Academia.eduAcademia.edu

Outline

ℵ0-extended supergravity and Chern-Simons theories

1996, Nuclear Physics B

https://doi.org/10.1016/S0550-3213(96)00476-2

Abstract

We give generalizations of extended Poincaré supergravity with arbitrarily many supersymmetries in the absence of central charges in threedimensions by gauging its intrinsic global SO(N) symmetry. We call these ℵ 0 (Aleph-Null) supergravity theories. We further couple a non-Abelian supersymmetric Chern-Simons theory and an Abelian topological BF theory to ℵ 0 supergravity. Our result overcomes the previous difficulty for supersymmetrization of Chern-Simons theories beyond N = 4. This feature is peculiar to the Chern-Simons and BF theories including supergravity in three-dimensions. We also show that dimensional reduction schemes for four-dimensional theories such as N = 1 self-dual supersymmetric Yang-Mills theory or N = 1 supergravity theory that can generate ℵ 0 globally and locally supersymmetric theories in three-dimensions. As an interesting application, we present ℵ 0 supergravity Liouville theory in two-dimensions after appropriate dimensional reduction from threedimensions.

References (21)

  1. S.J. Gates, Jr. and L. Rana, Phys. Lett. 352B (1995) 50; ibid. 369B (1996) 269.
  2. B. de Wit, A.K. Tollstén and H. Nicolai, Nucl. Phys. B363 (1991) 221.
  3. P. van Nieuwenhuizen, Phys. Rev. D32 (1985) 872; A. Achúcarro and P.K. Townsend, Phys. Lett. 180B (1986) 89; E. Witten, Nucl. Phys. B311 (1988) 46; J. Horne and E. Witten, Phys. Rev. Lett. 62 (1989) 501.
  4. P.S. Howe, J.M. Izquierdo, G. Papadopoulos and P.K. Townsend, King's College - DAMTP preprint, R/95/13 (May 1995).
  5. M. Roček and P. van Nieuwenhuizen, Class. and Quant. Gr. 3 (1986) 43.
  6. H. Nishino and S.J. Gates, Int. Jour. Mod. Phys. A8 (1993) 3371.
  7. E. Witten, Mod. Phys. Lett. A10 (1995) 2153.
  8. See, e.g., D. Birmingham, M. Blau, M. Rakowski and G. Thompson, Phys. Rep. 209C (1991) 129.
  9. D. Freedman, S. Ferrara and P. van Nieuwenhuizen, Phys. Rev. D14 (1976) 912.
  10. N. Marcus and J.H. Schwarz, Nucl. Phys. B228 (1983) 145.
  11. See e.g., P. van Nieuwenhuizen, Phys. Rep. 68C (1981) 189.
  12. W. Siegel, Phys. Rev. D47 (1993) 2504.
  13. S.V. Ketov, H. Nishino and S.J. Gates, Jr., Nucl. Phys. B393 (1993) 149;
  14. H. Nishino, S.J. Gates, Jr., and S.V. Ketov, Phys. Lett. 307B (1993) 331; S.V. Ketov, S.J. Gates, Jr. and H. Nishino, Phys. Lett. 308B (1993) 323.
  15. M.F. Atiyah, unpublished; "Classical Geometry of Yang-Mills Fields", (Scuola Normale Superiore, Pisa, 1979);
  16. M.F. Atiyah and N.J. Hitchin, "The Geometry and Dynamics of Magnetic Monopoles", (Princeton Univ. Press, 1988), R.S. Ward and R.O. Wells, Jr., Twistor Geometry and Field Theory", (Cambridge Univ. Press, 1970);
  17. R.S. Ward, Phil. Trans. Roy. Lond. A315 (1985) 451; N.J. Hitchin, Proc. Lond. Math. Soc. 55 (1987) 59.
  18. H. Nishino, Mod. Phys. Lett. A9 (1994) 3255.
  19. R. Brooks and S.J. Gates, Jr., Nucl. Phys. B432 (1994) 205
  20. See e.g., E. Bergshoeff, H. Nishino and E. Sezgin, Phys. Lett. 165B (1986) 141.
  21. E. Witten, "Strong Coupling Expansion of Calabi-Yau Compactification", preprint, IASSNS-HEP-96-08 (Feb. 1996) hep-th/9602070.