplace Exposure Limits (2nd Ed., Health and Safety Executive, Bootle, 2011). Government of India: The Factories Act 1948, Including the 1987 Amendment. Dispersion of Gases and Vapors AIChE/CCPS: Guidelines for Use of Vapor Cloud Dispersion Models (AIChE, New York, 1996).
  392. Mannan, S. : Lees' Loss Prevention in the Process Industries (4th Ed., Butterworth-Heinemann, Oxford, 2012).
  393. Shaw, P. and Briscoe, F. : Evaporation from Spills of Hazardous Liquids on Land and Water, Safety and Reliability Directorate (UKAEA) Report No. SRD R 100 (1978). Entec U.K. Ltd., London (Private Communication).
  394. AIChE/CCPS: Guidelines for Chemical Process Quantitative Risk Analysis (2nd Ed., AIChE, New York, 2000).
  395. Britter, R. E. and McQuaid, J. : Workbook on the Dispersion of Dense Gases, HSE Contract Research Report No. 17/1988, Sheffield, UK. Hazard Identification Sutton, I. : Process Safety Management (Southwestern Books, Houston, TX, 1997). ICI: Training Course on Hazard Analysis (Personal Communication).
  396. Canadian Industries Association Limited: A Guide to Hazard and Operability Studies (1985). ICI Plc: Based on Notes on Hazard Studies used within ICI group of Companies (For Training and Also for Project Safety Evaluation) (the Mid-1970s-1990s). BS 5760-0:2014: Reliability of Systems, Equipment and Components. Guide to Reliability and Maintainability.
  397. U.S. Department of Energy: Chemical Process Hazards Analysis, DOE Handbook DOE-HDBK- 1100-2004 (August, 2004). Risk Assessment and Control Kletz, T. : What Went Wrong (3rd Ed., Gulf Publishing Co, Houston, TX, 1995).
  398. Gill, D. W. : Quantitative Risk Assessment (Presentation at Seminar on LPG Safety and Risk Analysis, Mumbai, 1998); also Hazard Analysis (Refresher Training Course in ICI India, July, 1990). Layers of Protection Analysis: Simplified Process Risk Assessment (Center for Chemical Process Safety (CCPS), American Institute of Chemical Engineers, New York, 2001). Lines of Defence/Layers of Protection Analysis in the COMAH Context -Prepared by Amey VECTRA Limited for the Health and Safety Executive. Application of Safety Instrumented Systems for the Process Industries (ANSI/ISA-ISA 84.01- 1996, ISA, Research Triangle Park, NC, 1996). Functional Safety: Safety Instrumented Systems for the Process Sector (International Electrotechnical Commission (IEC), IEC 61511 Geneva, Switzerland, 2003). Guidance for Barrier Management in the Petroleum Industry (Stein Hauge and Knut Øien- SINTEF Technology and Society).
  399. Mannan, S. : Lees' Loss Prevention in the Process Industries (4th Ed., Butterworth-Heinemann, Oxford, 2012).
  400. Bourne, A. J. et al: Defences Against Common Mode Failures in Redundancy Systems (SRD R196, Safety and Reliability Directorate, U.K. AEA, January 1981).
  401. Rijnmond Public Authority: Risk Analysis of Six Potentially Hazardous Industrial Objects in the Rijnmond Area, a Pilot Study (1982). Health and Safety Executive (UK): Canvey: A Second Report: A Review of Potential Hazards from Operations in the Canvey Island/Thurrock Area Three Years after Publication of the Canvey Report (1981). INERIS: Accidental Risks Division: About the Relevance of the Concept of Risk Acceptability in the Risk Analysis and Risk Management Process. Canadian Society of Chemical Engineering: Risk Assessment -Recommended Practice for Municipalities and Industries. HS: Reducing Risks Protecting People -HSE's Decision Making Process 17. Functional Safety of Electrical/Electronic/Programmable.
  402. IEC/EN61511: Functional Safety -Safety Instrumented Systems for Process Industry Sector. Entec U.K. Ltd, London (Private Communication). ICI: Training Course on Hazard Analysis (Personal Communication). Human Factors in Process Safety Final Baker Commission Investigation Report on B.P. Texas City Refinery Explosion:B.P. Explosion (December 9, 2005).
