Quantum out-of-equilibrium cosmology
2019, The European Physical Journal C
https://doi.org/10.1140/EPJC/S10052-019-6751-2Abstract
In this work, our prime focus is to study the one to one correspondence between the conduction phenomena in electrical wires with impurity and the scattering events responsible for particle production during stochastic inflation and reheating implemented under a closed quantum mechanical system in early universe cosmology. In this connection, we also present a derivation of quantum corrected version of the Fokker-Planck equation without dissipation and its fourth order corrected analytical solution for the probability distribution profile responsible for studying the dynamical features of the particle creation events in the stochastic inflation and reheating stage of the universe. It is explicitly shown from our computation that quantum corrected Fokker-Planck equation describe the particle creation phenomena better for Dirac delta type of scatterer. In this connection, we additionally discuss Itô, Stratonovich prescription and the explicit role of finite temperature effective potential for solving the probability distribution profile. Furthermore, we extend our discussion of particle production phenomena to describe the quantum description of randomness involved in the dynamics. We also present computation to derive the expression for the measure of the stochastic non-linearity (randomness or chaos) arising in the stochastic inflation and reheating epoch of the universe, often described by Lyapunov Exponent. Apart from that, we quantify the quantum chaos arising in a closed system by a more strong measure, commonly known as Spectral Form Factor using the principles of random matrix theory (RMT). Additionally, we discuss the role of out of time order correlation function (OTOC) to describe quantum chaos in the present non-equilibrium field theoretic setup and its cona e-mails:
References (110)
- D. Baumann, TASI Lectures on Inflation https://doi.org/10.1142/ 9789814327183_0010. arXiv:0907.5424 [hep-th]
- D. Baumann, TASI Lectures on Primordial Cosmology. arXiv:1807.03098 [hep-th]
- D. Baumann, L. Inflation and String Theory. https:// doi.org/10.1017/CBO9781316105733. arXiv:1404.2601 [hep-th]
- C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan, L. Senatore, The effective field theory of inflation. JHEP 0803, 014 (2008). https://doi.org/10.1088/1126-6708/2008/03/ 014. arXiv:0709.0293 [hep-th]
- S. Weinberg, Effective field theory for inflation. Phys. Rev. D 77, 123541 (2008). https://doi.org/10.1103/PhysRevD.77. 123541. arXiv:0804.4291 [hep-th]
- L.V. Delacretaz, V. Gorbenko, L. Senatore, The supersymmetric effective field theory of inflation. JHEP 1703, 063 (2017). https:// doi.org/10.1007/JHEP03(2017)063. arXiv:1610.04227 [hep-th]
- L. Senatore, Lectures on Inflation. https://doi.org/10.1142/ 9789813149441-0008. arXiv:1609.00716 [hep-th]
- L.V. Delacretaz, T. Noumi, L. Senatore, Boost breaking in the EFT of inflation. JCAP 1702(02), 034 (2017). https://doi.org/10. 1088/1475-7516/2017/02/034. arXiv:1512.04100 [hep-th]
- D. Lopez Nacir, R .A. Porto, L. Senatore, M. Zaldarriaga, Dis- sipative effects in the effective field theory of inflation. JHEP 1201, 075 (2012). https://doi.org/10.1007/JHEP01(2012)075. arXiv:1109.4192 [hep-th]
- L. Senatore, M. Zaldarriaga, The effective field theory of multi- field inflation. JHEP 1204, 024 (2012). https://doi.org/10.1007/ JHEP04(2012)024. arXiv:1009.2093 [hep-th]
