Academia.eduAcademia.edu

Outline

Weighted Automata: Theory and Applications Preface

Theoretical Computer Science

https://doi.org/10.1016/J.TCS.2014.02.031

Abstract

This report contains the program and the abstracts of lectures delivered at the workshop "Weighted Automata-Theory and Applications" which took place at Leipzig University, March 27-31, 2006. This workshop covered all aspects of weighted automata, ranging from the theory of formal power series to quantum automata and applications e.g. in digital image processing or model-checking of probabilistic systems. The workshop was attended by 45 participants from countries. Two tutorials were given by J. Albert (Würzburg), J. Gruska (Brno).

References (50)

  1. M. Droste and P. Gastin. Weighted automata and weighted logics. In Au- tomata, Languages and Programming (32nd ICALP, Lissabon), volume 3580 of Lecture Notes in Comp. Sc., pages 513-525. Springer, 2005. Work partly supported by the DAAD-PROCOPE project Temporal and Quantita- tive Analysis of Distributed Systems. References
  2. M. Droste and P. Gastin. The Kleene-Schützenberger theorem for formal power series in partially commuting variables. Information and Computation, 153:47-80, 1999.
  3. M. Droste and P. Gastin. On aperiodic and star-free formal power series in partially commuting variables. In Formal Power Series and Algebraic Combinatorics (Moscow 2000), pages 158-169. Springer Berlin, 2000.
  4. D. Kuske and I. Meinecke. Branching automata with costs -a way of reflecting paral- lelism in costs. Theoret. Comp. Sc., 328:53-75, 2004.
  5. D. Kuske. Weighted asynchronous cellular automata. In STACS 2006, volume 3884 of Lecture Notes in Comp. Sc., pages 685-696. Springer, 2006.
  6. I. Meinecke. The Hadamard product of sequential-parallel series. J. of Automata, Languages and Combinatorics, 10(2), 2005. To appear.
  7. I. Meinecke. Weighted logics for traces. In Intern. Computer Science Symposium in Russia (CSR) 2006, Lecture Notes in Comp. Sc. Springer, 2006. accepted. References
  8. M. Droste, G. Rahonis, Weighted automata and weighted logics over infinite words (submitted).
  9. M. Droste, H. Vogler, Weighted Tree Automata and Weighted Logics (sub- mitted).
  10. Z. Ésik, W. Kuich, A semiring-semimodule generalization of ω-regular lan- guages I, II. Special issue on "Weighted automata" (M. Droste, H. Vogler, eds.) J. of Automata Languages and Combinatorics, to appear. Technical Contributions A Burnside Approach to the Termination of Mohri's Algorithm for Polynomially Ambiguous Min-Plus-Automata Daniel Kirsten Dresden University of Technology, Institute of Algebra, 01062 Dresden, Germany http://www.math.tu-dresden.de/∼kirsten/ References
  11. D. Kirsten. A Burnside approach to the termination of Mohri's algorithm for polynomially ambiguous min-plus-automata. (Manuscript, available under www.math.tu-dresden.de/~kirsten/publications/), 2005.
  12. M. Mohri. Finite-state transducers in language and speech processing. Computa- tional Linguistics, 23:269-311, 1997.
  13. Björn Borchardt. The Theory of Recognizable Tree Series. Verlag für Wissenschaft und Forschung, 2005. published Ph.D. thesis.
  14. J. Engelfriet, Z. Fülöp, and H. Vogler. Bottom-up and top-down tree series trans- formations. J. Automata, Languages and Combinatorics, 7:11-70, 2002.
  15. Z. Fülöp and H. Vogler. Tree series transformations that respect copying. Theory of Computing Systems, 36(3):247-293, 2003.
  16. W. Kuich. Tree transducers and formal tree series. Acta Cybernet., 14:135-149, 1999.
  17. W. Kuich. Full Abstract Families of Tree Series II. In R. Freund and A. Kelemen- ova, editors, Proceedings of the International Workshop Grammar Systems 2000, pages 347-358, 2000.
  18. Manfred Droste and Paul Gastin. The Kleene-Schützenberger theorem for formal power series in partially commuting variables. Information and Computation, 153:47- 80, 1999.
  19. Manfred Droste and Dietrich Kuske. Skew and infinitary formal power series. In Proceedings of ICALP'03, volume 2719 of Lecture Notes in Computer Science, pages 426-438. Springer, 2003. References
  20. S. Bozapalidis and A. Grammatikopoulou. Recognizable picture series. In M. Droste and H. Vogler, editors, Special issue on Weighted Automata, presented at WATA 2004, Dresden, Journal of Automata, Languages and Combinatorics, 2005. In print.
  21. M. Droste and P. Gastin. Weighted automata and logics. In 32nd ICALP, volume 3580 of Lecture Notes in Computer Science, pages 513-525. Springer, 2005.
