Abstract
AI
AI
This book provides an in-depth examination of hazards and safety in process industries, focusing on historical incidents and case studies to underline the importance of robust safety systems. It aims to analyze the root causes of accidents, explore mitigation techniques, and evaluate human risk factors, contributing to policy-making and improved safety management. The content is beneficial for both students and professionals, bridging the gap between academic understanding and practical applications in preventing and managing emergencies.
References (704)
- 4.1 Initial Accident ...........................................................
- 1.1 Domino Effect .............................................
- 1.2 Safety Distance for Rescue Personnel ........
- 4.2 Second Accident .........................................................
- 4.2.1 Domino Effect .............................................
- 4.2.2 Safety Distance for Rescue Personnel .....................................................
- 5 Summary .................................................................................. References .......................................................................................... Chapter 8 Chemical Releases in a Semiconductor Plant: Emergency Response Study ..................................................................................
- 1 Introduction .............................................................................
- 2 Semiconductor Process Overview ...........................................
- 3 Hazards of the Semiconductor Industry ..................................
- 4 Chemical Hazards in a Semiconductor Plant ..........................
- 5 Emergency Response Procedures ............................................
- 6 Problems Faced in an Emergency Response .........................
- 7 Common Problems During the Emergency Response Process ...................................................................................
- 8 Summary ................................................................................ References ........................................................................................ Chapter 9 Thermal Hazard and Safety During Combustion of 1-Butylimidazolium Nitrate .............................................................
- 1 Introduction ...........................................................................
- 2 Understanding Ionic Liquids .................................................
- 3 Experimental Studies on 1-butylimidazolium Nitrate ...........
- 3.1 Apparatus and Materials ...........................................
- 3.2 Preliminary Combustion Experiment .......................
- 3.3 Thermogravimetry and Differential Scanning Calorimetry ...............................................................
- 3.4 Adiabatic Runaway Reaction -Experiment and Prediction .................................................................
- 3.5 Flash Point Analyzer ................................................
- Qualitative Investigation ...........................................
- 4 Results and Discussions ........................................................
- 4.1 Combustion Experiments .........................................
- 4.2 Inherent Thermal Hazards for TGA and DSC ..........
- 4.3 FPA Test ...................................................................
- 4.4 Concentration of Ignition .........................................
- 4.5 Prediction of Adiabatic Runaway Reaction ..............
- 4.6 Estimating Safety Limits ..........................................
- 5 Summary ................................................................................ References ........................................................................................ Contents xi Chapter 10 Safety and Flammability Analysis for Fuel-Air-Diluent Mixtures Plant: Safety and Flammability Analysis ..........................
- 1 Introduction ........................................................................... 10.2 Understanding the Flammability of Inert Gas Mixtures ........
- 3 Experimental Procedures .......................................................
- 3.1 Apparatus and Materials ........................................... 10.3.2 Spherical Explosion Vessel .......................................
- 3.3 Fourier Transform Infrared Spectroscopy ................
- 3.4 Theory ...................................................................... 10.3.4.1 Mathematical Model .................................
- 4 Results and Discussions ........................................................ 10.4.1 Combustion Products of Acetone and Methylformate ..........................................................
- 4.2 Experimental and Estimated Flammability Limits .......................................................................
- 4.2.1 Condition for the Simulation ....................
- 4.2.2 Radiation Heat Loss Effect on the Estimated Flammability Boundaries .........
- 4.2.3 Steam Dilution Effect on Flammability Envelope ...................................................
- 4.2.4 Nitrogen Dilution Effect on the Flammability Envelope .............................
- 4.2.5 Location of the LOC and Flammability Limit at the LOC .......................................
- 5 Summary ................................................................................ References ........................................................................................ Chapter 11 Advanced Calorimetric Technology for the Kinetic and Thermal Safety Analysis of Tert-butylperoxy-3,5,5- trimethylhexanoate ...........................................................................
- 1 Introduction ........................................................................... 11.2 Thermal Sensitivity And Runaway Characteristics of Tert-Butylperoxy-3,5,5-Trimethylhexanoate.....................152
- 3 Sample Preparation ................................................................ 11.3.1 Sample ...................................................................... 11.3.2 Differential Scanning Calorimetry ...........................
- 4 Determination of the Kinetic Model ......................................
- 5 Time for Maximum Rate at Adiabatic Conditions ................
- 6 Self-accelerating Decomposition Temperature......................155
- 7 Results and Discussion ..........................................................
- 8 Summary ................................................................................ References ........................................................................................ xii Contents Chapter 12 Thermal Hazard Analysis and its Application on Process Safety Assessments ........................................................
- 1 Introduction ........................................................................... 12.2 Organic Peroxides and Its Associated Thermal Hazards .......
- 3 Thermal Hazard Analysis ...................................................... 12.3.1 Thermal Analysis Technology ..................................
- 3.1.1 Experimental Setup ...................................
- 3.2 Isothermal Calorimetry Technology ......................... 12.3.2.1 Experimental Setup ...................................
- Adiabatic Calorimetry Technology ......................... 12.3.3.1 Experimental Setup ...................................
- 4 Summary ................................................................................ References ........................................................................................ Chapter 13 Safety of Flammable Liquid Mixtures ............................................. 13.1 Introduction ........................................................................... 13.2 Flash Point Evaluation ........................................................... 13.3 Experimental Protocol ........................................................... 13.4 Flash-point Model Prediction for Partially Miscible Mixtures .................................................................. 13.4.1 Model for Aqueous-Organic Solutions ....................
- 4.2 Model for Mixtures of Flammable Solvents ............
- 5 Results and Discussion .......................................................... 13.5.1 Parameters Used .......................................................
- 5.2 Partially Miscible Aqueous-Organic Mixtures ........
- 5.3 Partially Miscible Mixtures Of Flammable Solvents ...
- 6 Summary ................................................................................ References ........................................................................................ Chapter 14 Calorimetric Approach on the Thermal Hazard Assessment of Cumene Hydroperoxide ...........................................
- 1 Introduction ........................................................................... 14.2 Thermal Runaway of Cumene Hydroperoxide ......................
- 3 Experimental Studies .............................................................
- 3.1 Samples .................................................................... 14.3.2 DSC (Differential Scanning Calorimeter) ................
- 3.3 TAM (Thermal Activity Monitor) ............................
- 3.4 Applications .............................................................
- 4 Results and Discussion .......................................................... 14.4.1 Significance and Applications of CHP Derived by DSC and TAM .....................................................
- 4.2 Comparison of Thermokinetic Parameters for CHP Derived From DSC and TAM ....................
- 5 Summary ................................................................................ References ........................................................................................ Contents xiii Chapter 15 Evaluation of the Information System of Maintenance Efficiency in Petrochemical Plants ................................................... 15.1 Introduction ........................................................................... 15.2 Maintenance Management of Facilities ................................. 15.3 Preliminary Design and Index Establishment ....................... 15.4 Design of System ................................................................... 15.4.1 Index Design ............................................................. 15.4.2 System Development ................................................ 15.4.3
- Data Requirements ................................................... 15.4.4 Function Requirements ............................................
- 5 Summary ................................................................................ References ........................................................................................ Chapter 16 A Study on the Challenges in Emerging Economies to Industry 4.0 Initiatives for Supply Chain Sustainability ..............
- 1 Introduction ........................................................................... 16.2 Understanding Industry 4.0 ...................................................
- 2.1 Industry 4.0 ............................................................... 16.2.2 Challenges to Industry 4.0 Initiatives for Sustainability in Supply Chains ..........................
- 3 Methodology ..........................................................................
- 4 Data Collection and Results .................................................. 16.4.1 Instrument Development and Data Collection .........
- 4.2 Reliability, Validity and Non-biasness......................230 16.4.3 Explanatory Factor Analysis (EFA)..........................230 16.4.4 Analytical Hierarchy Process (AHP) .......................
- 5 Discussion ..............................................................................
- 6 Summary ................................................................................ 16.6.1 Theoretical Benefaction ........................................... 16.6.2 Managerial Benefaction ...........................................
- 6.3 Shortcomings and Future Proposals .........................
- References ........................................................................................ Chapter 17 A Detailed Study on the Spatial Characteristics of Heavy Metal Pollution and Ecological Risk of Mining Area ......................
- 1 Introduction ........................................................................... 17.2 Heavy Metal Pollution ........................................................... 17.3 Sample Collection and Analysis ............................................
- 3.1 Location .................................................................... 17.3.2 Sample Collection and Analysis ...............................
- 3.3 Data Source and Processing .....................................
- 4 Research Survey .................................................................... 17.4.1 Data Processing ........................................................ 17.4.2 Potential Ecological Risk Index Method ..................
- 4.3 IDW Interpolation of Heavy Metals in Soil .............
- 5 Detailed Analysis of Results .................................................. 17.5.1 Soil Heavy Metal Pollution ......................................
- 5.1.1 Characteristic Value Analysis of Heavy Metals in Soil ............................
- 5.1.2 Heavy Metal Pollution in the Case Study Area ..................................
- 5.2 Ecological Risk Assessment of Heavy Metals ......... 17.5.2.1 Single Factor Ecological Risk Assessment of Heavy Metals in Soil ........
- 6 Risk Assessment and its Adjustment at the Township Scale .....254 17.6.1 Potential Ecological Risk Assessment of Arsenic .................................................................
- 6.2 Potential Ecological Risk Assessment of Mercury ................................................................
- 6.3 Comprehensive Ecological Risk Evaluation of Heavy Metals in Soil ..........................
- 7 Results and Discussion .......................................................... 17.7.1 Heavy Metals in Soil Based on Township Scale ......
- 7.2 The Adjustment of the Potential Ecological Risk Assessment Domain .........................................
- 7.3 Selection of Spatial Interpolation Methods for Heavy Metals in Soil ...........................
- 8 Summary ................................................................................ References ........................................................................................ Chapter 18 Evaluation of Human Factors Risk and Management in Process Safety in Engineering ......................................................
- 1 Introduction ........................................................................... 18.2 Assessment of Human Factors .............................................. 18.3 Human Factors Risk Assessment Model ...............................
- 4 Applied Methodology ............................................................
- 4.1 Set Pair Analysis (SPA) ............................................
- 4.2 Risk Trend Analysis ................................................. 18.4.3 SPA-Markov Risk Prediction Method .....................
- 5 Assessment and Management Procedure ..............................
- 5.1 Assessment Procedure .............................................. 18.5.2 Management Procedure ............................................
- 6 Application ............................................................................ 18.6.1 Determine the Factor Weight (W) and the Identity- Discrepant-contrast Assessment Matrix (R) .............
- 6.2 Calculate the Connection Number and Partial Connection Number .................................................
- 6.3 Risk Analysis ............................................................
- 6.4 Risk Trend Analysis .................................................
- 6.5 Risk Prediction .........................................................
- Risk Management .....................................................
- 7 Discussion ..............................................................................
- 8 Summary ................................................................................
- Appendix 18A .................................................................................. References ........................................................................................ Chapter 19 Analysis of Off-Site Emergency Procedures and Reciprocation for Nuclear Accidents .......................................................................
- 1 Introduction ........................................................................... 19.2 Study on Nuclear Accidents ..................................................
- 3 Different Phases of a Nuclear Accident .................................
- 3.1 Planning Phase .........................................................
- 3.1.1 Requirements ............................................
- 3.1.2 Contents of An Emergency Plan ...............
- 3.2 Response Phase ........................................................ 19.3.2.1 Pre-Release Phase .....................................
- 3.2.2 Post-Release Phase ...................................
- 3.3 Recovery Phase ........................................................
- 4 Economic Cost Analysis ........................................................ 19.4.1 EFactors Affecting the Economic Costs of a Nuclear Accident ...............................................
- 4.2 Economic Modelling in the UK ...............................
- Factors Impacting Health and Economic Cost ......................
- 5.1 Siting and Demography ............................................
- 5.2 Source Terms ............................................................
- 5.3 Weather and Dispersion ............................................ 19.5.4 Food ..........................................................................318
- 6 Summary ................................................................................ References ........................................................................................
- Index ......................................................................................................................
- REFERENCES Alaimo, R.J. (2001). Handbook of Chemical Health and Safety, Washington: An American Chemical Society Publication.
- Allen, Nick (7 February, 2010). "Connecticut gas explosion at power plant 'leaves up to 50 dead'". London: Telegraph Media Group Limited. Center for Chemical Process Safety (CCPS). (2003). Guidelines for Investigating Chemical Process Incidents, 2nd ed., New York: Wiley-AIChE.
- Changmai, M., Das, P. P., Mondal, P., Paswan, M., Sinha, A., Biswas, P., Sarkar, S., Purkait, M.K. (2020b). Hybrid electrocoagulation-microfiltration technique for treatment of nanofiltration rejected steel industry effluent. Int. J. Environ. Anal. Chem. doi: 10.1080/03067319.2020.1715381.
- Changmai, M., Mondal, P., Sinha, A., Biswas, P., Sarkar, S., Purkait, M.K. (2020a). Metal removal efficiency of novel LD slag incorporated ceramic membrane from steel plant wastewater. Int. J. Environ. Anal. Chem. doi:10.1080/03067319.2020.1734198.
- Egan, M. (22 July, 2019). "Philadelphia refinery goes bankrupt after fire". CNN Business. 22 July 2019.
- Frei, R., Kingston, J., Koornneef, F., Schallier, P. (2003). Investigation Tools in Context, Proceedings of 24 th ESReDA Seminar, Safety Investigation of Accidents, Petten, May 12-13.
- Gibson, J.J. (1961). The Contribution of Experimental Psychology to the Formulation of the Problem of Safety -A Brief for Basic Research, In: Haddon, W., Suchman E.A., and Klein D. Edits, Accident Research: Methods and Approaches. New York: Harper and Row. Gordon, J.E. (1949). The Epidemiology of Accidents, Am. J. Pub. Hea., Vol. 39 pp. 504-515.
- Groeneweg, J. (1998). Controlling the Controllable. The Management of Safety. Netherlands: DSWO Press, Leiden University. Guidelines for safety investigation of Accidents (2009). European Safety Reliability and Data Association (ESReDA). ISBN 978-82-51-50309-9.
- Haddon, W. (1972), A Logical Framework for Categorizing Highway Safety Phenomena and Activity, J Trauma, Vol. 12, pp 193-207.
- Harms, R. L. (2004). Relationships between Accident Investigations, Risk Analysis and Safety Management, Journal. Hazard. Mater., Vol. 111, pp. 13-19.
- Kansas, H. (1998). Fire Investigation Summary, grain Elevator Explosion. National Fire Protection Association (NFPA), Fire Investigations Department, 1999.
- Kharabanda, O.P. and Stallworthy, E.A. (1988). Safety in the Chemical Industry: Lessons from Major Disasters, London: Butterworth-Heinemann Ltd.
- Mondal, P., Purkait, M.K. (2017). Green synthesized Iron nanoparticle embedded pH- responsive PVDF-co-HFP membranes: Optimization study for NPs preparation and Nitrobenzene reduction. Sep. Sci. Technol. 52 (14), 2338-2355.
- Mondal, P., Purkait, M.K. (2018). Green synthesized Iron nanoparticles supported on pH- responsive polymeric membrane for Nitrobenzene reduction and fluoride rejection study: Optimization approach. J. Cleaner Prod. 170, 1111-1123.
- Mondal, P., Purkait, M.K. (2019). Preparation and characterization of novel green synthe- sized iron-aluminum nanocomposite and studying its efficiency in fluoride removal. Chemosphere 235, 391-402.
- Mondal, P., Samanta, N., Kumar, A., Purkait, M.K. (2020). Recovery of H 2 SO 4 from waste- water in presence of NaCl and KHCO 3 through pH responsive polysulfone membrane: Optimization approach. Pol. Test., 86, 106463.
- Purkait, M. K., Bhattacharya, P. K., De, S. (2005). Membrane filtration of leather plant efflu- ent: Flux decline mechanism, J. Membr. Sci. 258, 85-96.
- Sriharsha, E., Uppaluri, R., Purkait, M. K. (2014). Microfiltration of oil-water emulsions using low cost ceramic membranes prepared with uniaxial dry compaction method. Ceramic Int. 40, 1155-1164.
- Stoop, J. (2007). Are Safety Investigations Proactive? Proceedings of the 33 rd ESReDA Seminar, Future Challenges of Accident Investigations, Ispra, November 13-14.
