Academia.eduAcademia.edu

Outline

Standard general relativity from Chern-Simons gravity

2009, Physics Letters B

Abstract

Chern-Simons models for gravity are interesting because they provide with a truly gauge-invariant action principle in the fiber-bundle sense. So far, their main drawback has largely been the perceived remoteness from standard General Relativity, based on the presence of higher powers of the curvature in the Lagrangian (except, remarkably, for threedimensional spacetime). Here we report on a simple model that suggests a mechanism by which standard General Relativity in five-dimensional spacetime may indeed emerge at a special critical point in the space of couplings, where additional degrees of freedom and corresponding "anomalous" Gauss-Bonnet constraints drop out from the Chern-Simons action. To achieve this result, both the Lie algebra g and the symmetric g-invariant tensor that define the Chern-Simons Lagrangian are constructed by means of the Lie algebra S-expansion method with a suitable finite abelian semigroup S. The results are generalized to arbitrary odd dimensions, and the possible extension to the case of eleven-dimensional supergravity is briefly discussed.

References (24)

  1. C. Rovelli, Quantum Gravity. Cambridge Monographs on Math- ematical Physics, 2004.
  2. A. H. Chamseddine, Topological Gauge Theory of Gravity in Five and All Odd Dimensions. Phys. Lett. B 233 (1989) 291.
  3. A. H. Chamseddine, Topological Gravity and Supergravity in Various Dimensions. Nucl. Phys. B 346 (1990) 213.
  4. C. Lanczos, A Remarkable Property of the Riemann-Christoffel Tensor in Four Dimensions. Ann. Math. 39 (1938) 842.
  5. D. Lovelock, The Einstein Tensor and its Generalizations. J. Math. Phys. 12 (1971) 498.
  6. E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System. Nucl. Phys. B 311 (1988) 46.
  7. E. Witten, Topology Changing Amplitudes in (2 + 1)- Dimensional Gravity. Nucl. Phys. B 323 (1989) 113.
  8. R. Troncoso, J. Zanelli, New gauge Supergravity in Seven and Eleven Dimensions. Phys. Rev. D 58 (1998) 101703. arXiv: hep-th/9710180.
  9. R. Troncoso, J. Zanelli, Gauge Supergravities for All Odd Dimensions. Int. J. Theor. Phys. 38 (1999) 1181. arXiv: hep-th/9807029.
  10. R. Troncoso, J. Zanelli, Higher-dimensional Gravity, Propagat- ing Torsion and AdS Gauge Invariance. Class. Quantum Grav. 17 (2000) 4451. arXiv: hep-th/9907109.
  11. J. Crisóstomo, R. Troncoso, J. Zanelli, Black Hole Scan. Phys. Rev. D 62 (2000) 084013. arXiv: hep-th/0003271.
  12. P. Salgado, M. Cataldo, S. del Campo, Supergravity and the Poincaré group. Phys. Rev. D 65 (2002) 084032. arXiv: gr-qc/0110097.
  13. P. Salgado, M. Cataldo, S. del Campo, Higher-dimensional Gravity Invariant under the Poincaré Group. Phys. Rev. D 66 (2002) 024013. arXiv: gr-qc/0205132.
  14. P. Salgado, S. del Campo, M. Cataldo, N = 1 Supergravity with Cosmological Constant and the AdS Group. Phys. Rev. D 68 (2003) 024021. arXiv: hep-th/0305004.
  15. P. Salgado, F. Izaurieta, E. Rodríguez, Higher Dimensional Gravity Invariant Under the AdS Group. Phys. Lett. B 574 (2003) 283. arXiv: hep-th/0305180.
  16. P. Salgado, F. Izaurieta, E. Rodríguez, Supergravity in 2 + 1 Di- mensions from (3 + 1)-dimensional Supergravity. Eur. Phys. J. C 35 (2004) 429. arXiv: hep-th/0306230.
  17. F. Izaurieta, E. Rodríguez, P. Salgado, Eleven-Dimensional Gauge Theory for the M Algebra as an Abelian Semigroup Expansion of osp(32|1). Eur. Phys. J. C 54 (2008) 675. arXiv: hep-th/0606225.
  18. J. D. Edelstein, M. Hassaïne, R. Troncoso, J. Zanelli, Lie-algebra Expansions, Chern-Simons theories and the Einstein-Hilbert Lagrangian. Phys. Lett. B 640 (2006) 278. arXiv: hep-th/0605174.
  19. M. Hassaïne, M. Romo, Local Supersymmetric Extensions of the Poincaré and AdS Invariant Gravity. JHEP 0806 (2008) 018. arXiv:0804.4805 [hep-th].
  20. J. A. de Azcárraga, J. M. Izquierdo, M. Picón, O. Varela, Gen- erating Lie and Gauge Free Differential (Super)Algebras by Ex- panding Maurer-Cartan Forms and Chern-Simons Supergrav- ity. Nucl. Phys. B 662 (2003) 185. arXiv: hep-th/0212347.
  21. F. Izaurieta, E. Rodríguez, P. Salgado, Expanding Lie (Su- per)Algebras through Abelian Semigroups. J. Math. Phys. 47 (2006) 123512. arXiv: hep-th/0606215.
  22. F. Izaurieta, A. Pérez, E. Rodríguez, P. Salgado, Dual Formula- tion of the Lie Algebra S-expansion Procedure. arXiv:0903.4712 [hep-th].
  23. A. Anabalón, S. Willison, J. Zanelli, The Universe as a Topological Defect. Phys. Rev. D 77 (2008) 044019. arXiv: hep-th/0702192.
  24. F. Izaurieta, E. Rodríguez, P. Salgado, The Extended Car- tan Homotopy Formula and a Subspace Separation Method for Chern-Simons Theory. Lett. Math. Phys. 80 (2007) 127. arXiv: hep-th/0603061.