Stochastic Inflation:The Quantum Phase Space Approach
1992
Abstract
In this paper a quantum mechanical phase space picture is constructed for coarse-grained free quantum fields in an inflationary Universe. The appropriate stochastic quantum Liouville equation is derived. Explicit solutions for the phase space quantum distribution function are found for the cases of power law and exponential expansions. The expectation values of dynamical variables with respect to these solutions are compared to the corresponding cutoff regularized field theoretic results (we do not restrict ourselves only to ^2). Fair agreement is found provided the coarse-graining scale is kept within certain limits. By focusing on the full phase space distribution function rather than a reduced distribution it is shown that the thermodynamic interpretation of the stochastic formalism faces several difficulties (e.g., there is no fluctuation-dissipation theorem). The coarse-graining does not guarantee an automatic classical limit as quantum correlations turn out to be crucial in or...
References (41)
- A. A. Starobinsky, in Fundamental Interactions (MGPI Press, Moscow, 1983); in Current Topics in Field Theory, Quantum Gravity, and Strings edited by H. J. deVega and N. Sanchez (Springer, New York, 1986). See also, A. Vilenkin, Nuc. Phys. B 226, 527 (1983).
- D. S. Salopek and J. R. Bond, Phys. Rev. D 43, 1005 (1991);
- G. V. Chibisov and Yu. V. Shtanov, Int. J. Mod. Phys. A 13, 2625 (1990).
- A. S. Goncharov, A. D. Linde, and V. F. Mukhanov, Int. J. Mod. Phys. A 2, 561 (1987).
- D. Coule and M. Mijić, Int. J. Mod. Phys. A 3, 617 (1988).
- A. Ortolan, F. Lucchin, and S. Matarrese, Phys. Rev. D 38, 465 (1988).
- H. E. Kandrup, Phys. Rev. D 39, 2245 (1989).
- M. Mijić, Phys. Rev. D 42, 2469 (1990).
- S. Habib and M. Mijić, UBC preprint (1991).
- B.-L. Hu, J. P. Paz, and Y. Zhang, Maryland preprint (1991).
- For a similar comment, but for somewhat different reasons, see E. A. Calzetta, Ann. Phys. (N.Y.) 190, 32 (1989).
- S. A. Fulling, Gen. Relativ. Gravit. 10, 807 (1979) and [14].
- N. Weiss, Phys. Rev. D 34, 1768 (1986).
- This is discussed by J. R. Ray, Am. J. Phys. 47, 626 (1979).
- See, e.g., S. A. Fulling, Aspects of Quantum Field Theory in Curved Spacetime (Cambridge University Press, Cambridge, 1989);
- N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cam- bridge, 1982).
- A. Vilenkin and L. H. Ford, Phys. Rev. D 26, 1231 (1982);
- A. D. Linde, Phys. Lett. 116B, 335 (1982);
- A. A. Starobinsky, Phys. Lett. 117B, 175 (1982).
- V. Sahni, Class. Quantum Grav. 5, L113 (1988);
- C. Pathinayake and L. H. Ford, Phys. Rev. D 37, 2099 (1988).
- L. H. Ford and L. Parker, Phys. Rev. D 16, 245 (1977).
- T. S. Bunch and P. C. W. Davies, Proc. R. Soc. London A360, 117 (1978).
- See, e.g., M. Sasaki, Y. Nambu, and K. Nakao, Nuc. Phys. B, 308, 868 (1988).
- E. Merzbacher, Physica 96 A, 263 (1979).
- S. Habib, (in preparation).
- E. P. Wigner, Phys. Rev. 40, 749 (1932).
- See, e.g., L. Cohen, J. Math. Phys. 7, 781 (1966).
- M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984).
- F. J. Narcowich, in Seminars in Mathematical Physics (Texas A&M University, College Station, 1986).
- R. Kubo, J. Math. Phys. 4, 174 (1963).
- R. P. Feynman and F. L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963).
- F. R. Graziani, Phys. Rev. D 38, 1122, 1131, 1802 (1988).
- A discussion of entropies based on the Wigner function is given in S. Habib and H. E. Kandrup, Ann. Phys. (N.Y.) 191, 335 (1989).
- See, e.g., S. Habib and R. Laflamme, Phys. Rev. D 42, 4056 (1990);
- J. P. Paz and S. Sinha, Phys. Rev. D 44, 1038 (1991); and references therein.
- See, e.g., H. Risken, The Fokker-Planck Equation (Springer, New York, 1984);
- N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).
- G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738 (1977).
- M. Morikawa, Phys. Rev. D 42, 1027 (1990).
- Y. Nambu, Hiroshima preprint (1991).