- Volli, V., Purkait, M.K. (2015). Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production. J. Hazard. Mat. 297, 101-111.
- Walker, J. Samuel (2004). Three Mile Island: A Nuclear Crisis in Historical Perspective. Berkeley: University of California Press. ISBN 0-520-23940-7.
- Washburn A Mill Explosion. (April, 1956). The Great Mill Explosion and Fire of 1878. Minnesota Historical Society. In Hennepin County History, vol. 16-2, no. 62: pp. 9-10.
- Ale, B.J.M., 2006. Towards a causal model for air transport safety-an ongoing research proj- ect. Safe. Sci. 44, 657-673.
- API, 2013. American Petroleum Institute. API Standard 650. Welded tanks for oil storage. http://www.api.org/.
- Bai, M., Liu, Z.W., 1995. Economic benefit analysis of large-scale oil tank. Pet. Eng. Constr. 1, 8-10.
- Baysari, M.T., McIntosh, A.S., Wilson, R., 2008. Understanding the human factors contribu- tion to railway accidents and incidents in Australia. Accid. Anal. Prev. 40, 1750-1757.
- Buncefield Major Incident Investigation Board, 2008. The Buncefield Incident. December 11, 2005, Final report, Hemel Hempstead, Hertfordshire, UK.
- Chang, J.I., Lin, C.C., 2006. A study of storage tank accidents. J. Loss Prev. Process Ind.19, 51-59.
- Chauvin, C., Lardjane, S., Morel, G., Clostermann, J.P., Langard, B., 2013. Human and organ- isational factors in maritime accidents: analysis of collisions at sea using the HFACS. Accid. Anal. Prev. 59, 26-37.
- Chen, W.T., Chen, W.C., Hsueh, K.H., Chiu, C.W., Shu, C.M., 2014. Thermokinetic param- eters analysis for 1,1-bis-(tert-butylperoxy)-3,3,5-trimethylcyclohexane at isothermal conditions for safety assessment. J. Therm. Anal. Calorim. 118, 1085-1094.
- Chi, C.F., Lin, S.Z., Dewi, R.S., 2014. Graphical fault tree analysis for fatal falls in the con- struction industry. Accid. Anal. Prev. 72, 359-369.
- De La Fuente, V.S., López, M.A.C., González, I.F., Alcántara, O.J.G., Ritzel, D.O., 2014. The impact of the economic crisis on occupational injuries. J. Saf. Res. 48, 77-85.
- Dong, Y.H., Yu, D.T., 2005. Estimation of failure probability of oil and gas pipelines by fuzzy fault tree analysis. J. Loss Prev. Process Ind. 18, 83-88.
- Ejlali, A., Miremadi, S.G., 2014. FPGA-based Monte Carlo simulation for fault tree analysis. Microelectron. Reliab 44, 1017-1028.
- Failsafe Network, 2014. Four significant problems with root cause analysis http://www.fail- safe-network.com/root-cause-analysis-definitions/why-tree.
- Hu, J., Chu, J.Y., Liu, J.H., Qin, D.Y., Cheng, S.K., Li, Z.F., Mang, H.P., Neupane, K., Wauthelet, M., Huba, E.M., 2014. Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal. Appl. Energ 113, 1372-1381. Introduction of ANSYS cooperation, 2016. http://www.ansys.com. Introduction of Autodesk's product, 2014. Finite element analysis, http://usa.autodesk.com/ adsk/servlet/item?siteID¼123112&id¼17670721. Introduction of explosion protection, 2016. Fike official website http://www.fike.com/ solutions/explosion-protection/.
- Jonsson, A., Bergqvist, A., Andersson, R., 2015. Assessing the number of fire fatalities in a defined population. J. Saf. Res. 55, 99-103.
- Lavasani, S.M., Zendegani, A., Celik, M., 2015. An extension to Fuzzy Fault Tree Analysis (FFTA) application in petrochemical process industry. Process. Saf. Environ. Prot. 93, 75-88.
- Li, W.C., Harris, D., Yu, C.S., 2008. Routes to failure: analysis of 41 civil aviation accidents from the Republic of China using the human factors analysis and classification system. Accid. Anal. Prev. 40, 426-434.
- Lifetime Reliability & Solutions, 2014. Understanding How to Use the 5-whys for Root Cause Analysis. Available in http://www.lifetime-reliability.com/index.html.
- Lin, C.T., Wang, M.J.J., 1997. Hybrid fault tree analysis using fuzzy sets. Reliab. Eng. Syst. Saf. 58, 205-213.
- Liu, W.Y., Chen, C.H., Chen, W. T., Shu, C. M., 2017. A study of caprolactam storage tank accident through root cause analysis with a computational approach. J. Loss Prev. Proc. 50, 80-90.
- Marucci-Wellman, H.R., Courtney, T.K., Corns, H.L., Sorock, G.S., Webster, B.S., Wasiak, R.Y.N.I., Matz, S., Leamon, T.B., 2015. The direct cost burden of 13 years of dis- abling workplace injuries in the U.S. (1998-2010): findings from the Liberty Mutual Workplace Safety Index. J. Saf. Res. 55, 53-62.
- Naderpour, M., Lu, J., Zhang, G., 2014. The explosion at institute: modeling and analyzing the situation awareness factor. Accid. Anal. Prev. 73, 209-224.
- Olsen, N.S., Shorrock, S.T., 2010. Evaluation of the HFACS-ADF safety classification system: inter-coder consensus and intra-coder consistency. Accid. Anal. Prev. 42, 437-444.
- Patterson, J.M., Shappell, S.A., 2010. Operator error and system deficiencies: analysis of 508 mining incidents and accidents from Queensland, Australia using HFACS. Accid. Anal. Prev. 42, 1379-1385.
- Purba, J.H., Lu, J., Ruan, D., Zhang, G., 2011. Failure possibilities for nuclear safety assess- ment by fault tree analysis. Int. J. Nucl. Knowl. Manag. 5, 162-177.
- Schroder-Hinrichs, J.U., Baldauf, M., Ghirxi, K.T., 2011. Accident investigation reporting deficiencies related to organizational factors in machinery space fires and explosions. Accid. Anal. Prev. 43, 1187-1196.
- Sharma, R.K., Gurjar, B.R., Wate, S.R., Ghuge, S.P., Agrawal, R., 2013. Assessment of an accidental vapour cloud explosion: lessons from the Indian oil corporation ltd. accident at Jaipur, India. J. Loss Prev. Process Ind. 26, 82-90.
- Shi, L., Shuai, J., Xu, K., 2014. Fuzzy fault tree assessment based on improved AHP for fire and explosion accidents for steel oil storage tanks. J. Hazard. Mater 278, 529-538.
- Svedung, I., Andersson, R., Ra, H., 2008. Suicide prevention in railway systems: application of a barrier approach. Safe. Sci. 46, 729-737.
- U.S. Chemical Safety Board, 2009. Cited at December, 05, 2011, http://www.csb.gov/ caribbean-petroleum-investigative-photos-/.
- Volkanovski, A., Cepin, M., Mavko, B., 2009. Application of the fault tree analysis for assess- ment of power system reliability. Reliab. Eng. Syst. Safe 94, 1116-1127.
- Wang, D., Zhang, P., Chen, L., 2013. Fuzzy fault tree analysis for fire and explosion of crude oil tanks. J. Loss Prev. Process Ind. 26, 1390-1398.
- Zemva, A., Zajc, B., 2005. Test generation for technology-specific multi-faults based on detectable perturbations. Microelectron. Reliab 45, 163-173.
- Zhang, D., Ding, A., Cui, S., Hu, C., Thornton, F.S., Dou, J., Sun, Y., Huang, W.E., 2013. Whole cell bioreporter application for rapid detection and evaluation of crude oil spill in seawater caused by Dalian oil tank explosion. Water Res. 47, 1191-1200.
- Chan, J.H., 2010. The development of industrial fire investigation technology and cases study. National Chiao Tung University, Hsinchu, Taiwan, Master's Thesis.
- Chou, H. C., Yeh, C. T., Shu, C. M., 2015. Fire accident investigation of an explosion caused by static electricity in a propylene plant. Proc. Saf. Environ. Protect. 97, 116-121.
- Dana, S., Lee, C.J., Park, J., Shin, D., Yoon, E.S., 2014. Quantitative risk analysis of fire and explosion on the top-side LNG-liquefaction process of LNG-FPSO. Proc. Safe. Environ. Prot. 92 (5), 430-441.
- Gibson N., 1997. Static electricity -An industrial hazard under control? J. Electrostat. 40-41, 21-30.
- Hsieh, W.K., 2014. Performance evaluation of fire protection systems in high-tech facilities. Chang Jung Christian University, Tainan, Taiwan, Master's Thesis.
- Li, M.C., 2014. Applied analysis for prevention of fire accident caused from outdoor pet- rochemical pipeline leakage. Wu Feng University of Science and Technology, Chiayi, Taiwan, Master's Thesis.
- Lin, H.Y., 2014. Electrostatic hazard evaluation and control for traditional paint and ink process in Taiwan. Central Taiwan University of Science and Technology, Taichung, Taiwan, Master's Thesis.
- Logtenberg, M. T., 2001. Four explosions: Four times static electricity was the most probable ignition source. Pasman, H.J.: 1459-1464. doi: 10.1016/B978-044450699-3/50056-2. National Fire Agency (NFA), Ministry of the Interior, Executive Yuan, Taiwan, 2009. Identification of the Standard Operating Procedures of Fire Investigation, Reference to Standards of Taiwan.
- Suardin, J.A., McPhate Jr., A.J., Sipkemab, A., Childsc, M., Mannan, M.S., 2009. Fire and explosion assessment on oil and gas floating production storage offloading (FPSO): an effective screening and comparison tool. Proc. Saf. Environ. Prot. 87(3), 147-160.
- Ye, C.H., (2014. To investigation the electrostatic discharge hazard prevention for powder loading and unloading operation in Taiwan. Central Taiwan University of Science and Technology, Taichung, Taiwan, Master's Thesis.
- Baciocchi, R., Boni, M. R., & Aprile, L. D. (2004). Application of H2O2 lifetime as an indica- tor of TCE Fenton-like oxidation in soil. J. Hazard. Mater., B107, 97-102.
- Barton, J. A., & Nolan, P. F. (1989). Incidents in the chemical industry due to thermal runaway chemical reactions, hazards. X. Process safety in fine and specialty chemical plants. IChemE Symposium Series, 115, 3-18.
- Budzianowski, W. M. (2005). Non-stationary catalytic combustion over a catalyst with inter- nal temperature gradients. Arch. Combust., 25(1-4),7-15.
- Chen, K. Y., Lin, C. M., Shu, C. M., & Kao, C. S. (2006). An evaluation on thermokinetic parameter for hydrogen peroxide at various concentration by DSC. J. Therm. Anal. Calorim., 85(1), 87-89.
- Chen, J. R., Wu, S. H., Lin, S. Y., Hou, H. Y., & Shu, C. M. (2008). Utilization of micro- calorimetry for an assessment of the potential for a runaway decomposition of cumene hydroperoxide at low temperatures. J. Therm. Anal. Calorim., 93(1), 127-133.
- Chen, K. Y., Wu, S. H., Wang, Y. W., & Shu, C. M. (2008). Runaway reaction and thermal hazard simulation of cumene hydroperoxide by DSC. J. Loss. Prev. Process. Ind., 21, 101-109.
- Chi, J. H., Wu, S. H., Charpentier, J. C., Yet, P. I., Shu, C. M. (2012). Thermal hazard acci- dent investigation of hydrogen peroxide mixing with propanone employing calorimetric approaches. J. Loss Prev. Process Ind. 25 (1), 142-147.
- Chi, J. H., Wu, S. H., & Shu, C. M. (2009). Thermal explosion analysis of methyl ethyl ketone peroxide by non-isothermal and isothermal calorimetric applications. J. Hazard. Mater., 171, 1145-1149.
- Duh, Y. S., Lee, C., Hsu, C. C., Hwang, D. R., & Kao, C. S. (1997). Chemical incompatibility of nitro compounds. J. Hazard. Mater., 53, 183-194.
- Duxbury, H. A. (1980). Relief system sizing for polymerization reactors. Chem. Eng., 31-38.
- Fauske, H. K. (1984). Generalized vent sizing nomogram for runaway chemical reactions. Plant/Operations Progress, 3(4), 213-220.
- Fessas, D., Signorelli, M., & Schiraldi, A. (2005). Polymorphous transitions in cocoa butter -a quantitative DSC study. J. Therm. Anal. Calorim., 82(3), 691-702.
- Hou, H. Y., Shu, C. M., & Duh, Y. S. (2001). Exothermic decomposition of cumene hydroper- oxide at low temperature conditions. Am. Inst. Chem. Eng. J., 47, 1893-1894.
- Huff, J. E. (1982). Emergency venting requirements. Plant/Operations Progress, 1(4), 211-220.
- Leung, J. C. (1986). A generalized correlation for one-component homogeneous equilibrium flashing choked flow. AIChE Journal, 32(10), 1643-1646.
- Liou, M. J., & Lub, M. C. (2008). Catalytic degradation of explosives with goethite and hydro- gen peroxide. J. Hazard. Mater., 151, 540-546.
- Lu, K. T., Yang, C. C., & Lin, P. C. (2006). The criteria of critical runaway and stable tempera- tures of catalytic decomposition of hydrogen peroxide in the presence of hydrochloric acid. J. Hazard. Mater., B135, 319-327.
- Luo, K. M., Hu, K. W., & Lu, K. T. (1997). The calculation of critical temperatures of thermal explosion for energetic materials. J. Chin. Inst. Chem. Eng., 28(1), 21-28.
- Poulopoulos, S. G., Arvanitakis, F., & Philippopoulos, C. J. (2006). Photochemical treat- ment of phenol aqueous solutions using ultraviolet radiation and hydrogen peroxide. J. Hazard. Mater., 129, 64-68.
- Schreck, A., Knorr, A., Wehrstedt, K. D., Wandrey, P. A., Gmeinwieser, T., & Steinbach, J. (2004). Investigation of the explosive hazard of mixtures containing hydrogen peroxide and different alcohols. J. Hazard. Mater., A108, 1-7.
- Townsend, D. I., & Tou, J. C. (1980). Thermal hazard evaluation by an accelerating rate calo- rimeter. Thermochim. Acta, 37, 1-30.
- Wang, Y. W., Shu, C. M., Duh, Y. S., & Kao, C. S. (2001). Thermal runaway hazards of cumene hydroperoxide with contaminants. Ind. Eng. Chem. Res., 40, 1125-1132.
- Weber, M. (2006). Some safety aspects on the design of sparger systems for the oxidation of organic liquids. Process. Saf. Prog., 25(4), 326-330.
- Wu, S. H., Chi, J. H., Huang, C. C., Lin, N. K., Peng, J. J., & Shu, C. M. (2010). Thermal hazard analyses and incompatible reaction evaluation of hydrogen peroxide by DSC. J. Therm. Anal. Calorim., 102, 563-568.
- Wu, S. H., Shyu, M. L., I, Y. P., Chi, J. H., & Shu, C. M. (2009). Evaluation of runaway reac- tion for dicumyl peroxide in a batch reactor by DSC and VSP2. J. Loss Prev. Process Ind., 22, 721-727.
- Wu, S. H., Su, C. H., & Shu, C. M. (2008). Thermal accident investigation of methyl ethyl ketone peroxide by calorimetric technique. Int. J. Chem. Sci., 6(2), 487-496.
- Wu, S. H., Wang, Y. W., Wu, T. C., Hu, W. N., & Shu, C. M. (2008). Evaluation of thermal haz- ards for dicumyl peroxide by DSC and VSP2. J. Therm. Anal. Calorim., 93(1), 189-194.
- Yeh, P. Y., Shu, C. M., & Duh, Y. S. (2003). Thermal hazard analysis of methyl ethyl ketone peroxide. Ind. Eng. Chem. Res., 42, 1-5.
- Chen, H.I. 2008. Smoke and heat. In: Chen HI, editor. Fire science. Taipei: Taiwan Tingmao Publishing. 9-15.
- Chi, J.-H., Shu, C.-M., Wu, S.-H. 2011. Using Fire Dynamics Simulator to Reconstruct a Hydroelectric Power Plant Fire Accident. J. For. Sci. 56(6): 1639-1644.
