Academia.eduAcademia.edu

Outline

Experimental scattershot boson sampling

2015, Science Advances

https://doi.org/10.1126/SCIADV.1400255

Abstract

Boson Sampling is a computational task strongly believed to be hard for classi-cal computers, but efficiently solvable by orchestrated bosonic interference in a specialised quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, Scattershot Boson Sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric downconversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. Here we report the first Scattershot Boson Sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We employ recently proposed statistical tools to analyse our experimental data, providing strong evidence that our photonic quantum simulator works as expected.

References (46)

  1. J. Preskill. Quantum computing and the entanglement frontier. arXiv:1203.5813, 2012.
  2. S. Aaronson and A. Arkhipov. The computation complexity of linear optics. In Proceedings of the 43rd annual ACM symposium on Theory of computing, San Jose, 2011 (ACM press, New York, 2011), pages 333-342, 2011.
  3. L. G. Valiant. The complexity of computing the permanent. Theoretical Comput. Sci., 8(2):189-201, 1979.
  4. L. Troyansky and N. Tishby. Permanent uncertainty: On the quantum evaluation of the determinant and the permanent of a matrix. In Proceedings of PhysComp, 1996.
  5. S. Scheel. Permanents in linear optical networks. arXiv:quant-ph/0406127v1, 2004.
  6. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien. Quantum computers. Nature, 464:45-53, 2010.
  7. E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409:46-52, 2001.
  8. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26:1484-1509, 1997.
  9. M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White. Photonic boson sampling in a tunable circuit. Science, 339:794-798, 2013.
  10. J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley. Boson sampling on a photonic chip. Science, 339:798-801, 2013.
  11. M. Tillmann, B. Dakic, R. Heilmann, S. Nolte, A. Szameit, and P. Walther. Experimental boson sampling. Nature Photonics, 7:540-544, 2013.
  12. A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino. Experimental boson sampling in arbitrary inte- grated photonic circuits. Nature Photonics, 7:545-549, 2013.
  13. N. Spagnolo, C. Vitelli, L. Sansoni, E. Maiorino, P. Mataloni, F. Sciarrino, D. J. Brod, E. F. Galvao, A. Crespi, R. Ramponi, and R. Osellame. General rules for bosonic bunching in multimode interferometers. Phys. Rev. Lett., 111:130503, 2013.
  14. N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi, F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni, R. Osellame, E. F. Galvao, and F. Sciarrino. Experi- mental validation of photonic boson sampling. Nature Photonics, 8:615-620, 2014.
  15. J. Carolan, J. D. A. Meinecke, P. J. Shadbolt, N. J. Russell, N. Ismail, K. Worhoff, T. Rudolph, M. G. Thompson, J. L. O'Brien, J. C. F. Matthews, and A. Laing. On the exper- imental verification of quantum complexity in linear optics. Nature Photonics, 8:621-626, 2014.
  16. C. Gogolin, M. Kliesch, L. Aolita, and J. Eisert. Boson-sampling in the light of sample complexity. arXiv:1306.3995, 2013.
  17. S. Aaronson and A. Arkhipov. Bosonsampling is far from uniform. Quantum Info. Comput., 14:1383-1423, 2014.
  18. P. P. Rohde and T. C. Ralph. Error tolerance of the boson-sampling model for linear optics quantum computing. Phys. Rev. A, 85:022332, 2012.
  19. A. Leverrier and R. Garcia-Patron. Analysis of circuit imperfections in BosonSampling arXiv:1309.4687v2, 2014.
  20. H. Lau and D. James. Proposal for a scalable universal bosonic simulator using individually trapped ions. Phys. Rev. A, 85:062329, 2012.
  21. C. Shen, Z. Zhang, and L.-M. Duan. Scalable implementation of boson sampling with trapped ions. Phys. Rev. Lett., 112:050504, 2014.
  22. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74:145-195, Mar 2002.
  23. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79:135-174, 2007.
  24. M. D. Eisaman, J. Fam, A. Migdall, and S. V. Polyakov. Invited review article: Single- photon sources and detectors. Rev. Sci. Instrum., 82:071101, 2011.
  25. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe. A single- photon server with just one atom. Nat. Phys., 3:253-255, 2007.
  26. M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner. Highly efficient, tunable single photon source based on single molecules. Applied Physics Letters, 90(18), 183122, 2007.
  27. R. Lettow, Y. L. A. Rezus, A. Renn, G. Zumofen, E. Ikonen, S. Götzinger, and V. San- doghdar. Quantum interference of tunably indistinguishable photons from remote organic molecules. Phys. Rev. Lett., 104:123605, 2010.
  28. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter. Stable solid-state source of single photons. Phys. Rev. Lett., 85:290-293, 2000.
  29. A. J. Shields. Semiconductor quantum light sources. Nat Photon, 1:215-223, 2007.
  30. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester. High-frequency single-photon source with polarization control. Nat Photon, 1:704-708, 2007.
  31. D. C. Burnham and D. L. Weinberg. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett., 25:84-87, 1970.
  32. P. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett., 75:4337-4341, 1995.
  33. A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J. L. O'Brien, and T. C. Ralph. Boson sampling from a gaussian states. Phys. Rev. Lett., 113:100502, 2014. 34. Scott Aaronson's blog, acknowledged to S. Kolthammer, http://www.scottaaronson.com/blog/?p=1579.
  34. R.R. Gattass and E. Mazur. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2(4):219-225, 2008.
  35. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O'Brien. Laser written waveguide photonic quantum circuits. Optics Express, 17:12546- 12554, 2009.
  36. G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame. Rotated waveplates in integrated waveguide optics. Nature Communications, 5:4249, 2014.
  37. R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit. Arbitrary photonic wave plate operations on chip: Realizing hadamard, pauli-x, and rotation gates for polarisation qubits. Scientific Reports, 4:4118, 2014.
  38. T. B. Pittman, B. C. Jacobs, and J. D. Franson. Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A, 66:042303, 2002.
  39. E. Jeffrey, N. A Peters, and P. G Kwiat. Towards a periodic deterministic source of arbitrary single-photon states. New Journal of Physics, 6(1):100, 2004.
  40. A. L. Migdall, D. Branning, and S. Castelletto. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A, 66:053805, 2002.
  41. K. T. McCusker and P. G. Kwiat. Efficient optical quantum state engineering. Phys. Rev. Lett., 103:163602, 2009.
  42. X. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger. Experimental generation of single photons via active multiplexing. Phys. Rev. A, 83:043814, 2011.
  43. L. Aolita, C. Gogolin, M. Kliesch, and J. Eisert. Reliable quantum certification for photonic quantum technologies. arXiv:1407.4817, 2014.
  44. M. C. Tichy, K. Mayer, A. Buchleitner, and K. Mølmer. Stringent and efficient assessment of boson-sampling devices. Phys. Rev. Lett., 113:020502, 2014.
  45. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 2nd edition, 2006.
  46. S. Aaronson, private communication.