- S. Choudhury, S. Pal, Brane inflation in background supergrav- ity. Phys. Rev. D 85, 043529 (2012). https://doi.org/10.1103/ PhysRevD.85.043529. arXiv:1102.4206 [hep-th]
- S. Choudhury, S. Pal, Fourth level MSSM inflation from new flat directions. JCAP 1204, 018 (2012). https://doi.org/10.1088/ 1475-7516/2012/04/018. arXiv:1111.3441 [hep-ph]
- S. Choudhury, S. Pal, DBI Galileon inflation in background SUGRA. Nucl. Phys. B 874, 85 (2013). https://doi.org/10.1016/ j.nuclphysb.2013.05.010. arXiv:1208.4433 [hep-th]
- S. Choudhury, T. Chakraborty, S. Pal, Higgs inflation from new Kähler potential. Nucl. Phys. B 880, 155 (2014). https://doi.org/ 10.1016/j.nuclphysb.2014.01.002. arXiv:1305.0981 [hep-th]
- S. Choudhury, A. Mazumdar, S. Pal, Low and High scale MSSM inflation, gravitational waves and constraints from Planck. JCAP 1307, 041 (2013). https://doi.org/10.1088/1475-7516/2013/07/ 041. arXiv:1305.6398 [hep-ph]
- S. Choudhury, A. Mazumdar, An accurate bound on tensor- to-scalar ratio and the scale of inflation. Nucl. Phys. B 882, 386 (2014). https://doi.org/10.1016/j.nuclphysb.2014.03. 005. arXiv:1306.4496 [hep-ph]
- S. Choudhury, A. Mazumdar, E. Pukartas, Constraining N = 1 supergravity inflationary framework with non-minimal Käh- ler operators. JHEP 1404, 077 (2014). https://doi.org/10.1007/ JHEP04(2014)077. arXiv:1402.1227 [hep-th]
- S. Choudhury, A. Mazumdar, Reconstructing inflationary potential from BICEP2 and running of tensor modes. arXiv:1403.5549v2
- S. Choudhury, Can effective field theory of inflation gener- ate large tensor-to-scalar ratio within Randall-Sundrum single braneworld? Nucl. Phys. B 894, 29 (2015). https://doi.org/10. 1016/j.nuclphysb.2015.02.024. arXiv:1406.7618 [hep-th]
- S. Choudhury, B.K. Pal, B. Basu, P. Bandyopadhyay, Quantum gravity effect in torsion driven inflation and CP violation. JHEP 1510, 194 (2015). https://doi.org/10.1007/JHEP10(2015)194. arXiv:1409.6036 [hep-th]
- S. Choudhury, S. Panda, COSMOS-e-GTachyon from string the- ory. Eur. Phys. J. C 76(5), 278 (2016). https://doi.org/10.1140/ epjc/s10052-016-4072-2. arXiv:1511.05734 [hep-th]
- S. Choudhury, COSMOS-e -soft Higgsotic attractors. Eur. Phys. J. C 77(7), 469 (2017). https://doi.org/10.1140/epjc/ s10052-017-5001-8. arXiv:1703.01750 [hep-th]
- A. Naskar, S. Choudhury, A. Banerjee, S. Pal, Inflation to struc- tures: EFT all the way. arXiv:1706.08051v2
- S. Choudhury, CMB from EFT. arXiv:1712.04766v2
- S. Choudhury, Reconstructing inflationary paradigm within effective field theory framework. Phys. Dark Univ. 11, 16 (2016). https://doi.org/10.1016/j.dark.2015.11.003. arXiv:1508.00269 [astro-ph.CO]
- S. Choudhury, S. Pal, Reheating and leptogenesis in a SUGRA inspired brane inflation. Nucl. Phys. B 857, 85 (2012). https://doi. org/10.1016/j.nuclphysb.2011.12.006. arXiv:1108.5676 [hep-ph]
- L. Kofman, A.D. Linde, A.A. Starobinsky, Reheating after infla- tion. Phys. Rev. Lett. 73, 3195 (1994). https://doi.org/10.1103/ PhysRevLett.73.3195. [arXiv:hep-th/9405187]
- Y. Shtanov, J .H. Traschen, R .H. Brandenberger, Universe reheat- ing after inflation. Phys. Rev. D 51, 5438 (1995). https://doi.org/ 10.1103/PhysRevD.51.5438. arXiv:hep-ph/9407247
- M.A. Amin, M.P. Hertzberg, D.I. Kaiser, J. Karouby, Nonper- turbative dynamics of reheating after inflation: a review. Int. J. Mod. Phys. D 24, 1530003 (2014). https://doi.org/10.1142/ S0218271815300037. arXiv:1410.3808 [hep-ph]