- Christensen, A.M., & Icove, D.J. 2004. The application of NIST's Fire Dynamics Simulator to the investigation of carbon monoxide exposure in the deaths of three Pittsburgh fire fighters. J Forensic Sci., 49(1): 1-4.
- Duarte, D.. 2004. A performance overview about fire risk management in the Brazilian hydro- electric generating plants and transmission network. J Loss Prevent Proc. Indus., 17: 65-75.
- Hu, L.H., Huo, R., Peng, W., Chow, W.K., Yang, R.X. & 2006. On the maximum smoke tem- perature under the ceiling in tunnel fires. Tunn Undergr. Sp. Tech., 21: 650-655.
- Ingason, H. 2006. Large fires in tunnels. Fire Technol., 42(4): 271-272.
- Ingason, H., & Wickstrom, U. 2006. The international FORUM of fire research directors: a position paper on future actions for improving road tunnel fire safety. Fire Safety J., 41: 111-114.
- Kang, K. 2007. Application of code approach for emergency evacuation in a rail station. Fire Technol., 43(4): 331-346.
- Ke, J.M. 2003. Computer simulation and design analysis of smoke management system in large stations [Dissertation]. Kaohsiung (Taiwan): University of Sun Yat-sen .
- Ko, C.S. 1993. Cheng-Wen the contemporary dictionary of chemistry and chemical engineer- ing, 1st ed. Taipei, Taiwan: Cheng-Wen Publishing, 286.
- PIARC. 2007. Committee on Road Tunnels Operation (C3.3). Systems and equipment for fire and smoke control in road tunnels. Paris, France: PIARC.
- Shen, T.S., & Huang, Y.H., Chien, S.W. 2008. Using Fire Dynamic Simulation (FDS) to recon- struct an arson fire scene. Build Environ., 43: 1036-1045.
- Akaike, T., Sato, K., Ijiri, S., Miyamoto, Y., Kohno, M., & Ando, M. (1992). Bactericidal activ- ity of alkyl peroxyl radicals generated by heme-iron-catalyzed decomposition of organic peroxides. Arch. Biochem. Biophy. 294 (1) 55-63.
- Ando, T., Fujimoto, Y., & Morisaki, S. (1991). Analysis of differential scanning calorimetric data for reactive chemicals. J. Hazard. Mat. 28 (3), 251-280.
- ASTME537-76. (1976). Thermal Stability of Chemicals by Methods of Differential Thermal Analysis. Barbalace, K. (2009). Chemical Database: Methyl ethyl ketone peroxide. Environ. Chem. Com. Bates, N., Driver, C.P., & Bianchi, A. (2001). Methyl ethyl ketone peroxide ingestion: toxicity and outcome in a 6-year-old child. Ped. 108 (2) 473-476.
- Brigham, C.R., & Landrigan, P.J. (1985). Safety and health in boatbuilding and repair. Am. J. Ind. Med. 8 (3):169-182.
- Chang, R. H., Tseng, J. M., Jehng, J. M., Shu, C. M., & Hou, H. Y. (2006). Thermokinetic model simulations for methyl ethyl ketone peroxide contaminated with 4 OR NaOH by DSC and VSP 2 J. Therm. Anal. Calorim. 83, 57-62.
- Chen, K. Y., Lin, C. M., Shu C. M., & Kao, C. S. (2006). An evaluation on thermokinetic parameters for hydrogen peroxide at various concentrations by DSC. J. Therm. Anal. Calorim. 85, 87-89.
- Eller, P.M., & Cassinelli, M.E. (1994). NIOSH manual of analytical methods. DIANE Publishing, Pennsylvania, United States.
- Fu, Z. M., Li, X. R., Koseki, H. K., & Mok. Y. S. 2003. Evaluation on thermal hazard of methyl ethyl ketone peroxide by using adiabatic method. J. Loss Prev. Process Ind. 16 (5), 389-393.
- Gooch, J.W. (2011). Methyl Ethyl Ketone Peroxide. Encyclopedic Dictionary of Polymers. 458. Kossoy, A. A., & Koludarova, E. (1995). Specific features of kinetics evaluation in calorimet- ric studies of runaway reactions. J. Loss Prev. Process Ind. 8, 229-235.
- Maria, G., & Heinzle, E. (1998). Kinetic system identification by using short-cut techniques in early safety assessment of chemical processes. J. Loss Prev. Process Ind. 11(3), 187-206.
- MHIDAS, Mayor Hazard Incident Data Service. (2006) OHS_ROM, Reference Manual.
- Mittleman, R.E., Romig, L.A., & Gressmann, E. (1986). Suicide by ingestion of methyl ethyl ketone peroxide. J. For. Sci. 31 (1) 312-320.
- Prez-Martinez, A., Gutirrez-Junquera, C., Gonzlvez-Piera, J., Marco-Macin, A., Rubio- Guijarro, J., & Moya-Marchante, M. (1997). Oesophageal stenosis in a child caused by ingestion of methyl ethyl ketone peroxide. Eur. J. of Ped. 156 (12) 976.
- STAR e Software with Solaris Operating System, Operating Instructions. (2004). Mettler Toledo, Switzerland.
- Tseng, J. M., Chang, R. H., Horng, J. J., Chang. M. K., & Shu, C. M. (2006). Thermal hazard evaluation for methyl ethyl ketone peroxide mixed with inorganic acids. J. Therm. Anal. Calorim. 85, 189-194.
- Tseng, J. M., Chang, Y. Y., Su, T. S., & Shu, C. M. (2007). Study of thermal decomposition of methyl ethyl ketone peroxide using DSC and simulation. J. Hazard. Mater., 142 (3), 765-770.
- Wu, S.H., Su, C. H., & Shu, C. M. (2008). Thermal accident investigation of methyl ethyl ketone peroxide by calorimetric technique. Int. J. Chem. Sci. 6(2), 487-496.
- Yeh, P. Y., Shu, C. M., & Duh, Y. S. (2003). Thermal hazard analysis of methyl ethyl ketone peroxide. Ind. Eng. Chem. Res., 43 (1), 1-5.
- Yuan, M. H., Shu, C. H., & Kossoy, A. A. 2005. Kinetics and hazards of thermal decomposi- tion of methyl ethyl ketone peroxide by DSC. Thermochimica Acta, 430, 67-71.
- Abdolhamidzadeh, B., Abbasi, T., Rashtchian, D., & Abbasi, S.A. (2010). A new method for assessing domino effect in the chemical process industry. J. Hazard Mater. 182 (1-3), 416-426.
- Chen, C.C., Wang, T.C., Chen, L.Y., Dai, J.H., & Shu, C.M. (2010). Loss prevention in the pet- rochemical and chemical-process high-tech industries in Taiwan. J. Loss Prev. Process. Ind. 23 (4), 531-538.
- Cheng, S., Chen, G., Chen, Q., & Xiao, X. (2009). Research on 3D dynamic visualization simulation system of toxic gas diffusion based on virtual reality technology. Process Saf. Environ. Protect. 87 (3), 175-183.
- Cozzani, V., Gubinelli, G., & Salzano, E. (2006). Escalation thresholds in the assessment of domino accidental events. J. Hazard Mater. 129 (1-3), 1-21.
- Cozzani, V., & Salzano, E. (2004a). The quantitative assessment of domino effect caused by overpressure. Part II. Case studies. J. Hazard Mater. 107 (3), 81-94.
- Cozzani, V., & Salzano, E. (2004b). The quantitative assessment of domino effects caused by overpressure. Part I. Probit models. J. Hazard Mater. 107 (3), 67-80.
- Cozzani, V., Tugnoli, A., & Salzano, E. (2007). Prevention of domino effect: from active and passive strategies to inherently safer design. J. Hazard Mater. 139 (2), 209-219.
- Cozzani, V., Tugnoli, A., & Salzano, E. (2009). The development of an inherent safety approach to the prevention of domino accidents. Accid. Anal. Prev. 41 (6), 1216-1227.
- Darbra, R.M., Palacios, A., & Casal, J. (2010). Domino effect in chemical accidents: main features and accident sequences. J. Hazard Mater. 183 (1-3), 565-573.
- Gómez-Mares, M., Zárate, L., & Casal, J. (2008). Jet fires and the domino effect. Fire Saf. J. 43 (8), 583-588.
- I, Y.P., Shu, C.M., & Chong, C.H. (2009). Applications of 3D QRA technique to the fire/ explosion simulation and hazard mitigation within a naphtha-cracking plant. J. Loss Prev. Process. Ind. 22 (4), 506-515.
- Kyunghyun, R., George, E., Zacharakis, J., & Kong, S.K., (2014). Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation. Int. J. Hydrogen Energy 39, 2390-2398. J. Loss Prev. Process Ind., 8, 229 (1995).
- Liu, X., Zhang, L., Guo, S., & Fu, M. (2017). A simplified method to evaluate the fire risk of liquid dangerous chemical transport vehicles passing a highway bridge. J. Loss Prev. Process. Ind. 48, 111-117.
- Mishra, K.B., Wehrstedt, K.D., & Krebs, H. (2014). Amuay refinery disaster: the aftermaths and challenges ahead. Fuel Process. Technol. 119, 198-203.
- Patra, A.K. (2006). Influence of wind speed profile and roughness parameters on the down- wind extension of vulnerable zones during dispersion of toxic dense gases. J. Loss Prev. Process. Ind. 19 (5), 478-480.
- Reniers, G., Van Lerberghe, P., & Van Gulijk, C. (2015). Security risk assessment and protec- tion in the chemical and process industry. Process Saf. Prog. 34 (1), 72-83.
- Spoelstra, M., Mahesh, S., Kooi, E., & Heezen, P., (2015). Domino effects at LPG and propane storage sites in The Netherlands. Reliab. Eng. Syst. Saf. 143, 85-90.
- Tsai, S.-F., Huang, A.-C., & Shu, C.-M. (2018). Integrated self-assessment module for fire rescue safety in a chemical plant -A case study. J. Loss Prev. Process. Ind. 51, 137-149.
- Zhang, H.D., & Zheng, X.P. (2012). Characteristics of hazardous chemical accidents in China: a statistical investigation. J. Loss Prev. Process. Ind. 25 (4), 686-693.
- Zhou, Y. & Liu, M. (2012). Risk assessment of major hazards and its application in urban plan- ning: a case study. Risk Anal. 32 (3), 566-577.
- Carol, S., Vilchez, J.A., & Casal, J. (2002). Study of the severity of industrial accidents with hazardous substances by historical analysis. J. Loss Prev. Proc. Ind. 15(6), 517-524.
- Chang, H.K. (2008). Emergency response procedures for specialty gas leak in high-tech plants, Master Thesis, National Yunlin University of Science and Technology, Yunlin, Taiwan, ROC.
- Ford, J.K., & Schmidt, A.M. (2000). Emergency response training: strategy for enhancing real-world performance. J. Hazard. Mat. 75, 195-215.
- Gangopadhyay, R.K., & Das, S.K. (2008). Ammonia leakage from refrigeration plant and the management practice. Proc. Safety Prog. 27, 15-20.
- Lin, C.P., Chang, H.K., Chang, Y.M., Chen, S.W., & Shu, C.M. (2009). Emergency response study for chemical releases in the high-tech industry in Taiwan-A semiconductor plant example. Proc. Safety Environ. Protec. 87, 353-360.
- Ramabrahmam, B.V., Sreenivasulu, B., & Mallikarjunan, M.M., (1996). Model on-site emer- gency plan. Case study: toxic gas release from an ammonia storage terminal. J. Loss Prev. Proc. Ind. 9, 259-265.
- Ramabrahmam, B.V., & Swaminathan, G., (2000). Disaster management plan for chemical process industries. Case study: investigation of release of chlorine to atmosphere. J. Loss Prev. Proc. Ind. 13, 57-62.
- Shih, T.S., & Hwang, W.W., (1997). Preliminary study of potential hazards for the semicon- ductor manufacturing process in Taiwan. J. Occ. Saf . Heal., 24(1): 1-7. (Institute of Occupational Safety and Health (IOSH), Council of Labor Affairs, Executive Yuan, Taipei, Taiwan, ROC)
- Tseng, J.M., Kuo, C.Y., Liu, M.Y., & Shu, C.M. (2008). Emergency response plan for boiler explosion with toxic chemical releases at Nan-Kung industrial park in central Taiwan. Proc. Safety Environ. Prot. 86, 415-420.
- Wang, H., Chen, B., He, X., Tong, Q., & Zhao, J. (2009). SDG-based HAZOP analysis of operating mistakes for PVC process. Proc. Safety Environ. Prot. 87, 40-46.
- Yun, R.L., Wan, T.J., Lin, C.H., Chang, Y.M., & Shu, C.M. (2007). Fire and explosion charac- teristics of 3-methyl pyridine at 270 °C with high oxygen concentrations. Proc. Safety Prog. 85, 251-255.
- Albahri, T.A., 2015. MNLR and ANN structural group contribution methods for predicting the flash point temperature of pure compounds in the transportation fuels range. Process Saf. Environ. Prot. 93, 182-191.
- Balogh, R.K., et al., 2015. Determination and quantification of 2'-O-fucosyllactose and 3-O-fucosyllactose in human milk by GC-MS as O-trimethylsilyl-oxime derivatives. J. Pharm. Biomed. Anal. 115, 450-456.
- Chen, Y.T., et al., 2014a. Auto-ignition characteristics of selected ionic liquids. Procedia Eng. 84, 285-292.
- Chen, Y., et al., 2014b. Fabrication of clean nanostructured metal materials on ionic liquid/ water interface. Mater. Lett. 132, 153-156.
- Dai, Z., et al., 2016.Combination of ionic liquids with membrane technology: a new approach for CO 2 separation. J. Membr. Sci. 497, 1-20.
- Diallo, A.O., et al., 2012. Revisiting physico-chemical hazards of ionic liquids. Sep. Purif. Technol. 93, 228-234.
- Götz, M., et al., 2015. Long-term thermal stability of selected ionic liquids in nitrogen and hydrogen atmosphere. Thermochim. Acta 600, 82-88.
- He, Q., et al., 2015. TG-GC-MS study of volatile products from Shengli lignite pyrolysis. Fuel 156, 121-128.
- Li, K., Kobayashi, T.A., 2016. A FT-IR spectroscopic study of ultrasound effect on aqueous imidazole based ionic liquids having different counter ions. Ultrason. Sonochem. 28, 39-46.
- Liaw, H.J., et al., 2012. Relationship between flash point of ionic liquids and their thermal decomposition. Green Chem. 14, 2001-2008.
- Liaw, H.J., et al., 2014. Effect of heating temperature on the flash point of ionic liquids. Procedia Eng. 84, 293-296.
- Liu, S.-H., Lin, W.-C., Xia, H., Hou, H.-Y., Shu, C.-M., 2018. Combustion of 1-butylimidazo- lium nitrate via DSC, TG, VSP2, FTIR, and GC/MS: An approach for thermal hazard, property and prediction assessment. Proc. Safety Environ. Protec. 116, 603-614.
- Madria, N., et al., 2013. Ionic liquid electrolytes for lithium batteries: synthesis, electrochemi- cal, and cytotoxicity studies. J. Power Sources 234, 277-284.
- Moukhina, E., 2015. Thermal decomposition of AIBN part C: SADT calculation of AIBN based on DSC experiments. Thermochim. Acta 621, 25-35.
- Nascimento, L.C.S., et al., 2015. Thermal study and characterization of nicotinates of some alkaline earth metals using TG-DSC-FTIR and DSC-system. Thermochim. Acta 604, 7-15.
- Pieczy´nska, A., et al., 2015. A comparative study of electrochemical degradation of imidazo- lium and pyridinium ionic liquids: a reaction pathway and ecotoxicity evaluation. Sep. Purif. Technol. 156, 522-534.
- Rewar, S., et al., 2016. Polybenzimidazole based polymeric ionic liquids possessing partial ionic character: effects of anion exchange on their gas permeation properties. J. Membr. Sci. 497, 282-288.
- Roduit, B., et al., 2015. Thermal decomposition of AIBN, Part B: simulation of SADT value based on DSC results and large scale tests according to conventional and new kinetic merging approach. Thermochim. Acta 621, 6-24.
- Rybinska, A., et al., 2016. Filling environmental data gaps with QSPR for ionic liquids: mod- eling n-octanol/water coefficient. J. Hazard. Mater. 303, 137-144.
