Academia.eduAcademia.edu

Outline

A unified potential-based cohesive model of mixed-mode fracture

2009, Journal of the Mechanics and Physics of …

https://doi.org/10.1016/J.JMPS.2008.10.003

Abstract

A generalized potential-based constitutive model for mixed-mode cohesive fracture is presented in conjunction with physical parameters such as fracture energy, cohesive strength and shape of cohesive interactions. It characterizes different fracture energies in each fracture mode, and can be applied to various material failure behavior (e.g. quasi-brittle). The unified potential leads to both intrinsic (with initial slope indicators to control elastic behavior) and extrinsic cohesive zone models. Path dependence of work-of-separation is investigated with respect to proportional and non-proportional paths-this investigation demonstrates consistency of the cohesive constitutive model. The potential-based model is verified by simulating a mixed-mode bending test. The actual potential is named PPR (Park-Paulino-Roesler), after the first initials of the authors' last names.

References (44)

  1. Alfano, G., 2006. On the influence of the shape of the interface law on the application of cohesive-zone models. Compos. Sci. Technol. 66(6), 723-730 URL: http://dx.doi.org/10.1016/j.compscitech.2004.12.024.
  2. Anderson, T.L., 1995. Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton.
  3. ASTM, 2006. Standard test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites. Technical Report ASTM D 6671/D 6671M, ASTM International.
  4. Banks-Sills, L., Bortman, Y., 1986. A mixed-mode fracture specimen: analysis and testing. Int. J. Fract. 30 (3), 181-201 URL: http://dx.doi.org/10.1007/ BF00019776.
  5. Barenblatt, G.I., 1959. The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses, axially symmetric cracks. Appl. Math. Mech. 23 (3), 622-636.
  6. Beltz, G.E., Rice, J.R., 1991. Dislocation nucleation versus cleavage decohesion at crack tips. In: Lowe, T.C., Rollett, A.D., Follansbee, P.S., Daehn, G.S. (Eds.), Modeling the Deformation of Crystalline Solids Presented. The Minerals, Metals & Materials Society (TMS), Havard University, Cambridge, MA, USA, pp. 457-480.
  7. Benzeggagh, M.L., Kenane, M., 1996. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed- mode bending apparatus. Compos. Sci. Technol. 56 (4), 439-449 URL: http://dx.doi.org/10.1016/0266-3538(96)00005-X.
  8. Camacho, G.T., Ortiz, M., 1996. Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33 (20-22), 2899-2938 URL: http:// dx.doi.org/10.1016/0020-7683(95)00255-3.
  9. Carpinteri, A., Ferrara, G., Melchiorri, G., 1989. Single edge notched specimen subjected to four point shear. An experimental investigation. In: Shah, S.P., Swartz, S.E., Barr, B. (Eds.), International Conference on Recent Developments in the Fracture of Concrete and Rock, September 20-22, 1990. Elsevier Applied Science, pp. 605-614.
  10. Dugdale, D.S., 1960. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8 (2), 100-104.
  11. Gao, H., Ji, B., 2003. Modeling fracture in nanomaterials via a virtual internal bond method. Eng. Fract. Mech. 70 (14), 1777-1791 URL: http://dx.doi.org/ 10.1016/S0013-7944(03)00124-3.
  12. Gao, H., Klein, P., 1998. Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J. Mech. Phys. Solids 46 (2), 187-218 URL: http://dx.doi.org/10.1016/S0022-5096(97)00047-1.
  13. Girifalco, L.A., Weizer, V.G., 1959. Application of the Morse potential function to cubic metals. Phys. Rev. 114 (3), 687-690.
  14. Klein, P., Gao, H., 1998. Crack nucleation and growth as strain localization in a virtual-bond continuum. Eng. Fract. Mech. 61 (1), 21-48 URL: http:// dx.doi.org/10.1016/S0013-7944(98)00048-4.
  15. Mi, Y., Crisfield, M.A., Davies, G.A.O., Hellweg, H.B., 1998. Progressive delamination using interface elements. J. Compos. Mater. 32 (14), 1246-1272.
  16. Moes, N., Belytschko, T., 2002. Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69 (7), 813-833 URL: http://dx.doi.org/ 10.1016/S0013-7944(01)00128-X.
  17. Mooney, M., 1940. Theory of large elastic deformation. J. Appl. Phys. 11 (9), 582-592.
  18. Needleman, A., 1987. A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. Trans. ASME 54 (3), 525-531.
  19. Needleman, A., 1990. An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids 38 (3), 289-324 URL: http://dx.doi.org/10.1016/ 0022-5096(90)90001-K.
  20. Ortiz, M., Pandolfi, A., 1999. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. J. Numer. Methods Eng. 44 (9), 1267-1282 URL: http://dx.doi.org/10.1002/(SICI)1097-0207(19990330)44:9h1267::AID-NME486i3.3.CO;2-Z.