  403. U.K. HSE Research Report RR 679: Review of Human Reliability Assessment Methods(2005).
  404. S. Nuclear Regulatory Commission: Idaho National Laboratory's Report: The SPAR-H Human Reliability Analysis Method (August, 2005).
  405. Theophilus, S. C. , Nwankwo, C. D. , Acquah-Andoh, E. , Bassey, E. , and Umroen, U. : Integrating Human Factors (H.F.) into Process Management Systems (July 30, 2017). Process Safety and Manufacturing Excellence Book Review, Chemical Engineering Progress (CEP), p. 56, (AIChE, September 2019).
  406. Berger, S. : Process Safety Leadership from the Boardroom to the Frontline (Center for Chemical Process Safety (CCPS), AIChE-Wiley, New York, 2019).
  407. Crowl, D. A. and Louvar, J. F. : Chemical Process Safety: Fundamentals with Applications (Prentice Hall, New York, 1990).
  408. Mannan, S. : Lees' Loss Prevention in the Process Industries (4th Ed., Butterworth-Heinemann, Oxford, 2012). Emerson Electric: Fisher Control Valve Handbook (2017).
  409. Nise, N. S. : Control Systems Engineering (6th Ed., Wiley, Hoboken, NJ, 2011).
  410. Mathur, U. and Conroy, R. J. : Successful Multivariable Control without Plant Tests -First- Principles -Dynamic Simulation Models Can Be Used Instead, pp. 55-65, Hydrocarbon Processing, (Gulf Publishing Co., Houston, TX, June, 2003).
  411. Edgar, T. F. , Himmelblau, D. M. , and Lasdon, L. S. : Optimization of Chemical Processes (2nd Ed., McGraw-Hill, New York, 2001).
  412. Smith, J. M. , Van Ness, H. C. , and Abbott, M. M. : Introduction to Chemical Engineering Thermodynamics (7th Ed., McGraw-Hill, New York, 2005).
  413. McCabe, W. L. , Smith, J. C. , and Harriott, P. : Unit Operations of Chemical Engineering, (5th Ed., p. 574, McGraw-Hill, New York, 1993).
  414. Billet, R. : Distillation Engineering (Chemical Publishing Co., New York, 1979).
  415. Watkins, R. N. : Petroleum Refinery Distillation (2nd Ed., Ch. 2-7, Gulf Publishing Co., Houston, TX, 1979).
  416. Friedman, Y. Z. : Control of Crude Fractionator Product Qualities During Feedstock Changes by Use of a Simplified Heat Balance (American Control Conference, Boston, MA, 1985).
  417. Couper, J. R. , Penney, W. R. , Fair, J. R. , and Walas, S. M. : Chemical Process Equipment - Selection and Design (3rd Ed., Elsevier, New York, 2012).
  418. Mathur, U. , Rounding, R. D. , Webb, D. R. , and Conroy, R. J. : Use Model-Predictive Control to Improve Distillation Operations, Chemical Engineering Progress, 104, pp. 35-41 (2008).
  419. Cutler, C. R. and Ramaker, B. L. : Dynamic Matrix Control -A Computer Control Algorithm (Proceedings of the Joint Automatic Control Conference, San Francisco, CA, June, 1980).
  420. Lahiri, S. K. : Multivariable Predictive Control: Applications in Industry (Wiley, Hoboken, NJ, 2017)
  421. Henson, M. A. and Seborg, D. E. : Nonlinear Process Control (Prentice-Hall, Englewood Cliffs, NJ, 1997).
  422. Grewal, M. S. and Andrews, A. P. : Kalman Filtering: Theory and Practice with MATLAB (4th Ed., Wiley-IEEE Press, New York, 2014). Schneider Electric: Rigorous Online Modelling and Equation-Based Optimization (ROMeo).
  423. Biegler, L. T. : Nonlinear Programming -Concepts, Algorithms, and Applications to Chemical Processes (Society for Industrial and Applied Mathematics and the Mathematical Optimization Society, Philadelphia, PA, 2010).
  424. Harwell Scientific Subroutine Library (Atomic Energy Research Establishment, Oxford, UK).
  425. Ancheyta, J. : Modeling and Simulation of Catalytic Reactors for Petroleum Refining (Wiley, Hoboken, NJ, 2011).
  426. Hollifield, B. and Habibi, E. : Alarm Management Handbook (2nd Ed., Plant Automation Services, Houston, TX, 2010).