The spectra of lamplighter groups and Cayley machines
2006, Geometriae Dedicata
https://doi.org/10.1007/S10711-006-9086-8Abstract
We calculate the spectra and spectral measures associated to random walks on restricted wreath products G wr Z, with G a finite group by calculating the Kesten-von Neumann-Serre spectral measures for the random walks on Schreier graphs of certain groups generated by automata. This generalises the work of Grigorchuk andŻuk on the lamplighter group. In the process we characterise when the usual spectral measure for a group generated by automata coincides with the Kestenvon Neumann-Serre spectral measure.
References (28)
- L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups, Tr. Mat. Inst. Steklova 231 (2000), Din. Sist., Avtom. i Beskon. Gruppy, 5-45; translation in Proc. Steklov Inst. Math. 231 (2000), 1-41.
- L. Bartholdi, R. I. Grigorchuk and Z. Šuni ḱ, Branch groups in: "Handbook of Alge- bra", Vol. 3, 989-1112, North-Holland, Amsterdam, 2003.
- L. Bartholdi and W. Woess, Spectral computations on lamplighter groups and Diestel- Leader graphs, J. Fourier Anal. Appl. 11 (2005), 175-202.
- C. Béguin, A. Valette and A. Żuk, On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper's operator, J. Geom. Phys. 21 (1997), 337- 356.
- P. Billingsley, "Probability and Measure", Third edition, Wiley Series in Probability and Mathematical Statistics, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995.
- G. Davidoff, P. Sarnak and A. Valette, "Elementary Number Theory, Group Theory, and Ramanujan Graphs", London Mathematical Society Student Texts, 55, Cam- bridge University Press, Cambridge, 2003.
- W. Dicks and T. Schick, The spectral measure of certain elements of the complex group ring of a wreath product, Geom. Dedicata 93 (2002), 121-137.
- S. Eilenberg, "Automata, Languages and Machines", Academic Press, New York, Vol. A, 1974; Vol. B, 1976.
- F. Gecseg and I. Peak, Algebraic Theory of Automata, Discquisitiones Mathematicae Hungaricae, 2, Akademia Kiado, Budapest, 1972.
- R. I. Grigorchuk, P. Linnell, T. Schick and A. Żuk, On a question of Atiyah, C. R. Acad. Sci., Paris, Sr. I, Math. 331 (2000), 663-668.
- R. I. Grigorchuk, V. V. Nekrashevich and V. I. Sushchanskii, Automata, dynamical systems, and groups, in: R. I. Grigorchuk, (ed.), "Dynamical systems, automata, and infinite groups." Proc. Steklov Inst. Math. 231 (2000), 128-203; translation from Tr. Mat. Inst. Steklova 231 (2000), 134-214.
- R. I. Grigorchuk and A. Żuk, On the asymptotic spectrum of random walks on infi- nite families of graphs, in: "Random Walks and Discrete Potential Theory (Cortona, 1997)", M. Picardello and W. Woess (eds). Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999, 188-204.
- R. I. Grigorchuk and A. Żuk, The lamplighter group as a group generated by a 2-state automaton, and its spectrum, Geom. Dedicata 87 (2001), 209-244.
- R. I. Grigorchuk and A. Żuk, Spectral properties of a torsion-free weakly branch group defined by a three state automaton, in: "Computational and Statistical Group Theory (Las Vegas, NV/Hoboken, NJ, 2001)", Robert Gilman, Vladimir Shpilrain and Alexei G. Myasnikov (eds.), Contemp. Math., 298, Amer. Math. Soc., Providence, RI, 2002, 57-82,
- R. I. Grigorchuk and A. Żuk, The Ihara zeta function of infinite graphs, the KNS spectral measure and integrable maps, in: "Random Walks and Geometry, Berlin, 2004, 141-180.
- M. Hall, "The Theory of Groups", The Macmillan Co., New York, N.Y. 1959.
- G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers", 3rd ed. Oxford, at the Clarendon Press, 1954.
- J. Horejs, Preobrazovaniya, opredelennie konechnimi avtomatami, Problemi Kiber- netiki, 9 (1963), 23-26.
- Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.
- H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354.
- K. Krohn and J. Rhodes, Algebraic theory of machines, I: Prime decomposition theo- rem for finite semigroups and machines, Trans. Amer. Math. Soc. 116 (1965), 450-464.
- K. Krohn, J. Rhodes and B. Tilson, Lectures on the algebraic theory of finite semi- groups and finite-state machines, Chapters 1, 5, 7-9 of "Algebraic Theory of Machines, Languages, and Semigroups", (M. A. Arbib, ed.), Academic Press, New York, 1968.
- D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Coding", Cam- bridge University Press, Cambridge, 1995.
- B. Mohar and W. Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc. 21 (1989), 209-234.
- G. K. Pedersen, "Analysis Now", Graduate Texts in Mathematics, 118, Springer- Verlag, New York, 1989.
- J. Rhodes, Monoids acting on trees: elliptic and wreath products and the holonomy theorem for arbitrary monoids with applications to infinite groups, Internat. J. Algebra Comput. 1 (1991), 253-279.
- J.-P. Serre, Répartition asymptotique des valeurs propres de l'oprateur de Hecke Tp, J. Amer. Math. Soc. 10 (1997), 75-102.
- P. V. Silva and B. Steinberg, On a class of automata groups generalizing lamplighter groups, Internat. J. Algebra and Comput., to appear.