  22. K. S. Fu. Syntactic Methods in Pattern Recognition. Academic Press, New York, 1974.
  23. D. Giammarresi and A. Restivo. Two-dimensional languages. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 3, pages 215-267. Springer, Berlin, 1997.
  24. D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic second-order logic over rectangular pictures and recognizability by tiling systems. Inform. and Comput., 125:32-45, 1996.
  25. K. Inoue and A. Nakamura. Some properties of two-dimensional on-line tessellation acceptors. Information Sciences, 13:95-121, 1977.
  26. K. Lindgren, C. Moore, and M. Nordahl. Complexity of two-dimensional patterns. Journal of Statistical Physics, 91(5-6):909-951, 1998.
  27. I. Mäurer. Recognizable and rational picture series. In Conference on Algebraic Informatics, pages 141-155. Aristotle University of Thessaloniki Press, 2005.
  28. I. Mäurer. Weighted picture automata and weighted logics. In B. Durand and W. Thomas, editors, STACS 2006, volume 3885 of Lecture Notes in Computer Science, pages 313-324. Springer Berlin, 2006.
  29. M. Minski and S. Papert. Perceptron. M.I.T. Press, Cambridge, Mass., 1969.
  30. R.A. Smith. Two-dimensional formal languages and pattern recognition by cellular automata. 12th IEEE FOCS Conference Record, pages 144-152, 1971. References
  31. Antonio Di Nola and Brunella Gerla. Algebras of Lukasiewicz logic and their semiring reducts. Technical report, Erwin Schrödinger International Institute for Mathematical Physics, Wien, 2004.
  32. Manfred Droste and Paul Gastin. Weighted automata and weighted logics. In Pro- ceedings of the 32nd International Colloquium on Automata, Languages and Pro- gramming (ICALP'05), Lecture Notes in Computer Science, Lisboa, Portugal, July 2005. Springer.
  33. Siegfried Gottwald. A Treatise on Many-Valued Logics, volume 9 of Studies in Logic and Computation. Research Studies Press, Baldock, November 2000.
  34. Julius Richard Büchi. Weak second order arithmetic and finite automata. Z. Math. Logik Grundlagen Math., 6:66-92, 1960.
  35. K. Culik II, J. Karhumäki, Finite automata computing real functions. SIAM Journal on Computing 23/4 (1994), 789-814.
  36. J. Albert, J. Kari, Parametric Weighted Finite Automata and Iterated Function Systems. Proc. L'Ingenieur et les Fractales -Fractals in Engineer- ing, Delft. 1999, 248-255.
  37. G. Tischler, Real Functions computed by Parametric Weighted Finite Automata. Proc. Conference on Algebraic Informatics, Thessaloniki. 2005, 129-138.
  38. G. Tischler Properties and Applications of Parametric Weighted Finite Automata. Accepted for publication in JALC. 2005.
  39. K. Culik II, J. Kari, Image Compression Using Weighted Finite Au- tomata, Computer and Graphics 17/3 (1993), 305-313.
  40. K. Culik II, J. Kari, Image-data compression using edge-optimizing al- gorithm for WFA inference Journal of Information Processing and Manage- ment 30 (1994), 829-838.
  41. K. Culik II, J. Kari, Efficient inference algorithm for weighted finite automata in: Fractal Image Encoding and Compression (Ed. Y. Fisher), (1995), Springer-Verlag.
  42. Lorenz Fries: Chronik der Bischöfe von Würzburg -Die Prachthandschrift des Fürstbischofs Julius Echter als Multimedia-DVD, Universitätsbibliothek Würzburg, 2004. Figure 1: Frames of page-flip video taken from [4].
  43. References
  44. N. Dershowitz and R. Treinen. An on-line problem database. In T. Nipkow (Ed.), Proc. 9th Int. Conf. Rewriting Techniques and Applications RTA-98, Lecture Notes in Comput. Sci. Vol. 1379, pp. 332-342. Springer-Verlag, 1998.
  45. L. Fuchs. Partially ordered algebraic systems. Pergamon Press, Oxford, 1963.
  46. N. Dershowitz and R. Treinen. The RTA list of open problems. http://www.lsv. ens-cachan.fr/rtaloop/
  47. N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause elimination. In F. Bacchus and T. Walsh, Proc. 8th Int. Conf. Theory and Applica- tions of Satisfiability Testing SAT 2005, Lecture Notes in Comput. Sci. Vol. 3569, pp. 61-75. Springer-Verlag, 2005.
  48. A. Geser, D. Hofbauer and J. Waldmann. Match-bounded string rewriting systems. Appl. Algebra Engrg. Comm. Comput., 15(3-4):149-171, 2004.
  49. H. Zantema. Termination. In Terese, Term Rewriting Systems, pp. 181-259. Cam- bridge Univ. Press, 2003.
  50. H. Zantema. Problem #104. In [3], http://www.lsv.ens-cachan.fr/rtaloop/ problems/104.html, 2005.