Academia.eduAcademia.edu

Outline

Dicritical holomorphic flows on Stein manifolds

2007, Archiv Der Mathematik

https://doi.org/10.1007/S00013-007-2170-Y

Abstract

We study holomorphic flows on Stein manifolds. We prove that a holomorphic flow with isolated singularities and a dicritical singularity of the form $\sum^{n}_{j=1}\lambda_{j}z_{j}\frac{\partial}{\partial z_{j}}+\ldots, \lambda_{j}\in \mathbb{Q}_{+},\forall j \in \{1,\ldots,n\}$ on a Stein manifold $M^n, n \geq 2$ with ${\mathop{H}\limits^{\vee}}{^{2}}(M^{n}, {{{\mathbb{Z}}}})=0$ , is globally analytically linearizable; in particular M is biholomorphic to ${\mathbb{C}}^{n}$ . A complete stability result for periodic orbits is also obtained.

References (19)

  1. V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Springer, New York, 1988.
  2. C. Camacho and A. Lins Neto, The topology of integrable forms near a singular- ity. Inst. Hautes Édudes Sci. Pub. Math. 55, 5-35 (1982).
  3. D. Cerveau and B. Scárdua, Complete polynomial vector fields in two complex variables. Forum Mathematicum 17(3), 407-430 (2005).
  4. E. Ghys and J. C. Rebelo, Singularités des flots holomorphes II. Ann. Inst. Fourier 47(4), 1117-1174 (1997).
  5. R. C. Gunning, Introduction to holomorphic functions of several variables, Vol. I. Function theory, The Wadsworth & Brooks/Cole Mathematics Series, Monterey, CA, 1990.
  6. R. C. Gunning, Introduction to holomorphic functions of several variables, Vol. II, Local Theory, The Wadsworth & Brooks/Cole Mathematics Series, Monterey, CA, 1990.
  7. R. C. Gunning, Introduction to holomorphic functions of several variables, Vol. III. Homological theory, The Wadsworth & Brooks/Cole Mathematics Series, Monterey, CA, 1990.
  8. R. Narasimham, Several Complex Variables, Chicago Lectures in Mathematics, 1971.
  9. T. Nishino, Nouvelles recherches sur les fonctions entières de pluiseurs variables complexes (II) Fonctions entières qui se réduisent à celles d'une variable. J. Math. Kyoto Univ. 9, 221-274 (1969).
  10. T. Nishino, Nouvelles recherches sur les fonctions entières de pluiseurs variables complexes (III) Sur quelques propriétés topologiques des surfaces premières. J. Math. Kyoto Univ. 10-2, 245-271 (1970).
  11. J. C. Rebelo, Singularités des flots holomorphes. Ann. Inst. Fourier 46(2), 411-428 (1996).
  12. J. C. Rebelo, Complete algebraic vector fields on affine surfaces II. J. Differential Equations 216(1), 32-77 (2005).
  13. R. W. Richardson, Principal orbit types for reductive groups acting on Stein man- ifolds. Math. Ann. 208, 323-331 (1974).
  14. H. Saito, Fonctions entières qui se réduisent à certains polynomes (1). Osaka J. Math. 9, 293-332 (1972).
  15. B. Scárdua, On the classification of holomorphic flows and Stein surfaces. Complex Variables and Elliptic Equations 52(1), 79-83 (January 2007).
  16. M. Suzuki, Sur les opérations holomorphes de C et de C * sur un space de Stein. Séminaire Norguet, Springer Lect. Notes 670 1977, 80-88.
  17. M. Suzuki, Sur les opérations holomorphes du groupe additif complexe sur l'space de deux variables complexes. Ann. Sci. Éc. Norm. Sup. 4 e série 10, 517-546 (1977).
  18. César Camacho, IMPA-Estrada D. Castorina, 110 Jardim Botânico, Rio de Janeiro - RJ, CEP. 22460-320, BRAZIL
  19. Bruno Scárdua, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, 21.945-970 Rio de Janeiro-RJ, BRAZIL and ICTP, Trieste, Italy e-mail: scardua@impa.br Received: 27 September 2006