  21. Park, K., Paulino, G.H., Roesler, J.R., 2008a. Potential-based cohesive constitutive model of mixed-mode fracture. In: Inaugural International Conference of the Engineering Mechanics Institute (EM 08). Minneapolis, MN.
  22. Park, K., Paulino, G.H., Roesler, J.R., 2008b. Virtual internal pair-bond (VIPB) model for quasi-brittle materials. J. Eng. Mech. ASCE 134 (10), 856-866 URL: http://dx.doi.org/10.1061/(ASCE)0733-9399(2008)134:10(856).
  23. Paulino, G.H., Park, K., Roesler, J.R., 2007. A novel potential-based approach for mixed-mode cohesive fracture simulation. In: Ninth US National Congress on Computational Mechanics (USNCCM 2007), San Francisco, CA.
  24. Paulino, G.H., Park, K., Roesler, J.R., 2008. A unified potential-based cohesive model of mixed-mode fracture. In: Sixth International Conference on Computation of Shell and Spatial Structures (IASS-IACM 2008), Ithaca, NY.
  25. Reeder, J.R., Crews Jr., J.H., 1990. Mixed-mode bending method for delamination testing. AIAA J. 28 (7), 1270-1276.
  26. Remmers, J.J.C., de Borst, R., Needleman, A., 2008. The simulation of dynamic crack propagation using the cohesive segments method. J. Mech. Phys. Solids 56 (1), 70-92 URL: http://dx.doi.org/10.1016/j.jmps.2007.08.003.
  27. Rice, J.R., 1992. Dislocation nucleation from a crack tip. an analysis based on the peierls concept. J. Mech. Phys. Solids 40 (2), 239-271.
  28. Rose, J.H., Ferrante, J., Smith, J.R., 1981. Universal binding energy curves for metals and bimetallic interfaces. Phys. Rev. Lett. 47 (9), 675-678 URL: http:// dx.doi.org/10.1103/PhysRevLett.47.675.
  29. Shim, D.-J., Paulino, G.H., Dodds Jr., R.H., 2006. J resistance behavior in functionally graded materials using cohesive zone and modified boundary layer models. Int. J. Fract. 139 (1), 91-117 URL: http://dx.doi.org/10.1007/s10704-006-0024-4.
  30. Song, S.H., Paulino, G.H., Buttlar, W.G., 2008. Influence of the cohesive zone model shape parameter on asphalt concrete fracture behavior. In: Paulino, G.H., Pindera, M.-J., Dodds Jr., R.H., Rochinha, F.A., Dave, E., Chen, L. (Eds.), Multiscale and Functionally Graded Material 2006 (M&FGM 2006). AIP Conference Proceedings, pp. 730-735. URL: http://link.aip.org/link/?APC/973/730/1.
  31. Tadmor, E.B., Ortiz, M., Phillips, R., 1996. Quasicontinuum analysis of defects in solids. Philos. Mag. A 73 (6), 1529-1563.
  32. Thiagarajan, G., Hsia, K.J., Huang, Y., 2004. Finite element implementation of virtual internal bond model for simulating crack behavior. Eng. Fract. Mech. 71 (3), 401-423 URL: http://dx.doi.org/10.1016/S0013-7944(03)00102-4.
  33. Tvergaard, V., Hutchinson, J.W., 1992. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phy. Solids 40 (6), 1377-1397 URL: http://dx.doi.org/10.1016/0022-5096(92)90020-3.
  34. Tvergaard, V., Hutchinson, J.W., 1993. The influence of plasticity on mixed mode interface toughness. J. Mech. Phys. Solids 41 (6), 1119-1135 URL: http:// dx.doi.org/10.1016/0022-5096(93)90057-M.
  35. van den Bosch, M., Schreurs, P.J.G., Geers, M.G.D., 2006. An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Eng. Fract. Mech. 73 (9), 1220-1234 URL: http://dx.doi.org/10.1016/j.engfracmech.2005.12.006.
  36. Volokh, K.Y., 2004. Comparison between cohesive zone models. Commun. Numer. Methods Eng. 20 (11), 845-856 URL: http://dx.doi.org/10.1002/cnm.717.
  37. Volokh, K.Y., Gao, H., 2005. On the modified virtual internal bond method. J. Appl. Mech. Trans. ASME 72 (6), 969-971 URL: http://dx.doi.org/10.1115/ 1.2047628.
  38. Wells, G.N., Sluys, L.J., 2001. A new method for modelling cohesive cracks using finite elements. Int. J. Numer. Methods Eng. 50 (12), 2667-2682 URL: http://dx.doi.org/10.1002/nme.143.
  39. Xu, X.P., Needleman, A., 1993. Void nucleation by inclusion debonding in a crystal matrix. Modelling Simulation Mater. Sci. Eng. 1 (2), 111-132 URL: http:// dx.doi.org/10.1088/0965-0393/1/2/001.
  40. Xu, X.P., Needleman, A., 1994. Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42 (9), 1397-1434.
  41. Yang, Q.D., Thouless, M.D., 2001. Mixed-mode fracture analyses of plastically-deforming adhesive joints. Int. J. Fract. 110 (2), 175-187 URL: http:// dx.doi.org/10.1023/A:1010869706996.
  42. Zhang, Z., Paulino, G.H., 2005. Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials. Int. J. Plasticity 21 (6), 1195-1254.
  43. Zhang, Z., Paulino, G.H., Celes, W., 2007. Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials. Int. J. Numer. Methods Eng. 72 (8), 893-923.
  44. Zhou, F., Molinari, J.-F., Ramesh, K.T., 2005. A cohesive model based fragmentation analysis: effects of strain rate and initial defects distribution. Int. J. Solids Struct. 42 (18-19), 5181-5207 URL: http://dx.doi.org/10.1016/j.ijsolstr.2005.02.009.