- O. Ozsoy, G. Sengor, K. Sinha, S. Watson, A model independent approach to (p) reheating. arXiv:1507.06651 [hep-th]
- O. zsoy, J .T. Giblin, E. Nesbit, G. engr, S. Watson, Toward an effective field theory approach to reheating. Phys. Rev. D 96(12), 123524 (2017). https://doi.org/10.1103/PhysRevD.96. 123524. arXiv:1701.01455 [hep-th]
- L. Kofman, P. Yi, Reheating the universe after string theory infla- tion. Phys. Rev. D 72, 106001 (2005). https://doi.org/10.1103/ PhysRevD.72.106001. arXiv:hep-th/0507257
- G.W. Gibbons, S.W. Hawking, Cosmological event horizons, ther- modynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)
- R. Schutzhold, W.G. Unruh, Cosmological particle creation in the lab? Lect. Notes Phys. 870, 51 (2013). arXiv:1203.1173 [gr-qc]
- S. Winitzki, Cosmological particle production and the precision of the WKB approximation. Phys. Rev. D 72, 104011 (2005). https://doi.org/10.1103/PhysRevD.72.104011
- N.D. Birrell, P.C.W. Davies. Quantum fields in curved space. Cambridge University Press, Cambridge (1982). https://doi.org/ 10.1017/CBO9780511622632
- L. Parker, Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968)
- S.A. Fulling, Aspects of quantum field theory in curved space- time. Lond. Math. Soc. Stud. Texts 17, 1 (1989)
- F. Finelli, G. Marozzi, A.A. Starobinsky, G.P. Vacca, G. Venturi, Stochastic growth of quantum fluctuations during inflation. AIP Conf. Proc. 1446, 320 (2012). arXiv:1102.0216 [hep-th]
- A.A. Starobinsky, J. Yokoyama, Equilibrium state of a selfinter- acting scalar field in the De Sitter background. Phys. Rev. D 50, 6357 (1994). arXiv:astro-ph/9407016
- A.A. Starobinsky, Stochastic de Sitter (inflationary) stage in the early universe. Lect. Notes Phys. 246, 107 (1986)
- M.A. Amin, D. Baumann, From wires to cosmology. JCAP 1602(02), 045 (2016). https://doi.org/10.1088/1475-7516/2016/ 02/045. arXiv:1512.02637 [astro-ph.CO]
- B.A. Bassett, Inflationary reheating classes via spectral meth- ods. Phys. Rev. D 58, 021303 (1998). https://doi.org/10.1103/ PhysRevD.58.021303. arXiv:hep-ph/9709443
- V. Zanchin, A. Maia Jr., W. Craig, R.H. Brandenberger, Reheating in the presence of noise. Phys. Rev. D 57, 4651 (1998). https:// doi.org/10.1103/PhysRevD.57.4651. arXiv:hep-ph/9709273
- V. Zanchin, A. Maia Jr., W. Craig, R.H. Brandenberger, Reheat- ing in the presence of inhomogeneous noise. Phys. Rev. D 60, 023505 (1999). https://doi.org/10.1103/PhysRevD.60.023505. arXiv:hep-ph/9901207
- S. Choudhury, S. Panda, R. Singh, Bell violation in the sky. Eur. Phys. J. C 77(2), 60 (2017). https://doi.org/10.1140/epjc/ s10052-016-4553-3. arXiv:1607.00237 [hep-th]
- S. Choudhury, S. Panda, R. Singh, Bell violation in primordial cosmology. Universe 3(1), 13 (2017). https://doi.org/10.3390/ universe3010013. arXiv:1612.09445 [hep-th]
- A.D. Linde, Inflationary cosmology and creation of matter in the universe, in Modern cosmology, ed. by S. Bonometto et al., pp. 159-185
- D. Koks, B.L. Hu, A. Matacz, A. Raval, Thermal particle creation in cosmological space-times: a stochastic approach. Phys. Rev. D 56, 4905 (1997). https://doi.org/10.1103/PhysRevD.56.4905. arXiv:gr-qc/9704074 [Erratum: Phys. Rev. D 57, 1317 (1998). https://doi.org/10.1103/PhysRevD.57.1317]
- J. Maldacena, S.H. Shenker, D. Stanford, A bound on chaos. JHEP 1608, 106 (2016). https://doi.org/10.1007/JHEP08(2016)106
- F.J. Dyson, Statistical theory of the energy levels of complex sys- tems. I. J. Math. Phys. 3, 140 (1962). https://doi.org/10.1063/1. 1703773
