Dicritical holomorphic flows on Stein manifolds
2007, Archiv Der Mathematik
https://doi.org/10.1007/S00013-007-2170-YAbstract
We study holomorphic flows on Stein manifolds. We prove that a holomorphic flow with isolated singularities and a dicritical singularity of the form $\sum^{n}_{j=1}\lambda_{j}z_{j}\frac{\partial}{\partial z_{j}}+\ldots, \lambda_{j}\in \mathbb{Q}_{+},\forall j \in \{1,\ldots,n\}$ on a Stein manifold $M^n, n \geq 2$ with ${\mathop{H}\limits^{\vee}}{^{2}}(M^{n}, {{{\mathbb{Z}}}})=0$ , is globally analytically linearizable; in particular M is biholomorphic to ${\mathbb{C}}^{n}$ . A complete stability result for periodic orbits is also obtained.
References (19)
- V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Springer, New York, 1988.
- C. Camacho and A. Lins Neto, The topology of integrable forms near a singular- ity. Inst. Hautes Édudes Sci. Pub. Math. 55, 5-35 (1982).
- D. Cerveau and B. Scárdua, Complete polynomial vector fields in two complex variables. Forum Mathematicum 17(3), 407-430 (2005).
- E. Ghys and J. C. Rebelo, Singularités des flots holomorphes II. Ann. Inst. Fourier 47(4), 1117-1174 (1997).
- R. C. Gunning, Introduction to holomorphic functions of several variables, Vol. I. Function theory, The Wadsworth & Brooks/Cole Mathematics Series, Monterey, CA, 1990.
- R. C. Gunning, Introduction to holomorphic functions of several variables, Vol. II, Local Theory, The Wadsworth & Brooks/Cole Mathematics Series, Monterey, CA, 1990.
- R. C. Gunning, Introduction to holomorphic functions of several variables, Vol. III. Homological theory, The Wadsworth & Brooks/Cole Mathematics Series, Monterey, CA, 1990.
- R. Narasimham, Several Complex Variables, Chicago Lectures in Mathematics, 1971.
- T. Nishino, Nouvelles recherches sur les fonctions entières de pluiseurs variables complexes (II) Fonctions entières qui se réduisent à celles d'une variable. J. Math. Kyoto Univ. 9, 221-274 (1969).
- T. Nishino, Nouvelles recherches sur les fonctions entières de pluiseurs variables complexes (III) Sur quelques propriétés topologiques des surfaces premières. J. Math. Kyoto Univ. 10-2, 245-271 (1970).
- J. C. Rebelo, Singularités des flots holomorphes. Ann. Inst. Fourier 46(2), 411-428 (1996).
- J. C. Rebelo, Complete algebraic vector fields on affine surfaces II. J. Differential Equations 216(1), 32-77 (2005).
- R. W. Richardson, Principal orbit types for reductive groups acting on Stein man- ifolds. Math. Ann. 208, 323-331 (1974).
- H. Saito, Fonctions entières qui se réduisent à certains polynomes (1). Osaka J. Math. 9, 293-332 (1972).
- B. Scárdua, On the classification of holomorphic flows and Stein surfaces. Complex Variables and Elliptic Equations 52(1), 79-83 (January 2007).
- M. Suzuki, Sur les opérations holomorphes de C et de C * sur un space de Stein. Séminaire Norguet, Springer Lect. Notes 670 1977, 80-88.
- M. Suzuki, Sur les opérations holomorphes du groupe additif complexe sur l'space de deux variables complexes. Ann. Sci. Éc. Norm. Sup. 4 e série 10, 517-546 (1977).
- César Camacho, IMPA-Estrada D. Castorina, 110 Jardim Botânico, Rio de Janeiro - RJ, CEP. 22460-320, BRAZIL
- Bruno Scárdua, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, 21.945-970 Rio de Janeiro-RJ, BRAZIL and ICTP, Trieste, Italy e-mail: scardua@impa.br Received: 27 September 2006