Academia.eduAcademia.edu

Outline

A covariant formalism for Chern Simons gravity

2003, Journal of Physics A: Mathematical and General

https://doi.org/10.1088/0305-4470/36/10/318

Abstract

Chern-Simons type Lagrangians in d = 3 dimensions are analyzed from the point of view of their covariance and globality. We use the transgression formula to find out a new fully covariant and global Lagrangian for Chern-Simons gravity: the price for establishing globality is hidden in a bimetric (or biconnection) structure. Such a formulation allows to calculate from a global and simpler viewpoint the energymomentum complex and the superpotential both for Yang-Mills and gravitational examples.

References (27)

  1. S. Deser, R. Jackiw and S. Templeton, Ann. of Physics 140 (1982), 372
  2. A. Borowiec, M. Ferraris and M. Francaviglia, J. Phys. A: Math. Gen. 31 (1998), 8823 (hep-th/9801126)
  3. G. Sardanashvili, Energy-momentum conservation laws in gauge theory with broken symmetry, hep-th/0203275
  4. B. Julia and S. Silva, Class. Quantum Grav. 15 (1998), 2173
  5. S. Silva, Nucl. Phys. B 558 (1999), 391
  6. M. Ferraris and M. Francaviglia, Gen. Rel. Grav. 22(9) (1990), 965
  7. M. Ferraris and M. Francaviglia, Class. Quantum Grav. Suppl. 9 (1992), S79
  8. L. Fatibene, M. Ferraris, M. Francaviglia and M. Raiteri, J. Math. Phys. 42(3) (2001), 1173
  9. S. S. Chern and J. Simons, Proc. Nat. Acad. Sci. USA 68(4) (1971), 791
  10. S. S. Chern and J. Simons, Ann. Math 99 (1974), 48
  11. I. Anderson, Ann. of Math. 120 (1984), 329
  12. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, John Wiley & Sons (New York, 1963)
  13. T. Eguchi, P. B. Gilkey and A. J. Hanson, Phys. Rep. 66 (1980), 213
  14. D. S. Freed, Adv. Math. 113 (1995), 237
  15. Z. Oziewicz, Rep. Math. Phys. 31 (1992), 85
  16. A. H. Chamseddine and J. Fröhlich, Commun. Math. Phys. 147 (1992), 549
  17. D. Bak, D. Cangemi and R. Jackiw, Phys. Rev. D 49 (1994), 5173
  18. G. Sardanashvili, Class. Quantum Grav. 14 (1997), 1371
  19. P.G. Bergmann and E. J. Flaherty, Jr., J. Math. Phys. 19 (1978), 212
  20. R. Jackiw, Phys. Rev. Lett. 41 (1978), 1635
  21. M. Bañados, L. J. Garay and M. Henneaux, Phys. Rev. D 53(2) (1996), R593
  22. M. Bañados, M. Henneaux, C. Iannuzzo and C. M. Viallet, Class. Quantum Grav. 14 (1997), 2455
  23. I.J.R. Aitchison and C.D. Fosco, Phys. Rev. D 57 (1998), 1171
  24. A. Borowiec, M. Ferraris, M. Francaviglia and M. Palese, Conservation law for non- global Lagrangians, Quaderni Dip. Mat. Univ. Torino # (2000) (submitted for pub- lication)
  25. K. Yano, The Theory of Lie Derivatives and Its Applications, North-Holland Pub- lishing CO. (Amsterdam, 1957)
  26. J.A. Schouten, Ricci-Calculus, (Second Ed.) Springer-Verlag (Berlin 1954)
  27. G. Allemandi, M. Francaviglia and M. Raiteri, Covariant Charges in Chern-Simons AdS 3 Gravity, gr-qc/0211098, in press in Class. Quantum Grav.