- F.J. Dyson, Correlations between the eigenvalues of a random matrix. Commun. Math. Phys. 19(3), 235 (1970). https://doi.org/ 10.1007/BF01646824
- F.J. Dyson, Statistical theory of the energy levels of complex sys- tems. III. J. Math. Phys. 3(1), 166-175 (1962). https://doi.org/10. 1063/1.1703775
- F.J. Dyson, Statistical theory of the energy levels of complex sys- tems. II. J. Math. Phys. 3(1), 157-165 (1962). https://doi.org/10. 1063/1.1703774
- F.J. Dyson, M.L. Mehta, Statistical theory of the energy levels of complex systems. IV. J. Math. Phys. 4(5), 701-712 (1963). https:// doi.org/10.1063/1.1704008
- J. Maldacena, D. Stanford, Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94(10), 106002 (2016). https://doi.org/10. 1103/PhysRevD.94.106002. arXiv:1604.07818 [hep-th]
- A.M. Garca-Garca, J.J.M. Verbaarschot, Spectral and thermody- namic properties of the Sachdev-Ye-Kitaev model. Phys. Rev. D 94(12), 126010 (2016). https://doi.org/10.1103/PhysRevD.94. 126010. arXiv:1610.03816 [hep-th]
- G. Mandal, S. Paranjape, N. Sorokhaibam, Thermaliza- tion in 2D critical quench and UV/IR mixing. JHEP 1801, 027 (2018). https://doi.org/10.1007/JHEP01(2018)027. arXiv:1512.02187 [hep-th]
- A. Gaikwad, R. Sinha, Spectral form factor in non-Gaussian ran- dom matrix theories. arXiv:1706.07439v2
- N. Arkani-Hamed, J. Maldacena, Cosmol. Collid. Phys. arXiv:1503.08043 [hep-th]
- J. Maldacena, A model with cosmological Bell inequali- ties. Fortsch. Phys. 64, 10 (2016). https://doi.org/10.1002/prop. 201500097. arXiv:1508.01082 [hep-th]
- S. Kanno, J. Soda, Infinite violation of Bell inequalities in infla- tion. Phys. Rev. D 96(8), 083501 (2017). https://doi.org/10.1103/ PhysRevD.96.083501. arXiv:1705.06199 [hep-th]
- S. Kanno, M. Sasaki, T. Tanaka, Vacuum state of the Dirac field in de Sitter space and entanglement entropy. JHEP 1703, 068 (2017). https://doi.org/10.1007/JHEP03(2017)068. arXiv:1612.08954 [hep-th]
- S. Kanno, J.P. Shock, J. Soda, Entanglement negativity in the multiverse. JCAP 1503(03), 015 (2015). https://doi.org/10.1088/ 1475-7516/2015/03/015. arXiv:1412.2838 [hep-th]
- S. Kanno, Impact of quantum entanglement on spectrum of cos- mological fluctuations. JCAP 1407, 029 (2014). https://doi.org/ 10.1088/1475-7516/2014/07/029. arXiv:1405.7793 [hep-th]
- S. Kanno, J. Murugan, J.P. Shock, J. Soda, Entanglement entropy of α-vacua in de Sitter space. JHEP 1407, 072 (2014). https://doi. org/10.1007/JHEP07(2014)072. arXiv:1404.6815 [hep-th]
- S. Choudhury, S. Panda, Entangled de Sitter from stringy axionic Bell pair I: an analysis using Bunch-Davies vacuum. Eur. Phys. J. C 78(1), 52 (2018). https://doi.org/10.1140/epjc/ s10052-017-5503-4. arXiv:1708.02265 [hep-th]
- S. Choudhury, S. Panda, Quantum entanglement in de Sit- ter space from stringy axion: an analysis using α vacua. arXiv:1712.08299v2
- J. Maldacena, G.L. Pimentel, Entanglement entropy in de Sit- ter space. JHEP 1302, 038 (2013). https://doi.org/10.1007/ JHEP02(2013)038. arXiv:1210.7244 [hep-th]
- A. Albrecht, S. Kanno, M. Sasaki, Quantum entanglement in de Sitter space with a wall, and the decoherence of bubble uni- verses. Phys. Rev. D 97(8), 083520 (2018). https://doi.org/10. 1103/PhysRevD.97.083520. arXiv:1802.08794 [hep-th]
- A. Achucarro, J.O. Gong, S. Hardeman, G.A. Palma, S.P. Patil, Features of heavy physics in the CMB power spectrum. JCAP 1101, 030 (2011). https://doi.org/10.1088/1475-7516/2011/01/ 030. arXiv:1010.3693 [hep-ph]
