C^*- Actions on Stein analytic spaces with isolated singularities
2007
Abstract
Let $V$ be an irreducible complex analytic space of dimension two with normal singularities and $\vr:\mathbb{C^*}\times V\to V$ a holomorphic action of the group $\mathbb{C^*}$ on $V$. Denote by $\fa_\vr$ the foliation on $V$ induced by $\vr$. The leaves of this foliation are the one-dimensional orbits of $\vr$. %and its singularities are the fixed points of $\vr$. We will assume that there exists a \emph{dicritical} singularity $p\in V$ for the $\bc^*$-action, i.e. for some neighborhood $p\in W\subset V$ there are infinitely many leaves of $\mathcal {F}_\vr|_{W}$ accumulating only at $p$. The closure of such a local leaf is an invariant local analytic curve called a \emph{separatrix} of $\mathcal{F}_\vr$ through $p$. In \cite{Orlik} Orlik and Wagreich studied the 2-dimensional affine algebraic varieties embedded in $\mathbb{C}^{n+1}$, with an isolated singularity at the origin, that are invariant by an effective action of the form $\sigma_Q(t,(z_{0},...,z_{n}))=(t^{q_{0}}z_{0},..., t^{q_{n}}z_{n})$ where $Q=(q_0,...,q_n) \in\mathbb N^{n+1}$, i.e. all $q_{i}$ are positive integers. Such actions are called \emph{good} actions. In particular they classified the algebraic surfaces embedded in $\mathbb{C}^{3}$ endowed with such an action. It is easy to see that any good action on a surface embedded in $\mathbb{C}^{n+1}$ has a dicritical singularity at $0\in\mathbb{C}^{n+1}$. Conversely, it is the purpose of this paper to show that good actions are the models for analytic $\mathbb{C^*}$-actions on Stein analytic spaces of dimension two with a dicritical singularity.
References (24)
- V.I. Arnold: Geometrical methods in the theory of ordinary differential equations; Springer, 1988, New York.
- Arnold, V. I. Bifurcations of invariant manifolds of differential equations, and normal forms of neighborhoods of elliptic curves. Funkcional. Anal. i Prilo zen. 10 (1976), no. 4, 1-12. English translation: Functional Anal. Appl. 10 (1976), no. 4, 249-259 (1977).
- Camacho ; H. Movasati ; P.Sad: Fibered Neighborhoods of Complex Curves in Surfaces. The Journal of Geometric Analysis, v. 13, n. 1, p. 55-66, 2003.
- C. Camacho, H. Movasati, Neighborhoods of analytic varieties. Monografías del Insti- tuto de Matemática y Ciencias Afines, 35. Instituto de Matemática y Ciencías Afines, IMCA, Lima; Pontificia Universidad Católica del Perú, Lima, 2003.
- C. Camacho, P. Sad; Invariant varieties through singularities of holomorphic vector fields; Ann. of Math. 115 (1982), 579-595.
- C. Camacho and B. Scardua: Dicritical holomorphic flows on Stein manifolds; To appear in Archiv der Mathematik.
- R.C. Gunning: Introduction to holomorphic functions of several variables; Vol. III. Homological theory. The Wadsworth & Brooks/Cole Mathematics Series, Monterey, CA, 1990.
- R. Hartshorne: Ample subvarieties of algebraic varieties. Notes written in collabora- tion with C. Musili. Lecture Notes in Mathematics, Vol. 156 Springer-Verlag, Berlin- New York 1970 xiv+256 pp.
- H. B. Laufer: Normal two-dimensional singularities. Princeton University Press, Princeton, N.J., 1971.
- J. Martinet et J-P. Ramis, Classification analytique des équations différentielles non lineaires resonnants du premier ordre; Ann. Sc. Ec. Norm. Sup., 16,1983, 571-621.
- J. Martinet et J-P. Ramis, Problème de modules pour des équations différentielles non lineaires du premier ordre; Publ. Math. Inst. Hautes Études Scientifiques, 55 (1982), 63-124.
- J.F. Mattei and R. Moussu, Holonomie et intégrales premières; Ann. Ec. Norm. Sup. 13 (1980), 469-523.
- R. Narasimham: Several Complex Variables; Chicago Lectures in Mathematics, 1971.
- Orlik and Wagreich: Isolated singularities of algebraic surfaces with C * -action; Annals of Math. 93, 205-228 (1971).
- Orlik P.: Seifert manifolds. Springer Lecture Notes in Mathematics 291. 1-155 (1970)
- B. Scárdua: On the classification of holomorphic flows and Stein surfaces; Complex Variables and Elliptic Equations Vol. 52, No. 1, January 2007, 79-83.
- A. Seidenberg, Reduction of singularities of the differential equation Ady = Bdx; Amer. J. of Math. 90 (1968), 248-269.
- J. Seade: On the topology of isolated singularities in analytic spaces. Progress in Mathematics, 241. Birkhäuser Verlag, Basel, 2006.
- J. P. Serre (1956), Géométrie algébrique et géométrie analytique. Annales de l'Institut Fourier 6 (1956), 1-42.
- M. Suzuki: Sur les opérations holomorphes de C et de C * sur un space de Stein, Séminaire Norguet, Springer Lect. Notes, 670 (1977), 80-88.
- M. Suzuki: Sur les opérations holomorphes du groupe additif complexe sur l'space de deux variables complexes; Ann. Sci. Éc. Norm. Sup. 4 e série, t.10, 1977, p. 517 à 546.
- P. Wagreich: The structure of quasihomogeneous singularities. Singularities, Part 2 (Arcata, Calif., 1981), 593-611, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983.
- C. Camacho, H. Movasati B. Scárdua IMPA-Estrada D. Castorina, 110
- BRAZIL BRAZIL