Academia.eduAcademia.edu

Outline

Aperiodic Weighted Automata and Weighted First-Order Logic

2019

https://doi.org/10.4230/LIPICS.MFCS.2019.76

Abstract

By fundamental results of Sch\"utzenberger, McNaughton and Papert from the 1970s, the classes of first-order definable and aperiodic languages coincide. Here, we extend this equivalence to a quantitative setting. For this, weighted automata form a general and widely studied model. We define a suitable notion of a weighted first-order logic. Then we show that this weighted first-order logic and aperiodic polynomially ambiguous weighted automata have the same expressive power. Moreover, we obtain such equivalence results for suitable weighted sublogics and finitely ambiguous or unambiguous aperiodic weighted automata. Our results hold for general weight structures, including all semirings, average computations of costs, bounded lattices, and others.

References (42)

  1. Parvaneh Babari, Manfred Droste, and Vitaly Perevoshchikov. Weighted register automata and weighted logic on data words. Theor. Comput. Sci., 744:3-21, 2018.
  2. Jean Berstel and Christophe Reutenauer. Rational Series and their Languages. Springer, 1988.
  3. Benedikt Bollig and Paul Gastin. Weighted versus Probabilistic Logics. In Volker Diekert and Dirk Nowotka, editors, International Conference on Developments in Language Theory (DLT'09), volume 5583 of Lecture Notes in Computer Science, pages 18-38. Springer, 2009.
  4. Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Pebble Weighted Automata and Transitive Closure Logics. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming, pages 587-598, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
  5. Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Pebble Weighted Automata and Weighted Logics. ACM Transactions on Computational Logic, 15(2):1-35, 2014.
  6. J. Richard Büchi. Weak Second-Order Arithmetic and Finite Automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 6:66-92, 1960.
  7. Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Expressiveness and Closure Properties for Quantitative Languages. Logical Methods in Computer Science, 6(3), 2010.
  8. Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages. ACM Trans. Comput. Log., 11(4):23:1-23:38, 2010.
  9. 9 Volker Diekert and Paul Gastin. First-order definable languages. In Jörg Flum, Erich Grädel, and Thomas Wilke, editors, Logic and Automata: History and Perspectives, volume 2 of Texts in Logic and Games, pages 261-306. Amsterdam University Press, 2008.
  10. Manfred Droste and Stefan Dück. Weighted Automata and Logics on Graphs. In Mathematical Foundations of Computer Science (MFCS'15), volume 9234 of Lecture Notes in Computer Science, pages 192-204. Springer, 2015.
  11. Manfred Droste and Stefan Dück. Weighted automata and logics for infinite nested words. Inf. Comput., 253:448-466, 2017.
  12. Manfred Droste and Paul Gastin. Weighted Automata and Weighted Logics. In International Colloquium on Automata, Languages and Programming (ICALP'05), volume 3580 of Lecture Notes in Computer Science, pages 513-525. Springer, 2005.
  13. Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theor. Comput. Sci., 380(1-2):69-86, 2007.
  14. Manfred Droste and Paul Gastin. Aperiodic Weighted Automata and Weighted First-Order Logic. CoRR, abs/1902.08149, 2019.
  15. Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata. Springer Berlin Heidelberg, 2009.
  16. Manfred Droste and Ingmar Meinecke. Weighted automata and weighted MSO logics for average and long-time behaviors. Inf. Comput., 220:44-59, 2012.
  17. Manfred Droste and Vitaly Perevoshchikov. Multi-weighted Automata and MSO Logic. Theory Comput. Syst., 59(2):231-261, 2016.
  18. Manfred Droste and George Rahonis. Weighted automata and weighted logics on infinite words. Izvestiya VUZ. Matematika, 54:26-45, 2010.
  19. Manfred Droste and Heiko Vogler. Weighted tree automata and weighted logics. Theor. Comput. Sci., 366(3):228-247, 2006.
  20. Manfred Droste and Heiko Vogler. Weighted automata and multi-valued logics over arbitrary bounded lattices. Theor. Comput. Sci., 418:14-36, 2012.
  21. Calvin C. Elgot. Decision Problems of Finite Automata Design and Related Arithmetics. Transactions of the American Mathematical Society, 98:21-52, 1961.
  22. Ina Fichtner. Weighted Picture Automata and Weighted Logics. Theory Comput. Syst., 48(1):48-78, 2011.
  23. Paul Gastin and Benjamin Monmege. A unifying survey on weighted logics and weighted automata. Soft Computing, 22(4):1047-1065, December 2018.
  24. Oscar H Ibarra and Bala Ravikumar. On sparseness, ambiguity and other decision problems for acceptors and transducers. In Symposium on Theoretical Aspects of Computer Science (STACS'86), volume 210 of Lecture Notes in Computer Science, pages 171-179. Springer, 1986.
  25. Daniel Kirsten. A Burnside Approach to the Termination of Mohri's Algorithm for Polynomially Ambiguous Min-Plus-Automata. RAIRO -Theoretical Informatics and Applications, 42(3):553- 581, June 2008.
  26. Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unambiguity and sequentiality from a finitely ambiguous max-plus automaton. Theoretical Computer Science, 327(3):349-373, November 2004.
  27. Stephan Kreutzer and Cristian Riveros. Quantitative Monadic Second-Order Logic. In Symposium on Logic in Computer Science (LICS'13). IEEE, June 2013.
  28. Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Springer Berlin Heidelberg, 1986.
  29. Eleni Mandrali and George Rahonis. On weighted first-order logics with discounting. Acta Informatica, 51(2):61-106, January 2014.
  30. Filip Mazowiecki and Cristian Riveros. Pumping Lemmas for Weighted Automata. In Symposium on Theoretical Aspects of Computer Science (STACS'18), volume 96 of Leibniz International Proceedings in Informatics (LIPIcs), pages 50:1-50:14. Schloss Dagstuhl-Leibniz- Zentrum fuer Informatik, 2018.
  31. Filip Mazowiecki and Cristian Riveros. Copyless cost-register automata: Structure, express- iveness, and closure properties. Journal of Computer and System Sciences, 100:1-29, March 2019.
  32. Robert McNaughton and Seymour Papert. Counter-Free Automata. The MIT Press, Cambridge, Mass., 1971.
  33. Erik Paul. On Finite and Polynomial Ambiguity of Weighted Tree Automata. In International Conference on Developments in Language Theory (DLT'16), volume 9840 of Lecture Notes in Computer Science, pages 368-379. Springer, 2016. 76:15
  34. Karin Quaas. MSO logics for weighted timed automata. Formal Methods in System Design, 38(3):193-222, 2011.
  35. Christophe Reutenauer. Propriétés arithmétiques et topologiques de séries rationnelles en variables non commutatives. PhD thesis, Université Paris VI, 1977.
  36. Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
  37. Jacques Sakarovitch and Rodrigo de Souza. Lexicographic Decomposition of k-Valued Trans- ducers. Theory of Computing Systems, 47(3):758-785, April 2009.
  38. Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Series. Springer, 1978.
  39. Marcel Paul Schützenberger. On the definition of a family of automata. Information and Control, 4(2-3):245-270, September 1961.
  40. Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information and Control, 8(2):190-194, 1965.
  41. Boris A. Trakhtenbrot. Finite Automata and Logic of Monadic Predicates. Doklady Akademii Nauk SSSR, 149:326-329, 1961.
  42. Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata. Theoretical Computer Science, 88(2):325-349, October 1991.