- A. Achucarro, J.O. Gong, S. Hardeman, G.A. Palma, S.P. Patil, Effective theories of single field inflation when heavy fields matter. JHEP 1205, 066 (2012). https://doi.org/10.1007/ JHEP05(2012)066. arXiv:1201.6342 [hep-th]
- J. Chluba, J. Hamann, S.P. Patil, Features and new physical scales in primordial observables: theory and observation. Int. J. Mod. Phys. D 24(10), 1530023 (2015). https://doi.org/10.1142/ S0218271815300232. arXiv:1505.01834 [astro-ph.CO]
- R. Landauer, Electrical resistance of disordered one-dimensional lattices. Philos. Mag: J. Theoret. Exp. Appl. Phys. 21(172), 863- 867 (1970). https://doi.org/10.1080/14786437008238472
- D.J. Thouless, Localization distance and mean free path in one- dimensional disordered systems. J. Phys. C Solid State Phys. 6 (3), L49-L51 (1973)
- P.W. Anderson, Absence of diffusion in certain random lattices. https://doi.org/10.1103/PhysRev.109.1492
- C.A. Mller, D. Delande, Disorder and interference: localization phenomena eprint. arXiv:1005.0915v3
- M. Hanada, H. Shimada, M. Tezuka, Universality in chaos: Lyapunov spectrum and random matrix theory. Phys. Rev. E 97(2), 022224 (2018). https://doi.org/10.1103/PhysRevE.97. 022224. arXiv:1702.06935 [hep-th]
- M. Janssen, Fluctuations and Localization in Mesoscopic Electron Systems. 2001. https://doi.org/10.1142/4335
- S.R. Das, D.A. Galante, R.C. Myers, Universality in fast quan- tum quenches. JHEP 1502, 167 (2015). https://doi.org/10.1007/ JHEP02(2015)167. arXiv:1411.7710 [hep-th]
- A. Crisanti, G. Paladin, A. Vulpiani, Products of Random Matrices. Springer Series in Solid-State Sciences, vol. 104 (Springer, Berlin, 1993). ISBN:978-3-642-84942-8. https://doi. org/10.1007/978-3-642-84942-8, Softcover ISBN:978-3-642- 84944-2, Edition-1
- M.S. El Naschie, A resolution of the black hole information para- dox via transfinite set theory. World J. Condens. Matter Phys. 05(04) (2015). https://doi.org/10.4236/wjcmp.2015.54026
- D.A. Lowe, L. Thorlacius, Black hole holography and mean field evolution. JHEP 1801, 049 (2018). https://doi.org/10.1007/ JHEP01(2018)049. arXiv:1710.03302 [hep-th]
- J. Polchinski, The Black Hole Information Problem. https://doi. org/10.1142/9789813149441_0006. arXiv:1609.04036 [hep-th]
- J. Polchinski, Chaos in the black hole S-matrix. arXiv:1505.08108v2 [hep-th]
- S. Choudhury, A. Dey, I. Halder, L. Janagal, S. Minwalla, R. Poojary, Notes on melonic O(N ) q-1 tensor models. JHEP 1806, 094 (2018). https://doi.org/10.1007/JHEP06(2018)094. arXiv:1707.09352 [hep-th]
- G. Mandal, P. Nayak, S.R. Wadia, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models. JHEP 1711, 046 (2017). https://doi.org/10. 1007/JHEP11(2017)046. arXiv:1702.04266 [hep-th]
- D.J. Gross, V. Rosenhaus, The bulk dual of SYK: cubic couplings. JHEP 1705, 092 (2017). https://doi.org/10.1007/ JHEP05(2017)092. arXiv:1702.08016 [hep-th]
- S.R. Das, A. Jevicki, K. Suzuki, Three dimensional view of the SYK/AdS duality. JHEP 1709, 017 (2017). https://doi.org/10. 1007/JHEP09(2017)017. arXiv:1704.07208 [hep-th]
- A.M. Garca-Garca, J.J.M. Verbaarschot, Analytical spectral den- sity of the Sachdev-Ye-Kitaev model at finite N. Phys. Rev. D 96(6), 066012 (2017). https://doi.org/10.1103/PhysRevD.96. 066012. arXiv:1701.06593 [hep-th]
- E. Witten, An SYK-like model without disorder. arXiv:1610.09758v2