- Sharifi, A., et al., 2013. Ionic liquid [b mim ][NO 3 ], an efficient medium for green and one-pot synthesis of benzo thiazinones at room-temperature. Sci. Iran. 20, 555-560.
- Smiglak, M., et al., 2006. Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem. Commun. 24, 2554-2556.
- Tseng, J.M., Lin, Y.F., 2011. Evaluation of a tert-butyl peroxy benzoate runaway reaction by five kinetic models. Ind. Eng. Chem. Res. 50, 4783-4787.
- Wang, Y., et al., 2015. Adsorption of imidazolium-based ionic liquids from aqueous solution onto cellulose-derived activated carbon materials. J. Environ. Chem. Eng. 3, 2426-2434.
- Ying, A.G., et al., 2015. Novel multiple-acidic ionic liquids: green and efficient catalysts for the synthesis of bis-indolyl methanes under solvent-free conditions. J. Ind. Eng. Chem. 24, 127-131.
- Yu, G., et al., 2013. QSPR study on the viscosity of bis (trifluoromethylsulfonyl) imide-based ionic liquids. J. Mol. Liquid 184, 51-59.
- American Society for Testing and Materials (ASTM) E1226-05, 2005. Standard Test Method for Pressure and Rate of Pressure Rise for Combustible Dusts. ASTM, West Conshohocken, PA.
- American Society for Testing and Materials (ASTM) E2079-07, 2007. Standard Test Methods for Limiting Oxygen (Oxidant) Concentration in Gases and Vapors. ASTM, West Conshohocken, PA.
- American Society for Testing and Materials (ASTM) E681, 1994.Standard Test Method for Concentration Limits of Flammability of Chemicals (Vapors and Gases). ASTM, West Conshohocken, PA.
- American Society for Testing and Materials (ASTM) E918-83, 2005. Standard Practice for Determining Limits of Flammability of Chemicals at Elevated Temperatures and Pressures. ASTM, West Conshohocken, PA.
- Britton, L.G., 2002. Two hundred years of flammable limits. Process Saf. Prog. 21, 1-11.
- Brooks, M.R., Crowl, D.A., 2007. Flammability envelopes for methanol, ethanol, acetonitrile and toluene. J. Loss Prev. Proc. 20, 144-150.
- Buckmaster, J.D., 1976. The quenching of deflagration waves. Combust. Flame 26, 151-162.
- Chen, C.C., Liaw, H.J., Wang, T.C., Lin, C.Y., 2009a. Carbon dioxide dilution effect on flam- mability limits for hydrocarbons. J. Hazard. Mater. 163, 795-803.
- Chen, J.R., Tsai, H.Y., Pan, H.J., Huang, Y.P., 2008. Characterization of upper flammability limits of propane/air mixtures at elevated pressures. In: Seventh International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions, St. Petersburg, Russia, pp. 166-174.
- Chen, C.C., Wang, T.C., Liaw, H.J., Chen, H.C., 2009b. Nitrogen dilution effect on the flam- mability limits for hydrocarbons. J. Hazard. Mater. 166, 880-890.
- Chong, C.T., Hochgreb, S., 2011. Measurements of laminar flame speeds of acetone/methane/ air mixtures. Combust. Flame 158, 490-500.
- Coward, H.F., Jones, G.W., 1952. Limits of Flammability of Gases and Vapors. Bureau of Mines, United States Government Printing Office, Washington, DC.
- Crowl, D.A., Louvar, J.F., 2011. Chemical Process Safety: Fundamentals with Applications, third ed. Pearson Education, Inc., Boston, MA.
- Design Institute for Physical Properties (DIPPR), 2012. DIPPR ®Data Compilation of Pure Chemical Properties. American Institute of Chemical Engineers, New York, NY. Dooley, S., Burke, M.P., Chaos, M., Stein, Y., Dryer, F.L., Zhukov, V.P., Finch, O., Simmie, J.M., Curran, H.J., 2010. Methyl formate oxidation: speciation data, laminar burning velocities, ignition delay times, and a validated chemical kinetic model. Int. J. Chem. Kinet. 42, 527-549.
- Egolfopoulos, F.N., Du, D.X., Law, C.K., 1992. A comprehensive study of methanol kinetics in freely-propagating and burner-stabilized flames, flow and static reactors, and shock tubes. Combust. Sci. Technol. 83, 33-75.
- Gérard, E., Götz, H., Pellegrini, S., Castanet, Y., Mortreux, A., 1998. Epoxide-tertiary amine combinations as efficient catalysts for methanol carbonylation into methyl formate in the presence of carbon dioxide. Appl. Catal., A: Gen. 170, 297-306.
- Hansen, T.J., Crowl, D.A., 2010. Estimation of the flammability zone boundaries for flam- mable gases. Process Saf. Prog. 29, 209-215.
- Joulin, G., Clavin, P., 1976. Analyse asymptotique des conditions d'extinction des flammes laminaires. Acta Astronaut. 3, 223-240.
- Ju, Y., Maruta, K., Niioka, T., 2001. Combustion limits. Appl. Mech. Rev. 54, 257-277.
- Kondo, S., Takizawa, K., Takahashi, A., Tokuhashi, K., 2006a. Extended Le Chatelier's for- mula and nitrogen dilution effect on the flammability limits. Fire Saf. J. 41, 406-417.
- Kondo, S., Takizawa, K., Takahashi, A., Tokuhashi, K., 2006b. Extended Le Chatelier's for- mula for carbon dioxide dilutioneffect on flammability limits. J. Hazard. Mater. A138, 1-8.
- Kondo, S., Takizawa, K., Takahashi, A., Tokuhashi, K., Sekiya, A., 2007. Flammability limits of isobutane and its mixtures with various gases. J. Hazard. Mater. 148, 640-647.
- Kuchta, J.M., 1985. Investigation of Fire and Explosion Accidents in the Chemical, Mining, and Fuel-Related Industries-A Manual, Bureau of Mines. United States Government Printing Office, Washington, DC.
- Liaw, H.J., Chen, C.C., Chang, C.H., Lin, N.K., Shu, C.M., 2012. Model to estimate the flam- mability limits of fuel-air-diluent mixtures tested in a constant pressure vessel. Ind. Eng. Chem. Res. 51, 2747-2761.
- Liaw, H.J., Chen, C.C., Lin, N. K., Shu, C.M., Shen, S.Y., 2016. Flammability limits esti- mation for fuel-air-diluents mixtures tested in a constant volume vessel. Proc. Safety Environ. Protec. 100, 150-162.
- Liaw, H.J., Chiu, Y.Y., 2003. The prediction of the flash point for binary aqueous-organic solu- tions. J. Hazard. Mater. 101, 83-106.
- Maček, A., 1979. Flammability limits: a re-examination. Combust. Sci. Technol. 21, 43-52.
- Mannan, S., 2005. Lees' Loss Prevention in the Process Industries, vol. 1., third ed. Elsevier Butterworth-Heinemann, Oxford, UK.
- Melhem, G.A., 1997. A detailed method for estimating mixture flammability limits using chemical equilibrium. Process Saf. Prog. 16, 203-218.
- Pekalski, A.A., Zevenbergen, J.F., Pasman, H.J., Lemkowitz, S.M., Dahoe, A.E., Scarlett, B., 2002. The relation of cool flames and auto-ignition phenomena to process safety at elevated pressure and temperature. J. Hazard. Mater. 93, 93-105.
- Ronney, P.D., Wachman, H.Y., 1985. Effect of gravity on laminar premixed gas combustion, I: Flammability limits and burning velocities. Combust. Flame 62, 107-119.
- Rowley, J.R., Rowley, R.L., Wilding, W.V., 2010. Experimental determination and re-exami- nation of the effect of initial temperature on the lower flammability limit of pure liquids. J. Chem. Eng. Data 55, 3063-3067.
- Shebeko, Y.N., Fan, W., Bolodian, I.A., Navzenya, V.Y., 2002. An analytical evaluation of flammability limits of gaseous mixtures of combustible-oxidizer-diluents. Fire Saf. J. 37, 549-568.
- SKC, 2015. World leader in sampling technologies, Available at:_http://www.skcinc.com/ catalog/index.php?cPath=200000000202000000202000300_ (accessed in 2015).
- Spalding, D.B., 1957. A theory of inflammability limits and flame quenching. Proc. R. Soc. London, Ser. A 240, 83-100.
- Veloo, P.S., Egolfopoulos, F.N., 2011. Studies of n-propanol, iso-propanol, and propane flames. Combust. Flame 158, 501-510.
- Vidal, M., Wong, W., Rogers, W.J., Mannan, M.S., 2006. Evaluation of lower flammability limits of fuel-air-diluents mixtures using calculated adiabatic flame temperatures. J. Hazard. Mater. 130, 21-27.
- Welty, J.R., Wicks, C.E., Wilson, R.E., 1976. Fundamentals of Momentum, Heat, and Mass Transfer, second ed. John Wiley & Sons, New York, NY, USA.
- Zabetakis, M.G., 1965. Flammability Characteristics of Combustible Gases and Vapors. Bureau of Mines, United States Government Printing Office, Washington, DC.
- Chi, J.H., Wu, S.H., Charpentier, J.C., Yet-Pole, I., Shu, C.M., 2012. Thermal hazard acci- dent investigation of hydrogen peroxide mixing with propanone employing calorimetric approaches. J. Loss Prevent. Proc. Ind. 25, 142-147.
- Duh, Y.S., Wu, X.H., Kao, C.S. 2008. Hazard ratings for organic peroxides. Process. Saf. Prog. 27, 89-99.
- Fauske, H.K. 2011. Gassy system vent sizing the role of two-phase flow. Burr Ridge: Fauske and Associates.
- Hou, H.Y., Shu, C.M., Duh, Y.S., 2011. Exothermic decomposition of cumene hydroperoxide at low temperature conditions. AIChE J. 47, 1893-1906.
- Kozlowski, C., Kurko, K. 2008. Consideration of autocatalytic behavior in determination of self-accelerating decomposition temperature. Burr Ridge: Fauske and Associates.
- Lin, C.P., Chang, C.P., Chou, Y.C., Shu, C.M., 2010. Modeling solid thermal explosion con- tainment on reactor HNIW and HMX. J. Hazard. Mater. 176, 549-558.
- Liu, S.H., Hou, H.Y., Shu, C.M., 2013. Effects of thermal runaway hazard for three organic peroxides conducted by acids and alkalines with DSC, VSP2, and TAM III. Thermochim Acta. 566, 226-232.
- Lu, G., Zhang, C., Chen, L., Chen, W., Yang, T., Zhou, Y., 2015. Kinetic analysis and self- accelerating decomposition temperature (SADT) of b-nitroso-a-naphthol. Process. Saf. Environ. Prot. 96, 69-76.
- Málek J. 1995. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta. 267, 61-73.
- Malow, M., Wehrstedt, K.D. 2005. Prediction of the self-accelerating decomposition tempera- ture (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements. J. Hazard. Mater. 120, 21-24.
- Montserrat, S., Málek, J., Colomer, P., 1998. Thermal degradation kinetics of epoxy-anhydride resins: I. Influence of a silica filler. Thermochim Acta. 313, 83-95.
- Naranjo, R.A., Conesa, J.A., Pedretti, E.F., Romero, O.R., 2012. Kinetic analysis: simultane- ous modelling of pyrolysis and combustion processes of dichrostachys cinerea. Biomass Bioenerg. 36, 170-175.
- Omrani, A., Simon, L.C., Rostami, A.A., Ghaemy, M., 2008. Cure kinetics, dynamic mechani- cal and morphological properties of epoxy resin-Im6NiBr 2 system. Eur. Polym. J. 44, 769-779. Safety Data Sheet, Akzo Nobel base chemicals BV, The Netherlands (2015). http://www. akzonobel.com/.
- Safety Data Sheet, Alibaba Group. China (2016). http://www.alibaba.com/showroom/tert- butyl-peroxy-3-5-5-trimethylhexanoatetbpmh.html.
- Saraf, S.R., Rogers, W.J., Mannan, M.S., 2003. Prediction of reactive hazards based on molec- ular structure. J. Hazard. Mater. 99, 15-29.
- Sato, Y., Okada, K., Akiyoshi, M., Murayama, S., Matsunaga, T., 2011. Diphenylmethane diisocyanate self-polymerization: thermal hazard evaluation and proof of runaway reac- tion in gram scale. J. Loss Prevent. Proc. Ind. 24, 558-562.
- Singh, H., Chavda, A., Nandula, S., Jasra, R.V., Maiti, M., 2012. Kinetic study on stereospe- cific polymerization of 1,3-butadiene using a nickel based catalyst system in environ- mentally friendly solvent. Ind. Eng. Chem. Res. 51, 11066-11071.
- Talouba, I.B., Balland, L., Mouhab, N., Chang, C.T., Abdelghani-Idrissi, M.A., 2011. Kinetic parameter estimation for decomposition of organic peroxides by means of DSC mea- surements. J Loss Prevent Proc Ind. 24, 391-406.
- Tong, J.W., Chen, W.C., Tsai, Y.T., Cao, Y., Chen, J.R., Shu, C.M., 2014.Incompatible reac- tion for (3-4-epoxycyclohexane) methyl-30-40-epoxycyclohexyl-carboxylate (EEC) by calorimetric technology and theoretical kinetic model. J. Therm. Anal. Calorim. 116, 1445-1452.
- Tsai, L.C., Tsai, Y.T., Lin, C.P., Liu, S.L., Wu, T.C., Shu, C.M., 2012. Isothermal versus non- isothermal calorimetric technique to evaluate thermokinetic parameters and thermal haz- ard of tert-butyl peroxy-2-ethyl hexanoate. J. Therm. Anal. Calorim. 109, 1291-1296.
- Tsai, Y.T., You, M.L., Qian, X.M., Shu, C.M., 2013. Calorimetric techniques combined with various thermokinetic models to evaluate incompatible hazard of tert-butyl peroxy- 2-ethyl hexanoate mixed with metal ions. Ind. Eng. Chem. Res. 52, 8206-8215.
- Vyazovkin, S., Burnham, A.K., Criado, J.M., Perez-Maqueda, L.A., Popescu, C., Sbirrazzuoli, N., 2011. ICTAC kinetics committee recommendations for performing kinetic computa- tions on thermal analysis data. Thermochim Acta. 520, 1-19.
- Xiao, H.M., Ma, X.Q., Lai, Z.Y., 2009. Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal. Appl. Ener. 86, 1741-1745.
- Yan, Q.L., Zeman, S., Jiménez, P. S., Zhao, F. Q., Pérez-Maqueda, L. A., & Málek, J., 2014. The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis. J. Hazard. Mater. 271, 185-195.
- Yang, Y., Tsai, Y.-T., Cao, C.-R., Shu, C.-M., 2017. Kinetic and thermal safety analysis for tert- butyl peroxy-3,5,5-trimethylhexanoate by advanced calorimetric technology. J. Therm. Anal. Calorim. 127, 2253-2262.
- Yoo, M.J., Kim, S.H., Park, S.D., Lee, W.S., Sun, J.W., Choi, J.H., Nahm, S., 2010. Investigation of curing kinetics of various cycloaliphatic epoxy resins using dynamic thermal analy- sis. Eur Polym J. 46, 1158-1162.
- You, M.L., Liu, M.Y., Wu, S.H., Chi, J.H., Shu, C.M., 2009. Thermal explosion and run- away reaction simulation of lauroyl peroxide by DSC tests. J Therm. Anal. Calorim. 96, 777-782.
- American Society for Testing and Materials (ASTM) E 698-11, 2011. Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method (W. Conshohocken, PA, USA)
- Casson, V., Maschio, G., 2012. Screening analysis for hazard assessment of peroxides decom- position. Ind. Eng. Chem. Res. 51, 7526-7535.
- Casson, V., Salzano, E., Maschio, G., 2012. Hydrogen peroxide decomposition analysis by screening calorimetry technique. Chem. Eng. Trans. 26, 27-32.
- Chen, K.Y., Wu, S.H., Wang, Y.W., Shu, C.M., 2008. Runaway reaction and thermal hazards simulation of cumene hydroperoxide by DSC. J. Loss Prev. Process Ind. 21, 101-e109.
- Chervin, S., Bodman, G.T., 1997. Mechanism and kinetics of decomposition from isothermal DSC data: development and application. Process Saf. Prog. 16, 94-100.
