Academia.eduAcademia.edu

Outline

Quadratic forms and holomorphic foliations on singular surfaces

1988, Mathematische Annalen

https://doi.org/10.1007/BF01456970

Abstract

We consider a holomorphic vector field F defined in a neighborhood q/of 0 e ~n with an isolated singularity at 0 ~ C n. Such a vector field induces a complex one dimensional foliation ~-(F) of q/\{0} with leaves given locally as the integrals of the differential equation

References (17)

  1. Bendixson, I.: Sur les points singuliers des 6quations differentielles. Ofv. Kangl. Vetenskaps. Akade. F6rhandlinger, (Stokholm) 9, 635-658 (1898)
  2. Briot, C.A., Bouquet, J.C.: J. l~c. Polyt. Cah. 36, 133 (1856)
  3. Camacho, C., Sad, P.: Invariant varieties through singularities of holomorphic vector fields. Ann. Math. 115, 579-595 (1982)
  4. Du Val, P.: On absolute and non-absolute singularities of algebraic surfaces. Rev. Fac. Sci. Univ. Istanbul, Ser.A 91, 159-215 (1944)
  5. Gomez-Mont, X.: Foliations in complex analytic spaces. The Lefschets Centennial Confer- ence Part III. Diff. Equations, Verjovsky, A. (ed.). Contemp. Math. 58, 3, 127-139 (1986)
  6. Grauert, H.: Ober Modifikationen und exzeptionelle analytische Menge. Math. Ann. 146, 331-368 (1962)
  7. Gunning, R.C.: Lectures on complex analytic varieties. Finite analytic mappings. Malh. Notes. Princeton: Princeton University Press 1974
  8. Gunning, R.C., Rossi, H.: Analytic functions of several complex variables. New York: Prentice Hall 1965
  9. Ince, E.L.: Ordinary differential equations, p. 297. New York: Dover 1926
  10. Laufer, H.: Normal two dimensional singularities. Ann. Math. Stud. No. 71 (1971)
  11. Laufer, H.: Taut two dimensional singularities. Math. Ann. 205, 131-164 (1973)
  12. Lins, N.A.: Construction of singular holomorphic vector fields and foliations in dimension two. J. Differ. Geom. 26, 1-31 (1987)
  13. Moussu, R.: Les conjectures de R. Thom sur les singularitrs de feuilletages holomorphes. Preprint
  14. Mattei, J.F., Moussu, R.: Holonomie et intrgrales premieres. Ann. Sci. Ec. Norm. Super., IV. Ser. 13, 469-523 (1980)
  15. Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity. Publ. Math. Inst. Hautes Etud. Sci. 9, 5-22 (1961)
  16. Narasimhan, R.: Introduction to the theory of analytic spaces. (Lect. Notes Math., Vol. 25). Berlin Heidelberg New York: Springer 1966
  17. Seidenberg, A.: Reduction of singularities of the differential equation AdY=EdX. Am. J. Math. 90, 248-269 (1968)