- T. Nishinaka, S. Terashima, A note on Sachdev-Ye-Kitaev like model without random coupling. Nucl. Phys. B 926, 321 (2018). https://doi.org/10.1016/j.nuclphysb.2017.11.012. arXiv:1611.10290 [hep-th]
- B. Eynard, T. Kimura, S. Ribault, Random matrices. arXiv:1510.04430v2
- E. Brzin, S. Hikami, Spectral form factor in a random matrix theory. Phys. Rev. E (Stat. Phys. Plasmas Fluids Relat. Inter- discip. Top.) 55(4), 4067-4083 (1997). https://doi.org/10.1103/ PhysRevE.55.4067
- M.L. Mehta, Random Matrices, vol. 142, 3rd edn. Academic Press, New York. eBook ISBN:9780080474113. Hardcover ISBN:9780120884094
- G. Bhanot, G. Mandal, O. Narayan, Phase transitions in one matrix models. Phys. Lett. B 251(3), 388-392 (1990). https://doi.org/10. 1016/0370-2693(90)90723-J. ISSN:0370-2693
- Gautam Mandal, Phase structure of unitary matrix models. Mod. Phys. Lett. A 05(14), 1147-1158 (1990). https://doi.org/10.1142/ S0217732390001281
- E. Dyer, G. Gur-Ari, 2D CFT partition functions at late times. JHEP 1708, 075 (2017). https://doi.org/10.1007/ JHEP08(2017)075. arXiv:1611.04592 [hep-th]
- P.A. Mello, P. Pereyra, N. Kumar, Macroscopic approach to mul- tichannel disordered conductors. Ann. Phys. 181(2), 290-317 (1988). Published on 02/1988. Origin: ADS; Elsevier Abstract, Copyright 1988, Elsevier Science B.V. All rights reserved. https:// doi.org/10.1016/0003-4916(88)90169-8
- D. Battefeld, T. Battefeld, C. Byrnes, D. Langlois, Beauty is distractive: particle production during multifield inflation. JCAP 1108, 025 (2011). https://doi.org/10.1088/1475-7516/2011/08/ 025. arXiv:1106.1891 [astro-ph.CO]
- D. Green, Disorder in the early universe. JCAP 1503(03), 020 (2015). https://doi.org/10.1088/1475-7516/2015/03/020. arXiv:1409.6698 [hep-th]
- R. Landauer, Electrical resistance of disordered one-dimensional lattices. Philos. Mag. J. Theor. Exp. Appl. Phys. 21(172), 863-867 (1970). https://doi.org/10.1080/14786437008238472
- P.A. Mello, N. Kumar, Quantum transport in mesoscopic systems: complexity and statistical fluctuations. A maxi- mum entropy viewpoint. Print publication date: 2004, Print ISBN-13:9780198525820. Published to Oxford Scholarship Online: September 2007. https://doi.org/10.1093/acprof:oso/ 9780198525820.001.0001
- S. Choudhury, A. Mukherjee, Quantum randomness in the sky. arXiv:1812.04107 [physics.gen-ph]
- S. Choudhury, A. Mukherjee, A universal bound on quantum chaos from random matrix theory. arXiv:1811.01079 [hep-th]
- S. Shandera, N. Agarwal and A. Kamal, Open quantum cosmo- logical system. Phys. Rev. D 98(8), 083535 (2018). https://doi. org/10.1103/PhysRevD.98.083535. arXiv:1708.00493 [hep-th]
- William T. Coffey, Yuri P. Kalmykov, Serguey V. Titov, Solution of the master equation for Wigner's quasiprobability distribution in phase space for the Brownian motion of a particle in a double well potential. J. Chem. Phys. 127(7), 074502 (2007). https://doi. org/10.1063/1.2759486
- S.K. Banik, B.C. Bag, D.S. Ray, Generalized quantum Fokker- Planck, diffusion, and Smoluchowski equations with true proba- bility distribution functions. Phys. Rev. E 65, 051106 (2002)
- N. Barnaby, On features and nongaussianity from inflationary par- ticle production. Phys. Rev. D 82, 106009 (2010). https://doi.org/ 10.1103/PhysRevD.82.106009. arXiv:1006.4615 [astro-ph.CO]
- N. Barnaby, Z. Huang, Particle production during inflation: observational constraints and signatures. Phys. Rev. D 80, 126018 (2009). https://doi.org/10.1103/PhysRevD.80.126018. arXiv:0909.0751 [astro-ph.CO]