- Chiu, W.Y., Carratt, G.M., Soong, D.S., 1983. A computer model for the gel effect in free- radical polymerization. Macromolecules 16, 348-357.
- Dubikhin, V.V., Knerel'man, E.I., Manelis, G.B., Nazin, G.M., Prokudin, V.G., Stashina, G.A., Chukanov, N.V., Shastin, A.V., 2012. Thermal decomposition of azobis (isobutyroni- trile) in the solid state. Kinet. Catal. 446, 171-175.
- Duh, Y.S., Wu, X.H., Kao, C.S., 2008. Hazard ratings for organic peroxides. Process Saf. Prog. 27, 89-99.
- FAI, 2002. VSP2 Manual and Methodology. Fauske & Associates, Inc., Burr Ridge, Illinois, USA. Fisher, H.G., Goetz, D.D., 1991. Determination of self-accelerating decomposition tempera- tures using the accelerating rate calorimeter. J. Loss Prev. Process Ind. 4, 306-316.
- Gibson, N., Rogers, R.L., Wright, T.K., 1987. Chemical reaction hazards: an integrated approach, hazards from pressure. In: Institution of Chemical Engineers Symposium Series, vol. 102, pp. 61-84.
- Hofelich, T.C., Labarge, M.S., 2002. On the use and misuse of detected onset temperature of calorimetric experiments for reactive chemicals. J. Loss Prev. Process Ind. 15, 163-168.
- Hou, H.Y., Shu, C.M., Duh, Y.S., 2001. Exothermic decomposition of cumene hydroperoxide at low temperature conditions. AIChE J. 47, 1893-1896.
- Hou, H.Y., Su, C.H., Shu, C.M., 2012. Thermal risk analysis of cumene hydroperoxide in the presence of alkaline catalysts. J. Loss Prev. Process Ind. 25, 176-180.
- Hsu, J.M., Su, M.S., Huang, C.Y., Duh, Y.S., 2012. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO. J. Hazard. Mater. 217- 218, 19-28.
- Iwata, Y., Momota, M., Koseki, H., 2006. Thermal risk evaluation of organic peroxides by auto- matic pressure tracking adiabatic calorimeter. J. Therm. Anal. Calorim. 85, 617-622.
- Kotoyori, T., 1999. The self-accelerating decomposition temperature (SADT) of solids of the quasi-autocatalytic decomposition type. J. Hazard. Mater. 64, 1-19.
- Lee, P.R., 1969. Safe storage and transportation of some potentially hazardous materials. J. Appl. Chem. 19, 345.
- Li, X.R., Koseki, H., 2004. Interpretation of decomposition mechanisms of unstable substances near the SADT by an isothermal method. In: Loss Prevention and Safety Promotion in the Process Industries, 11th International Symposium Loss Prevention, Praha Congress Centre 31 May-3 June, pp. 2278-2285.
- Li, X.R., Koseki, H., 2005. Thermal decomposition kinetic of liquid organic peroxides. J. Loss Prev. Process Ind. 18, 460-464.
- Liu, S.H., Lin, C.P., Shu, C.M., 2011. Thermokinetic parameters and thermal hazard evalu- ation for three organic peroxides by DSC and TAM III. J. Therm. Anal. Calorim. 106, 165-172.
- Liu, A.-H., Shu, C.-H., Hou, H.-Y., 2015. Applications of thermal hazard analyses on process safety assessments. J. Loss Prev. Proc. Ind. 33, 59-69.
- Lu, K.T., Yang, C.C., Lin, P.C., 2006. The criteria of critical runaway and stable temperatures of catalytic decomposition of hydrogen peroxide in the presence of hydrochloric acid. J. Hazard. Mater. 135, 319-327.
- Malow, M., Wehrstedt, K.D., 2005. Prediction of the self-accelerating decomposition tempera- ture (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements. J. Hazard. Mater. 120, 21-24.
- Maschio, G., Bello, T., Scali, C., 1992. Optimization of batch polymerization reactors: model- ling and experimental results for suspension polymerization of Methyl-MethAcrylate. Chem. Eng. Sci. 47, 2609-2614.
- Maschio, G., Ferrara, I., Bassani, C., Nieman, H., 1999. An integrated calorimetric approach for the scale-up of polymerization reactors. Chem. Eng. Sci. 54, 3273-3282.
- Maschio, G., Lister, D.G., Casson, V., 2010. Use of screening analysis calorimetry in the study of peroxides decomposition. Chem. Eng. Trans. 19, 347-352.
- Maschio, G., Moutier, C., 1989. Polymerization reactor: the influence of "Gel Effect" in batch and continuous solution polymerization of methyl methacrylate. J. Appl. Polym. Sci. 37, 825-840. Mettler Company, 2014. TA8000 Operation Instructions, Switzerland.
- Miyake, A., Yamada, N., Ogawa, T., 2005. Mixing hazard evaluation of organic peroxides with other chemicals. J. Loss Prev. Process Ind. 18, 380-383.
- Soh, S.K., Sundberg, D.C., 1982. Diffusion-controlled vinyl polymerization. I. The gel effect. J. Polym. Sci. Polym. Chem. Ed. 20, 1299-1313.
- Sun, J., Li, Y., Hasegawa, K., 2001. A study of self-accelerating decomposition temperature (SADT) using reaction calorimetry. J. Loss Prev. Process Ind. 14, 331-336.
- Townsend, D.I., Tou, J.C., 1980. Thermal hazard evaluation by an accelerating rate calorim- eter. Thermochim. Acta. 37, 1-30.
- UN, 2003. Recommendations on the Transport of Dangerous Goods, 13th ed, vol. 1. United Nations Publications, Geneva, Switzerland, p. 104.
- Wang, Y.W., Duh, Y.S., Shu, C.M., 2006. Evaluation of adiabatic runaway reaction and vent sizing for emergency relief from DSC. J. Therm. Anal. Calorim. 85, 225-234.
- Whitmore, M.W., Wilberforce, J.K., 1993. Use of the accelerating rate calorimeter and the thermal activity monitor to estimate stability temperature. J. Loss Prev. Process Ind. 6, 95-101.
- Yeh, P.Y., Shu, C.M., Duh, Y.S., 2003. Thermal hazard analysis of methyl ethyl ketone perox- ide. Ind. Eng. Chem. Res. 40, 1-5.
- Abrams, D.S., Prausnitz, J.M. 1975. Statistical thermodynamics of liquid mixtures: new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J. 21, 116-128.
- Affens, W.A., McLaren, G.W. 1972. Flammability properties of hydrocarbon solutions in air, J. Chem. Eng. Data 17, 482-488.
- Alfa Aesar, A Johnson Matthey Company, http://www.alfa.com.
- ASTM D 93, 2000. Standard Test Methods for Flash-point by Pensky-Martens Closed Cup Tester, American Society for Testing and Materials, West Conshohocken, PA.
- ASTMD56, 1999. Standard test Method for Flash Point by Tag Closed Tester, American Society for Testing and Materials, West Conshohocken, PA.
- Bohnet, M., et al., Ullmann's Encyclopedia of Industrial Chemistry, Wiley Inter-Science (John Wiley & Sons), USA, 2007.
- Catoire, L., Paulmier, S., Naudet, V. 2006. Estimation of closed cup flash points of combus- tible solvent blends, J. Phys. Chem. Ref. Data 35, 9-14.
- CCPS/AIChE, 1993, Guidelines for Engineering Design for Process Safety, American Institute of Chemical Engineers, New York .
- Crowl, D.A., Louvar, J.F. 2002. Chemical Process Safety: Fundamentals with Applications, 2 nd ed., Prentice Hall PTR, New Jersey.
- DOT, Shippers-General Requirements for Shipments and Packagings, 2004. Class 3-Assignment of Packing Group, 49CFR173.121, National Archives and Records Administration, p. 488.
- Ellis, W.H. 1976. Solvent flash points-expected and unexpected, J. Coat. Technol. 48, 44-57.
- Fisher Scientific, 2008, https://www.fishersci.com/wps/portal/CMSTATIC?pagename=msds.
- Gmehling, J., Onken, U. 1977. Vapor-Liquid Equilibrium Data Collection, vol. 1, Part2a, DECHEMA, Frankfurt, Germany pp. 72, 275.
- Gmehling, J., Onken, U., Arlt, W. 1981. Vapor-Liquid Equilibrium Data Collection, Part1a, DECHEMA, Frankfurt, Germany.
- Gmehling, J., Onken, U., Arlt, W. 1982. Vapor-Liquid Equilibrium Data Collection, vol. 1, Part 2c, DECHEMA, Frankfurt, Germany pp. 229-250.
- Gmehling, J., Rasmussen, P. 1982. Flash points of flammable liquid mixtures using UNIFAC, Ind. Eng. Chem. Fundam. 21, 186-188.
- Gramajo de Doz, M.B., Bonatti, C.M., Solimo, H.N. 2003. Liquid-liquid equilibria of ter- nary and quaternary systems with two hydrocarbons, an alcohol, and water at 303.15K Systems containing 2,2,4-trimethylpentane, toluene, methanol, and water, or 2,2,4-tri- methylpentane, toluene, ethanol, and water, Fluid Phase Equilib. 205, 53-67.
- J.T Baker, http://www.jtbaker.com/msds/englishhtml/T3913.htm.
- Klauck, M., Grenner, A., Schmelzer, J. 2006. Liquid-liquid(-liquid) equilibria in ternary sys- tems of water + cyclohexylamine + aromatic hydrocarbon (toluene or propylbenzene) or aliphatic hydrocarbon (heptane or octane), J. Chem. Eng. Data 51, 1043-1050.
- Kosuge, H., Iwakabe, K. 2005. Estimation of isobaric vapor-liquid-liquid equilibria for par- tially miscible mixture of ternary system, Fluid Phase Equilib. 233, 47-55.
- Kurihara, K., Midorikawa, T., Hashimoto, T., Kojima, K., Ochi, K. 2002. Liquid-liquid solu- bilities for the binary system of methanol with octane and 2,2,4-trimethylpentane, J. Chem. Eng. Jpn. 35, 360-364.
- Lee, S.-J., Ha, D.-M. 2003. The lower flash points of binary systems containing nonflammable component, Korean J. Chem. Eng. 20, 799-802.
- Lees, F.P. 1996. Loss Prevention in the Process Industries, vol. 1, 2nd ed., Butterworth- Heinemann, Oxford, UK.
- Liaw, H.-J., Chen, C.-T., Gerbaud, V. 2008a. Flash-point prediction for binary partially mis- cible aqueous-organic mixtures, Chem. Eng. Sci. 63, 4543-4554.
- Liaw, H.-J., Chiu, Y.-Y. 2003. The prediction of the flash point for binary aqueous organic solutions, J. Hazard. Mater. 101, 83-106.
- Liaw, H.-J., Chiu, Y.-Y. 2006. A general model for predicting the flash point of miscible mix- ture, J. Hazard. Mater. 137, 38-46.
- Liaw, H.-J., Gerbaud, V., Chen, C.-C., Shu. 2010a. Effect of stirring on the safety of flammable liquid mixtures. J. Hazard. Mat. 177(1-3), 1093-1101.
- Liaw, H.-J., Gerbaud, V., Chiu, C.-Y. 2010b. Flash point for ternary partially miscible mixtures of flammable solvents, J. Chem. Eng. Data 55, 134-146.
- Liaw, H.-J., Lee, Y.-H., Tang, C.-L., Hsu, H.-H., Liu, J.-H. 2002. A mathematical model for predicting the flash point of binary solutions, J. Loss Prev. Proc. 15, 429-438.
- Liaw, H.-J., Lu, W.-H., Gerbaud, V., Chen, C.-C. 2008b. Flash-point prediction for binary partially miscible mixtures of flammable solvents, J. Hazard. Mater. 153, 1165-1175.
- Liaw, H.-J., Tang, C.-L., Lai, J.-S. 2004. A model for predicting the flash point of ternary flam- mable solutions of liquid, Combust. Flame 138, 308-319.
- Liaw, H.-J., Wang, T.-A. 2007. A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures, J. Hazard. Mater. 141, 193-201.
- Lu, Y.L., Chiou, D.R., Chen, L.J. 2002. Liquid-liquid equilibria for the ternary system water + octane + diethylene glycol monobutyl ether, J. Chem. Eng. Data 47, 310-312.
- Maçzyński, A., Wiśniewska-Gocłowska, B., & Góral, M. 2004. Recommended liquid-liquid equilibrium data. Part 1. Binary alkane-water systems, J. Phys. Chem. Ref. Data 33, 549-577.
- Mallinckrodt Baker, 2008, http://www.mallbaker.com/Americas/catalog/default.asp?searchfor =msds. Matsuda, H., Ochi, K. 2004. Liquid-liquid equilibrium data for binary alcohol + nalkane (C10-C16) systems: methanol + decane, ethanol + tetradecane, and ethanol + hexadec- ane, Fluid Phase Equilib. 224, 31-37.
- Merck (Ed.), 2006. The Merck Index, 14th ed., Merck & CO., NJ Merck, 2008, http://www.chemdat.info/mda/inten/index.html. NIOSH Pocket Guide to Chemical Hazards, 2008, http://www.cdc.gov/noish/npg/npgname-o. html.
- Poling, B.E., Prausnitz, J.M., O'Connell, J.P. 2001. The Properties of Gases and Liquids, fifth ed., McGraw-Hill, New York.
- Regulations, Regulation (EC) No. 1272/2008 of the European Parliament and of the Council, on Classification, Labeling and Packaging of Substances and Mixtures, 2008, Amending and Repealing Directives 67/548/EEC and 1999/45/EC, and Amending Regulation (EC) No. 1907/2006, Official J. Eur. Union, L353.
- Renon, H., Prausnitz, J.M. 1968. Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J. 14, 135-144.
- Resa, J.M., Goenaga, J.M., Iglesias, M., Gonzalez-Olmos, R., Pozuelo, D. 2006. Liquid-liquid equilibrium diagrams of ethanol + water + (ethyl acetate or 1-pentanol) at several tem- peratures, J. Chem. Eng. Data 51, 1300-1305.
- SFPE, The SFPE Handbook of Fire Protection Engineering, second ed., Society of Fire Protection Engineers, Boston, 1995.
- Tang, Y., Li, Z., Li, Y. 1995. Salting effect in partially miscible systems of n-butanol-water and butanone-water. 2. An extended Setschenow equation and its application, Fluid Phase Equilib. 105, 241-258.
- Tedia, 2008, http://www.tedia.com/products.php3.
- Tourino, A., Casas, L.M., Marino, G., Iglesias, M., Orge, B., Tojo, J. 2003. Liquid phase behaviour and thermodynamics of acetone +methanol + n-alkane (C9-C12) mixtures, Fluid Phase Equilib. 206, 61-85.
- Van Ness, H.C., Abbott, M.M. 1982. Classical Thermodynamics of Nonelectrolyte Solutions: With Applications to Phase Equilibria, McGraw-Hill, New York.
- White, D., Beyler, C.L., Fulper, C., Leonard, J. 1997. Flame spread on aviation fuels, Fire Saf. J. 28, 1-31.
- Boundy, R. H., Boyer, R. F. 1952. Styrene, Its Polymers, Copolymers, and Derivative. Rinehold, New York.
- Duh, Y.S., Kao, C.S., Hwang, H.H., Lee. W.L., 1998. Thermal Decomposition Kinetics of Cumene Hydroperoxide. Trans IChemE. 76 (Part B), 272-276.
- Duh, Y.S., Kao, C.S., Lee, C., Yu, S.W., 1997. Runaway Hazard Assessment of Cumene Hydroperoxide from the Cumene Oxidation Process. Proc. Safety Environ. Protec. 75(2), 73-80
- Ho, T.C., Duh, Y.S., Chen, J.R., 1998. Case Studies of Incidents in Runaway Reactions and Emergency Relief. Proc. Safety Prog. 17, 259.
- Hou, H.Y., Shu, C.M., Duh, Y.S., 2001. Exothermic Decomposition of Cumene Hydroperoxide at Low Temperature Conditions. AIChE J 47, 1893-1896.
- Hou, H.Y., Shu, C.M., Duh, Y.S., Yeh, P.Y., Peng, D.J., 2000. North American Thermal Analysis Society (NATAS), Ottawa, Canada.
