Academia.eduAcademia.edu

Outline

Pumping lemmas for weighted automata

Logical Methods in Computer Science

https://doi.org/10.46298/LMCS-17(3:7)2021

Abstract

We present pumping lemmas for five classes of functions definable by fragments of weighted automata over the min-plus semiring, the max-plus semiring and the semiring of natural numbers. As a corollary we show that the hierarchy of functions definable by unambiguous, finitely-ambiguous, polynomially-ambiguous weighted automata, and the full class of weighted automata is strict for the min-plus and max-plus semirings.

References (34)

  1. S. Akshay, N. Balaji, A. Murhekar, R. Varma, and N. Vyas. Near-optimal complexity bounds for fragments of the skolem problem. In 37th International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, pages 37:1-37:18, 2020.
  2. S. Almagor, U. Boker, and O. Kupferman. What's decidable about weighted automata? In ATVA, pages 482-491, 2011.
  3. S. Almagor, M. Cadilhac, F. Mazowiecki, and G. A. Pérez. Weak cost register automata are still powerful. In Developments in Language Theory -22nd International Conference, DLT 2018, Tokyo, Japan, September 10-14, 2018, Proceedings, pages 83-95, 2018.
  4. R. Alur, L. D'Antoni, J. Deshmukh, M. Raghothaman, and Y. Yuan. Regular functions and cost register automata. In LICS, pages 13-22. IEEE Computer Society, 2013.
  5. R. Alur and M. Raghothaman. Decision problems for additive regular functions. In Automata, Lan- guages, and Programming, pages 37-48. Springer, 2013.
  6. C. Barloy, N. Fijalkow, N. Lhote, and F. Mazowiecki. A robust class of linear recurrence sequences. In 28th EACSL Annual Conference on Computer Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain, pages 9:1-9:16, 2020.
  7. T. Colcombet, D. Kuperberg, A. Manuel, and S. Toruńczyk. Cost functions definable by min/max automata. In 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, pages 29:1-29:13, 2016.
  8. K. Culik II and J. Kari. Image compression using weighted finite automata. In Mathematical Foundations of Computer Science 1993, pages 392-402. Springer, 1993.
  9. L. Daviaud, P. Reynier, and J. Talbot. A generalised twinning property for minimisation of cost register automata. In LICS, 2016.
  10. M. Droste and P. Gastin. Weighted automata and weighted logics. Theor. Comput. Sci., 380(1-2):69-86, 2007.
  11. M. Droste and P. Gastin. Aperiodic weighted automata and weighted first-order logic. In 44th Inter- national Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, pages 76:1-76:15, 2019.
  12. M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Springer, 1st edition, 2009.
  13. A. Ehrenfeucht. An application of games to the completeness problem for formalized theories. Fund. Math, 49(129-141):13, 1961.
  14. R. Fraïssé. Sur quelques classifications des systèmes de relations. Université d'Alger, Publications Sci- entifiques, Série A, 1:35-182, 1984.
  15. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, 1979.
  16. D. Kirsten. A Burnside approach to the termination of Mohri's algorithm for polynomially ambiguous min-plus-automata. ITA, 42(3):553-581, 2008.
  17. D. Kirsten and S. Lombardy. Deciding unambiguity and sequentiality of polynomially ambiguous min- plus automata. In STACS, pages 589-600, 2009.
  18. I. Klimann, S. Lombardy, J. Mairesse, and C. Prieur. Deciding unambiguity and sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput. Sci., 327(3):349-373, 2004.
  19. S. Kreutzer and C. Riveros. Quantitative monadic second-order logic. In LICS, pages 113-122. IEEE Computer Society, 2013.
  20. D. Krob. The equality problem for rational series with multiplicities in the tropical semiring is undecid- able. In ICALP, pages 101-112, 1992.
  21. L. Libkin. Elements of finite model theory. Springer Science & Business Media, 2013.
  22. F. Mazowiecki and C. Riveros. Maximal partition logic: towards a logical characterization of copyless cost register automata. In CSL, 2015.
  23. F. Mazowiecki and C. Riveros. Pumping lemmas for weighted automata. In 35th Symposium on Theo- retical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France, pages 50:1-50:14, 2018.
  24. F. Mazowiecki and C. Riveros. Copyless cost-register automata: Structure, expressiveness, and closure properties. J. Comput. Syst. Sci., 100:1-29, 2019.
  25. M. Mohri. Finite-state transducers in language and speech processing. Computational Linguistics, 23(2):269-311, 1997.
  26. J. Ouaknine and J. Worrell. On the positivity problem for simple linear recurrence sequences,. In ICALP, pages 318-329, 2014.
  27. J. Ouaknine and J. Worrell. Ultimate positivity is decidable for simple linear recurrence sequences. In ICALP, pages 330-341, 2014.
  28. C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1993.
  29. J.-É. Pin. Mathematical foundations of automata theory. Lecture notes LIAFA, Université Paris, 7, 2010.
  30. J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
  31. M.-P. Schützenberger. On the definition of a family of automata. Information and Control, 4:245-270, 1961.
  32. M.-P. Schützenberger. On finite monoids having only trivial subgroups. Information and Control, 8:190- 194, 1965.
  33. A. Weber. Finite-valued distance automata. Theor. Comput. Sci., 134(1):225-251, 1994.
  34. A. Weber and H. Seidl. On the degree of ambiguity of finite automata. Theoretical Computer Science, 88(2):325-349, 1991. This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2, 10777 Berlin, Germany