- Leung, J.C., Fisher, H.G., 1998. Runaway Reaction Characterization: A Round-Robin Study on Three Additional Systems. Process Integration on Runaway Reactions, Pressure Relief Design, and Effluent Handling, New Orleans, LA, USA 1998; 109.
- Lin, S.-H., Li, J.-C., Chang, C.-M., Jr Peng, D., Shu, C.M., 2007. Basic Thermal Hazard Assessment on Cumene Hydroperoxide by Calorimetric Approaches. J. Occup. Safety Heal. 15, 297-307.
- Lin, W.H., Shu, C.M., 2005. Reactive Hazards of Cumene Hydroperoxide Incompatible with Sodium Hydroxide. National Yunlin University of Science and Technology, 5-22.
- NFPA 43B, 1999. Code for the Storage of Organic Peroxide Formulations, National Fire Protection Association, Quincy, MA, USA.
- Shu, C.M., Hou, H.Y., Peng, D.J., Duh, Y.S., 2000. The 2nd International Conference of EDUG, Ludwigs, Germany.
- The Isothermal Calorimetric Manual for Thermometric AB. Jarfalla, Sweden; 1999, Merck & CO., NJ, 2006.
- VSP2 Manual and Methodology, 1997 Fauske and Associates, Inc., Burr Ridge, IL, USA.
- Wang, Y.W., Shu, C.M., Duh, Y.S., Kao, C.S., 1999. Incompatibilities on Thermal Runaway Hazards of Cumene Hydroperoxide CHP. Methodology of Reaction Hazards Investigation and vent sizing, St Petersburg, Russia; 1999: 1-15.
- Wang, Y.W., Shu, C.M., Duh, Y.S., Kao, C. S., 2001. Thermal Runaway Hazards of Cumene Hydroperoxide with Contaminants. Ind Eng Chem Res., 40(4), 1125-1132.
- Chang, M.K., Wu, R.C., Lee, C.P. and Hsu, C.M., 2000, Inspection methodology of petro- chemical plant pipe decomposition and preventative technology review, Inst. Occ. Saf. Heal. J., 8(3): 329-343.
- Chien, J.F., Liu, C.M., Wen, Y.P. and Hsue, C.H., 2000, Research of cable car maintenance per- formance measurement index establishment for metro rapid mechanical plant, Rapid- Transit Technology, 22: 71-78.
- Errington, J. and Bullemer, P.T., 1998, Designing for abnormal situation management, Proceedings of the 1998 AIChE Conference on Process Plant Safety, Houston, TX, USA. Huang, H.H. and Chou, Y.W., 2002, The Application of integrated analysis mode on EIS struc- ture, Electronic Business Management Conference, National Chiao Tung University, Taipei, Taiwan, ROC.
- Hwang, W. T., Tien, S. W., Shu, C.M., 2007, Building an Executive Information System for Maintenance Efficiency in Petrochemical Plants-An Evaluation, Proc. Safety Environ. Protec. 85(2), 139-146.
- Levitt, J., 2003, Complete Guide to Preventive and Predictive Maintenance, 49-52 (Industrial Press, New York, NY, USA).
- Lorenzo, D.K., 1990, A manager's guide to reducing human error, Chemical Manufacturers' Association, Washington, DC, USA, 1-1.
- Mather, D., 2002, CMMS: A Timesaving Implementation Process, 86-106 (CRC Press, Boca Raton, FL, USA).
- Pintelon, L.M. and Wassenfove, L.V., 1990, A maintenance management tool, OMEGA Int. J. Manag. Sci., 18(1): 59-70.
- Waeyenbergh, G. and Pintelon, L., 2002, A framework for maintenance concept development, Int. J. Prod. Econ., 77: 299-313.
- Wireman, T., 1999, Developing Performance Indicators for Managing Maintenance, 167-180 (Industrial Press, New York, NY, USA).
- Abhishek, R., 2017. Towards Smart Manufacturing -Industry 4.0 and India, Online available at: http://www.makeinindia.com/article/-/v/towards-smart-manufacturing-industry- 4-0-and-india (last Accessed 08 December 2017).
- Almada-Lobo, F., 2016. The Industry 4.0 revolution and the future of manufacturing execution systems (MES). J. Innov. Manage. 3 (4), 16-21.
- Basl, J., 2017. Pilot study of readiness of Czech companies to implement the principles of Industry 4.0. Manage. Prod. Eng. Rev. 8 (2), 3-8.
- Bechtsis, D., Tsolakis, N., Vlachos, D., Iakovou, E., 2017. Sustainable supply chain manage- ment in the digitalization era: the impact of Automated Guided Vehicles. J. Clean. Prod. 142, 3970-3984.
- Biel, K., Glock, C.H., 2016. Systematic literature review of decision support models for energy-efficient production planning. Comput. Ind. Eng. 101, 243-259.
- Branke, J., Farid, S.S., Shah, N., 2016. Industry 4.0: a vision for personalized medicine supply chains? Cell Gene Ther. Insights 2 (2), 263-270.
- Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M., 2014. How virtualization, decen- tralization and network building change the manufacturing landscape: an industry 4.0 perspective. Int. J. Mech. Ind. Sci. Eng. 8 (1), 37-44.
- BRICS Business Council, 2017. Skill development for industry 4.0. In: A White Paper by BRICS Skill Development Working Group. BRICS Business Council, India Group, Online available at: http://www.globalskillsummit.com/Whitepaper-Summary.pdf (last Accessed 22 October 2017).
- de Sousa Jabbour, A.B.L., Chiappetta Jabbour, C.J., Sarkis, J., Gunasekaran, A., Furlan Matos Alves, M.W., Ribeiro, D.A., 2018a. Decarbonisation of operations management-looking back, moving forward: a review and implications for the production research commu- nity. Int. J. Prod. Res., 1-23.
- de Sousa Jabbour, A.B.L., Jabbour, C.J.C., Foropon, C., Godinho Filho, M., 2018b.Whentitans meet-can industry 4.0 revolutionize the environmentally-sustainable manufacturing wave? The role of critical success factors. Technol. Forecast. Soc. Change 132, 18-25, doi:10.1016/j.techfore.2018.01.017.
- de Sousa Jabbour, A.B.L., Jabbour, C.J.C., Godinho Filho, M., Roubaud, D., 2018c. Industry 4.0 and the circular economy: a proposed research agenda and original roadmap for sustainable operations. Ann. Oper. Res., 1-14, doi:10.1007/s10479-018-2772-8.
- Dey, P.K., Cheffi, W., 2013. Green supply chain performance measurement using the analytic hierarchy process: a comparative analysis of manufacturing organizations. Prod. Plann. Control 24 (8-9), 702-720.
- Duarte, S., Cruz-Machado, V., 2017. Exploring linkages between lean and green sup-ply chain and the industry 4.0. In: International Conference on Management Science and Engineering Management, Springer, Cham, July, pp. 1242-1252.
- Field, A., 2009. Discovering Statistics Using SPSS, 5th edition. Sage publications, Thousand Oaks, CA.
- Forbes, 2016. India to Be World's Fastest Growing Economy: Keeping It Going Will Be the Difficult Trick. A Report by Forbes, Online available at: http://www.forbes.com/sites/ timworstall/2016/02/08/india-to-be-worlds-fastest-growing-economy-keeping-it-go- ing-will-be-the-difficult-trick/ (Last Accessed 04 March 2017).
- Gandhi, S., Mangla, S.K., Kumar, P., Kumar, D., 2016. A combined approach using AHP and DEMATEL for evaluating success factors in implementation of green supply chain man- agement in Indian manufacturing industries. Int. J. Logist. Res. Appl. 19 (6), 537-561.
- Gilchrist, A., 2016. Introducing industry 4.0. In: Industry 4.
- Govindan, K., Seuring, S., Zhu, Q., Azevedo, S.G., 2016. Accelerating the transition towards sustainability dynamics into supply chain relationship management and governance structures. J. Clean. Prod. 112, 1813-1823.
- Grant Thornton Report, 2017. India's Readiness for Industry 4.0-A Focus on Auto-motive Sector, Online available at: http://www.grantthornton.in/globalassets/1.-memberfirms/ india/assets/pdfs/indiasreadinessforindustry4afocusonautomotive sector.pdf (last Accessed 28 August 2017).
- Hair Jr., J.F., Black, W.C., Babin, B.J., Anderson, R.E., Tatham, R.L., 2006. Multivariate Data Analysis: A Global Perspective, 7th edition. Pearson publications, Upper Saddle River, Boston.
- Hermann, M., Pentek, T., Otto, B., 2016. Design principles for Industry 4.0 scenarios. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), January, IEEE, pp. 3928-3937.
- Hofmann, E., Rüsch, M., 2017. Industry 4.0 and the current status as well as future prospects on logistics. Comput. Ind. 89, 23-34.
- Hu, A.H., Hsu, C.W., 2010. Critical factors for implementing green supply chain management practice: an empirical study of electrical and electronics industries in Taiwan. Manag. Res. Rev. 33 (6), 586-608.
- IBEF, 2016. India Brand Equity Foundation-A Report on Indian Manufacturing Sector, Online available at: http://www.ibef.org/industry/manufacturing-sector-india.aspx (Last Accessed 24 February 2017).
- Kagermann, H., 2015. Change through digitization-Value creation in the age of Industry 4.0. In: Management of Permanent Change. Springer Fachmedien, Wiesbaden, Germany. pp. 23-45.
- Kaiser, H.F., 1974. An index of factorial simplicity. Psychometrika 39 (1), 31-36.
- Khan, M., Wu, X., Xu, X., Dou, W., 2017. Big data challenges and opportunities in the hype of Industry 4.0. In: 2017 IEEE International Conference on Communications (ICC), May, IEEE, pp. 1-6.
- Liao, Y., Deschamps, F., Loures, E.D.F.R., Ramos, L.F.P., 2017. Past, present and future of Industry 4.0-A systematic literature review and research agenda proposal. Int. J. Prod. Res. 55 (12), 3609-3629.
- Lin, K.C., Shyu, J.Z., Ding, K., 2017. A cross-strait comparison of innovation policy under Industry 4.0 and sustainability Development Transition. Sustainability 9(5), 786.
- Luthra, S., Garg, D., Haleem, A., 2016b. The impacts of critical success factors for implement- ing green supply chain management towards sustainability: an empirical investigation of Indian automobile industry. J. Clean. Prod. 121, 142-158.
- Luthra, S., Govindan, K., Kannan, D., Mangla, S.K., Garg, C.P., 2017. An integrated frame- work for sustainable supplier selection and evaluation in supply chains. J. Clean. Prod. 140, 1686-1698.
- Luthra, S., Mangla, S.K., Xu, L., Diabat, A., 2016a. Using AHP to evaluate barriers in adopt- ing sustainable consumption and production initiatives in a supply chain. Int. J. Prod. Econ. 181, 342-349.
- Malhotra, M.K., Grover, V., 1998. An assessment of survey research in POM: from constructs to theory. J. Oper. Manage. 16 (4), 407-425.
- Mangla, S.K., Kumar, P., Barua, M.K., 2015. Risk analysis in green supply chain using fuzzy AHP approach: a case study. Resour. Conserv. Recycl. 104, 375-390.
- Mangla, S.K., Luthra, S., Jakhar, S., Tyagi, M., Narkhede, B., 2018. Benchmarking the logis- tics management implementation using Delphi and fuzzy DEMATEL. Benchmarking: Int. J. 25, 6.
- Müller, J., Dotzauer, V., Voigt, K.I., 2017a. Industry 4.0 and its impact on reshoring deci- sions of German manufacturing enterprises. In: Supply Management Research. Springer Gabler, Wiesbaden, pp. 165-179.
- Müller, J.M., Maier, L., Veile, J., Voigt, K.I., et al., 2017b. Cooperation strategies among SMEs for implementing industry 4.0. In: Kersten, W. (Ed.), Proceedings of the Hamburg International Conference of Logistics (HICL) ?23. Digitalization in Sup- ply Chain Management and Logistics, October 2017, Epubli, pp. 301-318 (ISBN: 9783745043280).
- Adio, S.O., Omar, M.H., Asif, M., et al., 2017. Arsenic and selenium removal from water using biosynthesized nanoscale zerovalent iron: a factorial design analysis. Process Saf. Environ. Prot., 107, 518-527
- Chabukdhara, M., Nema, A.K., 2013. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: probabilistic health risk approach. Ecotoxicol. Environ. Saf. 87(1), 57.
- Chen, Y., Jiang, X., Wang, Y., Zhuang, D., 2018. Spatial characteristics of heavy metal pol- lution and the potential ecological risk of a typical mining area: A case study in China. Proc. Safety Environ. Prot. 113, 204-219.
- Dlamini, P., Chaplot, V., 2012. On the interpolation of volumetric water content in research catchments. Phys. Chem. Earth A/B/C 50-52 (2), 165-174.
- Fan, L.Q., Chen, F.H., Fan, Y.L., 2012. Comprehensive assessment of soil environmental qual- ity with improved grey clustering method: a case study of soil heavy metals pollution. J. Agric. Sci. Appl. 1 (3), 67-73.
- Fang, Z.Q., 2016. Pollution Characteristics of Heavy Metal in Soil from Lead and Zinc Mine and Its Stabilization Study. China University of Mining & Technology, Beijing.
- Feng, S., Renmei, L., Amjad, Ali, et al., 2017. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol. Environ. Saf. 139, 254-262.
- Ferguson, R.B., 1996. Comparison of kriging and inverse-distance methods for mapping soil parameters. Soil Sci. Soc. Am. J. 60(4), 1237-1247.
- Fernández, J.A., Carballeira, A., 2001. Evaluation of contamination, by different elements, in terrestrial mosses. Arch. Environ. Contam. Toxicol. 40 (4), 461-468.
- Fu, C.A., Guo, J.S., Pan, J., et al., 2009. Potential ecological risk assessment of heavy metal pollution in sediments of the Yangtze River within the Wanzhou section, China. Biol. Trace Elem. Res. 129 (1-3), 270-277.
- Gong, G., Mattevada, S., O'Bryant, S.E., 2014. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ. Res. 130 (24), 59-69.
- Gupta, V.K., Ali, I., Saleh, T.A., et al., 2012. Chemical treatment technologies for waste-water recycling-an overview. RSC Adv. 2 (16), 6380-6388.
- Hakanson, L., 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14 (8), 975-1001.
- Hu, Y., Liu, X., Bai, J., et al., 2013. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environ. Sci. Pollut. Res. 20 (9), 6150.
- Huang, X.X., Zhu, X.F., Tang, L., 2012. Pollution characteristics and their comparative study of heavy metals in the gold and iron mine soil of the upstream area of Miyun Reservoir, Beijing, Acta Sci. Circumst. 32 (6), 1520-1528.
- Jian-Hua, M.A., Wang, X.Y., Hou, Q., et al., 2011. Pollution and potential ecological risk of heavy metals in surface dust on urban kindergartens. Geogr. Res. 30 (3), 486-495.
- Kowalska, J., Mazurek, R., Gasiorek, M., et al., 2016. Soil pollution indices conditioned by medieval metallurgical activity-a case study from Krakow (Poland). Environ. Pollut. 218, 1023-1036.
- Kravchenko, A., Bullock, D.G.A., 1999. Comparative study of interpolation methods for map- ping soil properties. Agron. J.91 (3), 393-400.
- Laslett, G.M., Mcbratney, A.B., Pahl, P.J., et al., 1987. Comparison of several spatial predic- tion methods for soil pH. Eur. J. Soil Sci. 38 (2), 325-341.
- Li, L., Cui, J., Liu, J., et al., 2016. Extensive study of potential harmful elements (Ag, As, Hg, Sb, and Se) in surface sediments of the Bohai Sea, China: sources and environmental risks. Environ. Pollut. 219, 432.
- Li, K., Gu, Y., Li, M., et al., 2017. Spatial analysis, source identification and risk assess- ment of heavy metals in a coalmining area in Henan, Central China. Int. Biodeterior. Biodegradation, Available online 18 April 2017.
- Li, Z., Ma, Z., van der Kuijp, T.J., et al., 2014. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci. Total Environ. 468-469, 843.
- Manta, D.S., Angelone, M., Bellanca, A., et al., 2002. Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 300 (1-3), 229-243.
- Mcshane, L.M., Meier, K.L., Wassermann, E.M., 1997. A comparison of spatial prediction techniques for an exploratory analysis of human cortical motor representations. Stat. Med. 16 (12), 1337-1355.
- Müller, G., 1969. Index of geo accumulation in sediments of the Rhine River. Geo J. 2 (3), 109-118.
- Peng, H., Liu, Y., Li, J., et al., 2007. An ecological risk assessment for heavy metals of the lead-zinc ore tailings. Chin. Geog. Sci. 3 (2), 217-224.
- Qing, X., Shu, H.L., 2008. Heavy metal pollution of surface soil and its evaluation of poten- tial ecological risk: a case study of different functional areas in Baotou City. J. Nat. Disasters 17(6), 6-12.
- Saleh, T.A., 2015a. Mercury sorption by silica/carbon nanotubes and silica/activated carbon: a comparison study. Aqua 64 (8),892-903.
- Saleh, T.A., 2015b. Isotherm, kinetic, and thermodynamic studies on Hg(II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. Environ. Sci. Pollut. Res. 22 (21), 16721-16731.
- Saleh, T.A., 2015c. Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering. IGI, ISBN-13: 978-1466695450.
- Saleh, T.A., Agarwal, S., Gupta, V.K., 2011. Synthesis of MWCNT/MnO 2 , and their appli- cation for simultaneous oxidation of arsenite and sorption of arsenate. Appl. Catal. B Environ. 106 (1-2), 46-53.
- Sani, H.A., Ahmad, M.B., Hussein, M.Z., et al., 2017.Nanocomposite of ZnO with montmoril- lonite for removal of lead and copper ions from aqueous solutions. Process Saf. Environ. Prot. 109, 97-105.
- Shepard, D., 1968. A two-dimensional interpolation function for irregularly-spaced data. In: ACM National Conference, ACM, pp. 517-524.
- Spokas, K., Graff, C., Morcet, M., et al., 2003. Implications of the spatial variability of landfill emission rates on geospatial analyses. Waste Manage. 23 (7), 599-607.
- Sun, C., Bi, C., Chen, Z., et al., 2010. Assessment on environmental quality of heavy metals in agricultural soils of Chongming Island, Shanghai City. J. Geogr. Sci. 20 (1), 135-147.
- Suresh, G., Sutharsan, P., Ramasamy, V., et al., 2012. Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol. Environ. Saf. 84 (10), 117-124.
- Weber, D.D., Englund, E.J., 1992. Evaluation and comparison of spatial interpolators II. Math. Geol. 24 (4), 381-391.
- Wuana, R.A., Okieimen, F.E., 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 2090-4614.
- Yang, G., Shao, C., Ju, M., 2014. Heavy metal contamination assessment and partition for industrial and mining gathering areas. Int. J. Environ. Res. Public Health 11 (7), 7286-7303.
- Zang, F., Wang, S., Nan, Z., et al., 2017. Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China. Geoderma 305, 188-196.
- Zhao, H., Xia, B., Fan, C., et al., 2012. Human health risk from soil heavy metal contamina- tion under different land uses near Dabaoshan Mine, Southern China. Sci. Total Environ. 417-418 (7385), 45-54.
- Cai, M., Gong, S., Li, X., 2008. Technique of human error failure analysis based on analytic hierarchy process. J. Saf. Sci. Technol. 4 (2), 74-77.
- Celik, M., Cebi, S., 2009. Analytical HFACS for investigating human errors in shipping acci- dent. Accid. Anal. Prev. 41 (1), 66-75.
- Chauvin, C., Lardjane, S., Morel, G., Clostermann, J.-P., Langard, B., 2013. Human and organ- isational factors in maritime accidents: analysis of collisions at sea using the HFACS. Accid. Anal. Prev. 59 (5), 26-37.
- Chen, S.-T., Wall, A., Davies, P., Yang, Z., Wang, J., Chou, Y.-H., 2013. A Human and Organisational Factors (HOFs) analysis method for marine casualties using HFACS- Maritime Accidents (HFACS-MA). Saf. Sci. 60 (12), 105-114.
- Chong, T., Yi, S., Heng, C., 2017. Application of set pair analysis method on occupational hazard of coal mining. Saf. Sci. 92, 10-16.
- Dai, W.Z., 2000. A new kind of model of the dynamic multiple attribute decision making based on new effective function and its application. Control Decis. 15 (2), 197-200.
- Daramola, A.-Y., 2014. An investigation of air accident in Nigeria using the Human Factors Analysis and Classification System (HFACS) framework. J. Air Transp. Manag. 35 (4), 39-50.
- Fu, G., 2013. Safety Management-A Behavior-based Approach to Accident Prevention. Science Press, Beijing.
- Harvey, B., 2016. The Oaks Colliery disaster of 1866: a case study in responsibility. Bus. Hist. 58 (4), 501-531.
- Heinrich, W.H., Peterson, D., Roos, N., 1980. Industrial Accident Prevention. McGraw-Hill Book Company, New York.
- Konstantin, P., 2010. The effects of error management climate and safety communication on safety: a multilevel study. Accid. Anal. Prev. 42, 1498-1506.
- Kumar, P., 2016. Categorization and standardization of accidental risk-criticality levels of human error to develop risk and safety management policy. Saf. Sci. 85 (1), 88-98.
- Lenne, M.-G., Salmon, P.-M., Liu, C.-C., Trotter, M., 2012. A systems approach to acci- dent causation in mining: an application of the HFACS method. Accid. Anal. Prev. 48 (3),111-117.
- Li, C., Sun, L., Jia, J., Cai, Y., Wang, X., 2016. Risk assessment of water pollution sources based on an integrated k-means clustering and set pair analysis method in the region of Shiyan. China. Sci. Total Environ. 557-558, 307-316.
- Madigan, R., Golightly, D., Madders, R., 2016. Application of Human Factors Analysis and Classification System (HFACS) to UK rail safety of line incidents. Accid. Anal. Prev. 97, 122-131.
- Mehrabian, A., Russell, J.A., 1974. An Approach to Environmental Psychology. MIT Press, Cambridge.
- Nie, B., Xin, H., Xin, S., Li, A., 2016. Experimental study on physiological changes of people trapped in coal mine accidents. Saf. Sci. 88, 33-43.
- Patterson, J.M., Shappell, S.A., 2010. Operator error and system deficiencies: analysis of 508 mining incidents and accidents from Queensland, Australia using HFACS. Accid. Anal. Prev. 42(4), 1379-1385.
- Reason, J., 1990. Human Error. Cambridge University Press, New York.
- Shappell, S.A., Wiegmann, D.A., 2001. Applying reason: the Human Factors Analysis and Classification System (HFACS). Hum. Factors Aerosp. Saf. 1, 59-86.
- Shappell, S.A., Wiegmann, D.A., 2004. HFACS analysis of military and civilian aviation acci- dents: a North American comparison. In: Proceedings of International Society of Air Safety Investigators, Australia, Queensland, November 2-8.
- Soner, O., Asan, U., Celik, M., 2015. Use of HFACS-FCM in fire prevention modelling on board ships. Saf. Sci. 77, 25-41.
- Stewart, J.M., 2002. Managing for Word Class Safety. A Wiley Interscience Publication, New York, pp. 1-31.
- Stewart, J.M., 2011. The turnaround in safety at the Kenora pulp paper mill. Prof. Saf., 34-44.
- Su, M.R., Yang, Z.F., Chen, B., et al., 2009. Urban ecosystem health assessment based on energy and set pair analysis-a comparative study of typical Chinese cities. Ecol. Modell. 220 (18), 2341-2348.
- Tabibzadeh, M., 2014. A Risk Analysis Methodology to Address Human and Organizational Factors in Offshore Drilling Safety: With an Emphasis on Negative Pressure Test. University of Southern California, Los Angeles.
- Tao, J., Fu, M., Sun, J., Zheng, X., Zhang, J., Zhang, D., 2014. Multifunctional assessment and zoning of crop production system based on set pair analysis-a comparative study of 31 provincial regions in mainland China. Commun. Nonlinear Sci. Numer. Simul. 19 (5), 1400-1416.
- Tarlor, G., Hegney, R., Easter, K., 2001. Enhancing Safety, 3rd ed. West one, West Australia.
- Wei, C., Dai, X., Ye, S., Guo, Z., Wu, J., 2016. Prediction analysis model of integrated carrying capacity using set pair analysis. Ocean Coast. Manag. 120, 39-48.
- Wiegmann, D.A., Shappell, S.A., 1997. Human factors analysis of post accident date: apply- ing theoretical taxonomies of human error. Int. J. Aviat. Psychol. 7, 67-81.
- Wiegmann, D.A., Shappell, S.A., 2001a. Human error analysis of commercial aviation acci- dents: application of the Human Factors Analysis and Classification System. Aviat. Space Environ. Med. 72, 1006-1016.
- Wiegmann, D.A., Shappell, S.A., 2001b. Applying the Human Factors Analysis and Classification System to the analysis of commercial aviation accident date. In: Proceedings of 11 th International Symposium on Aviation Psychology, Ohio State University, Columbus, OH.
- Wiegmann, D.A., Shappell, S.A., 2001c. Human error perspectives in aviation. Int. J. Aviat. Psychol. 11, 341-357.
- Wiegmann, D.A., Shappell, S.A., 2003. A Human Error Approach to Aviation Accident Analysis: The Human Factors Analysis and Classification System. Ashgate, Aldershot, UK. Wu, T., 2009. Application on the analysis of developmental trend of the student mark with five-element partial connection number. Math. Pract. Theory 39 (5), 53-59.
- Xuecai, X., Deyong, G., 2018. Human factors risk assessment and management: Process safety in engineering. Proc. Safety Environ. Prot. 113, 467-482.
- Zhan, Q., Zheng, W., Zhao, B., 2017. A hybrid human and organizational analysis method for railway accidents based on HFACS-Railway Accident (HFACS-RAs). Saf. Sci. 91, 232-250.
- Zhao, K.-Q., 1989. Set pair and set pair analysis a new concept and systematic analysis method. In: Proceeding of the National Conference on System Theory and Regional Planning, Baotou, China, pp. 87-91.
- Zhao, K.-Q., 2000a. Set Pair Analysis and its Preliminary Application. Hangzhou Science and Technology Press, Hangzhou, pp. 20-21.
- Zhao, K.-Q., 2000b. Set Pair Analysis and its Application. Zhejiang Science and Technology Press, Hangzhou.
- Zhao, K.-Q., 2005. Partial connection number. In: Progress of Artificial Intelligence in China. Beijing University of Posts and Telecommunications Press, Beijing, pp. 884-885.
- Zhou, X.-H., Zhang, J.-J., 2013. Risk comprehensive assessment method and its applica- tion based on the five-element connection number. Syst. Eng. Theory Pract. 33(8), 2169-2175.
- AREVA, EDF Energy, 2012. Pre-Construction Safety Report. Chapter 15.4: Level-2 PSA (No. UKEPR-0002-154 Issue 06).
- Arnold, L., 1992. Windscale, 1957: Anatomy of a Nuclear Accident. St. Martin's Press, New York.
- Ashley, S.F., Vaughan, G.J., Nuttall, W.J., Thomas, P.J., 2017b. Considerations in relation to off-site emergency procedures and response for nuclear accidents. Process Saf. Environ. Prot. 112, 77-95.
- Ashley, S.F., Vaughan, G.J., Nuttall, W.J., Thomas, P.J., Higgins, N.A., 2017a. Predicting the cost of the consequences of a large nuclear accident in the UK. Process Saf. Environ. Prot. 112, 96-113.
- Astbury, J., Horsley, S., Gent, N., 1999. Evaluation of a scheme for the pre-distribution of stable iodine (potassium iodate) to the civilian population residing within the immediate countermeasures zone of a nuclear submarine construction facility. J. Public Health 21, 412-414, doi:10.1093/pubmed/21.4.412.
- Aumonier, S., Morrey, M., 1990. Non-radiological risks of evacuation. J. Radiol. Prot. 10, 287, doi:10.1088/0952-4746/10/4/004.
- Ayrshire Civil Contingencies Team, 2015. Hunterston B Nuclear Power Station and Hunterston. A Decommissioning Site Off-Site Contingency Plan Redacted Version. https://www.east-ayrshire.gov.uk/Resources/PDF/H/Hunterston-off-site-emergency- plan-redacted-version.pdf. (Accessed August12 2017).
- Bosley, C., Bennett, S., 2014. Switzerland Hands Out Iodine in Case of Nuclear Disaster. Bloomberg, http://www.bloomberg.com/news/2014-11-05/switzerland-hands-out- iodine-in-case-of-nuclear-disaster.html. (Accessed August12 2017).
- British Energy Generation Ltd, 2007a. Heysham Power Stations: Emergency Plan. British Energy Generation Ltd.
- British Energy Generation Ltd, 2007b. Hartle pool Power Station: Emergency Plan. British Energy Generation Ltd.
- Charnock, T.W., Bexon, A.P., Sherwood, J., Higgins, N.A., Field, S.J., 2013. PACE: a geo- graphic information system based level 3 probabilistic accident consequence evalua- tion program. In: Presented at the ANS PSA 2013 International Topical Meeting on Probabilistic Safety Assessment and Analysis, Columbia, SC.
- Clarke, R.H., 1979. A Model for Short and Medium Range Dispersion of Radionuclides Released to the Atmosphere. NRPB R-91.
- DECC, 2011a. National Policy Statement for Nuclear Power Generation (EN-6). Volume I of II. DECC, 2011b. National Policy Statement for Nuclear Power Generation (EN-6). Volume II of II-Annexes.
- Dohrenwend, B.P., 1983. Psychological implications of nuclear accidents: the case of Three Mile Island. Bull. N. Y. Acad. Med. 59, 1060-1076.
- East Lothian Council, 2016. Torness Off-Site Emergency Plan. http://www.eastlothian.gov. uk/downloads/file/2821/tornessoff-siteplan-publicversion. (Accessed August 12 2017).
- Eckerman, K., Harrison, J., Menzel, H.-G., Clement, C.H., 2013. ICRP Publication 119: Compendium of Dose Coefficients based on ICRP Publication 60. Ann. ICRP, ICRP PUBLICATION 123: Assessment of Radiation Exposure of Astronauts in Space, 42, e1-e130. doi:10.1016/j.icrp.2013.05.003.
- Ehrhardt, J., Weis, A., 2000. RODOS: Decision support system for off-site nuclear emergency management in Europe (EUR19144).
- European Commission, 1989. Council Directive of 27 November 1989 on informing the gen- eral public about health protection measures to be applied and steps to be taken in the event of a radiological emergency, 89/618/EURATOM.
- European Commission, 1996. Council Directive 96/29/Euratom of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation, 96/29/EURATOM.
- European Commission, 2013. Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom,90/641/Euratom, 96/29/ Euratom, 97/43/Euratom and 2003/122/Euratom, 2013/59/EURATOM.
- European Commission, 2016. Council Regulation (Euratom) 2016/52 of 15 January 2016 lay- ing down maximum permitted levels of radioactive contamination of food and feed fol- lowing a nuclear accident or any other case of radiological emergency, and repealing Regulation (Euratom) No 3954/87and Commission Regulations (Euratom) No 944/89 and (Euratom) No 770/90.
- European Commission Directorate-General for Energy, Jourdain, J.R., Herviou, K., 2010. Medical effectiveness of iodine prophylaxis in a nuclear reactor emergency situation and overview of European practices.
- Farmer, F.R., 1967. Siting criteria-a new approach. In: Containment and Siting of Nuclear Power Plants. Presented at the Symposium on the Containment and Siting of Nuclear Power Plants, IAEA, Vienna, pp. 303-323.
- Fullwood, R.R., 1999. Probabilistic Safety Assessment in the Chemical and Nuclear Industries. Butterworth-Heinemann, Oxford, United Kingdom.
- Gering, F., Gerich, B., Wirth, E., Kirchner, G., 2013. Potential consequences of the Fukushima accident for off-site nuclear emergency management: a case study for Germany. Radiat. Prot. Dosimetry 155, 146-154, doi:10.1093/rpd/ncs323.
- Government of Japan, 2011. Report of the Japanese Government to the IAEA Ministerial Conference on Nuclear Safety -Accident at TEPCO's Fukushima Nuclear Power Stations.
- Grimston, M., Nuttall, W.J., Vaughan, G., 2014. The siting of UK nuclear reactors. J. Radiol. Prot. 34, R1, doi:10.1088/0952-4746/34/2/R1.
- Health and Safety Executive, 1990. Outline Emergency Planning for Licensed Nuclear Power Stations. Health and Safety Executive, 1994. Arrangements for responding to nuclear emergencies. Health and Safety Executive, 2001. Principles and guidelines to assist HSE in its judgements that duty-holders have reduced risk as low as reasonably practicable. http://www.hse. gov.uk/risk/theory/alarp1.htm. (Accessed August 12 2017).
- Health and Safety Executive, 2002. A guide to the Radiation (Emergency Preparedness and Public Information) Regulations 2001.
- Health Protection Agency, 2009. HPA-RPD-064-UK Recovery Handbooks for Radiation Incidents: 2009 (Version 3).
- Heffron, R.J., Ashley, S.F., Nuttall, W.J., 2016. Reform and issues in the global nuclear liability regime post Fukushima. Prog. Nucl. Energy 90, 1, doi:10.1016/j.pnucene.2016.02.019.
- Hicks, J.R., 1939. Value and Capital. Oxford University Press, Oxford, UK.
- Higgins, N.A., Jones, C., Munday, M., Balmforth, H., Holmes, W., Pfuderer, S., Mountford, L., Harvey, M., Charnock, T., 2008. COCO-2: a model to assess the economic impact of an accident. ISBN: 978-0-85951-628-0 (No. HPA-RPD-046).
- HM Government, 1965. Nuclear Installations Act 1965. HM Government, 1974. Health and Safety at Work Act 1974. HM Government, 2004. Civil Contingencies Act 204. HM Government, 2013. Energy Act 2013. UK Parliament: London.
- HM Government, 2015. Nuclear emergency planning: consolidated guidance. https://www. gov.uk/government/publications/nuclear-emergency-planning-consolidated-guidance. (Accessed August 12 2017).
- IAEA, 1994. Convention on Nuclear Safety. IAEA (Ed.), 1996. One decade after Chernobyl: Summing Up the Consequences of the Accident proceedings of an International Conference on One Decade After Chernobyl: Summing Up the Consequences of the Accident, International Conference on One Decade After Chernobyl: Summing Up the Consequences of the Accident. IAEA, Vienna.
- IAEA (Ed.), 1996. One decade after Chernobyl: Summing Up the Consequences of the Accident proceedings of an International Conference on One Decade After Chernobyl: Summing Up the Consequences of the Accident, International Conference on One Decade After Chernobyl: Summing Up the Consequences of the Accident. IAEA, Vienna.
- IAEA, 2002a. Preparedness and Response for a Nuclear or Radiological Emergency, GS-R-2.
- IAEA, 2002b. The human consequences of the Chernobyl nuclear accident: a strategy for recovery: a report. IAEA Vienna, Austria.
- IAEA, 2006. Fundamental Safety Principles SF-1 (No.STI/PUB/1273).
- IAEA, 2012a. Safety of Nuclear Power Plants: Design, IAEA Safety Standards, Specific Safety Requirements. Vienna, Austria.
- IAEA, 2012b. Lessons learned from the response to radiation emergencies (1945-2010).
- IAEA, 2013. Actions to protect the public in an emergency due to severe conditions at a light water reactor (No. EPR-NPP-PPA). Vienna, Austria.
- IAEA, 2014a. Status of Convention on Nuclear Safety.
- IAEA, 2014b. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards (No. GSR Part 3).
- IAEA, 2015. Preparedness and Response for a Nuclear or Radiological Emergency. IAEA Safety Standards Series (No.GSR Part 7).
- IAEA, JRC, 2012. Chronology of Key Milestones and NRC Actions Taken During the Three Mile Island Unit 2 Recovery and Decontamination, Major Nuclear Accidents.
- ICRP, 2007. The 2007 recommendations of the International Commission on Radiological Protection. Ann. ICRP 103, 81-123. doi:10.1016/j.icrp.2007.10.006.
- ICRP, 2009a. ICRP 109: application of the commission's recommendations for the protec- tion of people in emergency exposure situations. Ann. ICRP 39, 11-74. doi: 10.1016/j. icrp.2009.09.006.
- ICRP, 2009b. ICRP 111: application of the commission's recommendations to the protection of people living in long-term contaminated areas after a nuclear accident or a radiation emergency. Ann. ICRP 39, 15-33, doi:10.1016/j.icrp.2009.09.005.
- ICRP, 2009c. ICRP 111: application of the commission's recommendations to the protection of people living in long-term contaminated areas after a nuclear accident or a radiation emergency. Ann. ICRP 39, 35-46, doi:10.1016/j.icrp.2009.09.006. International Chernobyl Project, IAEA, 1991. The International Chernobyl Project: Technical Report: Assessment of Radiological Consequences and Evaluation of Protective Measures. IAEA, Vienna. Isle of Anglesey County Council, 2011. Wylfa Nuclear Power Station Off-site Emergency Plan. http://www.onr.org.uk/foi/2013/2013030177.pdf. (Accessed August12 2017).
- Johnson, J.R., 2003. Guest Editorial -on the distribution of potassium iodide to members of the public in anticipation of an accidental release of radioiodine. Radiat. Prot. Dosimetry 104, 195-197.
- Jones, A., Thomson, D., Hort, M., Devenish, B., 2007. The U.K. met office's next-generation atmospheric dispersion model, NAMEIII. In: Borrego, C., Norman, A.-L. (Eds.), Air Pollution Modeling and Its Application XVII. Springer, US, pp. 580-589.
- Kaldor, N., 1939. Welfare propositions and interpersonal comparisons of utility. Econ J. XLIX, 549-552.
- Kent County Council, 2015. Dungeness B Nuclear Power Station Off Site Emergency Plan. https://www.kent.gov.uk/data/assets/pdffile/0017/11339/Dungeness-off-site- emergency-plan.pdf. (Accessed August 12 2017).
- Medvedev, Z.A., 1990. The Legacy of Chernobyl. W.W. Norton, New York, ISBN: 0393308146.
- Morrey, M., 1997. Application of Emergency Reference Levels of Dose in Emergency Planning and Response. Documents of the NRPB 8:1, 21-34.
- Moss, T.H., Sills, D.L. (Eds.), 1981. The Three Mile Island nuclear accident: lessons and implications, Annals of the New York Academy of Sciences. ISBN: 9780897661164.
- Nathwani, J.S., Lind, N.C., 1997. Affordable Safety by Choice: the Life Quality Method. Institute for Risk Research, University of Waterloo, Waterloo, Ontario, Canada, ISBN: 9780969674795.
- Nathwani, J.S., Pandey, M.D., Lind, N.C., 2009. Engineering Decisions for Life Quality: How Safe is Safe Enough? Springer, London, ISBN: 9781848826021.
- National Research Council, 2004. Distribution and Administration of Potassium Iodide in the Event of a Nuclear Incident. National Academies Press.
- National Research Council, 2006. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. National Academy of Sciences, Washington, United States. NREFS, 2017. Managing Nuclear Risk: Environmental, Financial and Safety. http://www. nrefs.org. (Accessed August 12 2017).
- OECD, 2003. Short-term Countermeasures in Case of a Nuclear or Radiological Emergency. NEA. OECD-NEA, 2000. Methodologies for Assessing the Economic Consequences of Nuclear Reactor Accidents. Office of Nuclear Regulation, 2013a. LC 11 -Emergency Arrangement (No. NS-INSP-GD-011 (Rev 2)), Office for Nuclear Regulation (ONR) Compliance inspection -Technical inspection guides.
- Office of Nuclear Regulation, 2013b. The Technical Assessment of REPPIR Submissions and the Determination of Detailed Emergency Planning Zones (No. NS-TAST-GD-082 Revision 2), Office for Nuclear Regulation (ONR) Compliance inspection -Technical assessment guides. Office of Nuclear Regulation, 2014. Licensing Nuclear Installations (No. 3rd Edition). Office of Nuclear Regulation, 2016. Emergency planning areas around UK nuclear installa- tions. http://www.onr.org.uk/depz.htm. (Accessed August 12 2017).
- Pasquill, F., 1961. The estimation of the dispersion of wind borne material. Meteorol. Mag. 90, 33-49.
- Plyer, A., 2015. Facts for Features: Katrina Impact. The Data Center. https://s3.amazonaws. com/gnocdc/reports/TheDataCenterFactsforFeatures.pdf. (Accessed August 12 2017).
- Ranghieri, F., Ishiwatari, M., 2014. Learning from Megadisasters: Lessons from the Great East Japan Earthquake (No. 89069). World Bank.
- Sanderson, D.C.W., Cresswell, A., Allyson, J.D., McConville, P., 1997. Review of Past Nuclear Accidents: Source Terms and Recorded Gamma-Ray Spectra. http://eprints.gla. ac.uk/58967/. (Accessed August 12 2017).
- Smith, J.T., Beresford, N.A., 2005. Chernobyl: catastrophe and consequences. Springer; Published in association with Praxis Pub., Berlin; New York; Chichester, UK.
- Somerset County Council, 2008. Hinkley Point Essential Services Off-Site Plan for Hinkley Point A & B Nuclear Licenced Sites.
- Steinhauser, G., Brandl, A., Johnson, T.E., 2014. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci. Total Environ. 470, 800- 817, doi:10.1016/j.scitotenv.2013.10.029.
- Suffolk Resilience, 2017. Sizewell Off Site Emergency Plan. Issue3.5. http://www.suffolkre- silience.com/assets/PDF-plans/Sizewell/NPM-Sizewell-Off-Site-Plan-Issue-3.5-dated- 28-Feb-17.pdf.(Accessed August 12 2017).
- The Reconstruction Agency, 2014. The death toll of the earthquake-related deaths in the Great East Japan Earthquake (September 30, 2014). http://www.reconstruction.go.jp/topics/ main-cat2/sub-cat2-1/20141226kanrenshi.pdf. (Accessed August 12 2017).
- Thomas, P.J., 2017a. Age at death from a radiation-induced cancer based on the Marshall model for mortality period. Process Saf. Environ. Prot. 112, 143-178.
- Thomas, P., 2017b. Corroboration of the J-value model for life-expectancy growth in industri- alised countries. Nanotechnol. Percept. 13 (1), 31-44.
- Thomas, P.J., Jones, R.D., Kearns, J.O., 2010. The trade-offs embodied in J-value analysis. Process Saf. Environ. Prot. 88 (3), 147-167, doi:10.1016/j.psep.2010.02.001.
- Thomas, P.J., Stupples, D.W., Alghaffar, M.A., 2006a. The extent of regulatory consensus on health and safety expenditure. Part1: development of the J-value technique and evaluation of the regulators' recommendations. Process Saf. Environ. Prot. 84(5), 1-8, doi:10.1205/psep05005.
- Thomas, P.J., Stupples, D.W., Alghaffar, M.A., 2006b. The extent of regulatory consensus on health and safety expenditure. Part2: applying the J-value technique to case studies across industries. Process Saf. Environ. Prot. 84 (5), 9-15, doi:10.1205/psep05006.
- Thomas, P., Vaughan, G., 2013. All in the balance: assessing schemes to protect humans and the environment. Nucl. Future 9 (3), 41-51.
- Thomas, P.J., Vaughan, G.J., 2015a. Testing the validity of the value of a prevented fatality (VPF) used to assess UK safety measures. Process Saf. Environ. Prot. 94, 239-261, doi:10.1016/j.psep.2014.07.001.
- Thomas, P.J., Vaughan, G.J., 2015b. 'Testing the validity of the value of a prevented fatality (VPF) used to assess UK safety measures': reply to the comments of Chilton, Covey, Jones-Lee, Loomes, Pidgeon and Spencer. Process Saf. Environ. Prot. 93, 299-306, doi:10.1016/j.psep.2014.11.003.
- Thomas, P.J., Vaughan, G.J., 2015c. Pitfalls in the application of utility functions to the valuation of human life. Process Saf. Environ. Prot. 98, 148-169, doi:10.1016/j. psep.2015.07.002.
- Thomas, P., Waddington, I., 2017a. What is the value of life? A review of the value of a pre- vented fatality used by regulators and others in the UK. Nucl. Future 13 (1), 32-39.
- Thomas, P., Waddington, I., 2017b. Validating the J-value safety assessment tool against pan- national data. Process Saf. Environ. Prot. 112, 179-197.
- Till, J.E., Grogan, H.A., 2008. Radiological Risk Assessment and Environmental Analysis. Oxford University Press, Oxford, New York.
- U.S. Nuclear Regulatory Commission, 1981. Final programmatic environmental impact statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident Three Mile Island Nuclear Station, Unit 2, Docket no. 50-320, Metropolitan Edison Company, Jersey Central Power and Light Company, Pennsylvania Electric Company. U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation: Available from GPO Sales Program, Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission; National Technical Information Service, Washington, D.C.: Springfield, VA.
- United Nations, 2013. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation: Sixtieth Session (No. A/68/46).
- UNSCEAR, 1962. UNSCEAR 1962 Report. Annex D: Somatic Effects of Radiation. United Nations, New York.
- UNSCEAR, 2001. Hereditary Effects of Radiation UNSCEAR 2001 Report to the General Assembly, with Scientific Annex. United Nations, New York.
- UNSCEAR, 2008. Effects of Ionizing Radiation United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2006. United Nations, New York.
- Waddington, I., Thomas, P.J., Taylor, R.H., Jones, R.D., Thomas, P.J., 2017. J-value assess- ment of the cost effectiveness of UK sheep meat restrictions after the 1986 Chernobyl accident. Process Saf. Environ. Prot. 112, 114-130.
- Waddington, I., Thomas, P.J., Taylor, R.H., Vaughan, G.J., 2017a. J-value assessment of reloca- tion measures following the nuclear power plant accidents at Chernobyl and Fukushima Daiichi. Process Saf. Environ. Prot. 112, 16-49.
- Waddington, I., Thomas, P.J., Taylor, R.H., Vaughan, G.J., 2017c.J-value assessment of remediation measures following the nuclear power plant accidents at Chernobyl and Fukushima Daiichi. Process Saf. Environ. Prot. 112, 50-62.
- Wakeford, R., 2016. Chernobyl and Fukushima-where are we now? J. Radiol. Prot. 36, E1, doi:10.1088/0952-4746/36/2/E1.
- World Health Organization, 1999. Guidelines for Iodine Prophylaxis following Nuclear Accidents -1999 update (No. WHO/SDE/PHE/99.6). Geneva, Switzerland.
- World Health Organization, 2005a. Chernobyl: the true scale of the accident. 20 Years Later a UN Report Provides Definitive Answers and Ways to Repair Lives, Joint News Release WHO/IAEA/UNDP, http://www.who.int/mediacentre/news/releases/2005/pr38/en/.
- Accessed August 12 2017).
- World Health Organization, 2005b. Chernobyl: the true scale of the accident. 20 Years Later a UN Report Provides Definitive Answers and Ways to Repair Lives. Answers to Longstanding Questions. http://www.who.int/mediacentre/news/releases/2005/pr38/en/ index1.html. (Accessed August 12 2017).
- World Health Organization, 2006. Health effects of the Chernobyl accident: an overview. http://www.who.int/ionizing radiation/chernobyl/backgrounder/en/. (Accessed August 12 2017).
- World Health Organization, 2013. Global status report on road safety 2013: supporting a decade of action.
- Yabe, H., Suzuki, Y., Mashiko, H., Nakayama, Y., Hisata, M., Niwa, S.-I., Yasumura, S., Yamashita, S., Kamiya, K., Abe, M., Mental Health Group of the Fukushima Health Management Survey, 2014. Psychological distress after the Great East Japan Earthquake and Fukushima Daiichi nuclear power plant accident: results of a mental health and lifestyle survey through the Fukushima Health Management Survey in FY2011 and FY2012. Fukushima J. Med. Sci. 60, 57-67, doi:10.5387/fms.2014-1.
- Yasumura, S., 2014. Evacuation effect on excess mortality among institutionalized elderly after the Fukushima Daiichi nuclear power plant accident. Fukushima J. Med. Sci. 60, 192-195, doi:10.5387/fms.2014-13.
- Yumashev, D., Johnson, P., Thomas, P.J., 2017. Economically optimal strategies for medium- term recovery after a major nuclear reactor accident. Process Saf. Environ. Prot. 112, 63-76.