A study of heuristic guesses for adiabatic quantum computation
2008
Abstract
Adiabatic quantum computation (AQC) is a universal model for quantum computation which seeks to transform the initial ground state of a quantum system into a final ground state encoding the answer to a computational problem. AQC initial Hamiltonians conventionally have a uniform superposition as ground state. We diverge from this practice by introducing a simple form of heuristics: the ability to start the quantum evolution with a state which is a guess to the solution of the problem. With this goal in mind, we explain the viability of this approach and the needed modifications to the conventional AQC (CAQC) algorithm. By performing a numerical study on hard-to-satisfy 6 and 7 bit random instances of the satisfiability problem (3-SAT), we show how this heuristic approach is possible and we identify that the performance of the particular algorithm proposed is largely determined by the Hamming distance of the chosen initial guess state with respect to the solution. Besides the possibility of introducing educated guesses as initial states, the new strategy allows for the possibility of restarting a failed adiabatic process from the measured excited state as opposed to restarting from the full superposition of states as in CAQC. The outcome of the measurement can be used as a more refined guess state to restart the adiabatic evolution. This concatenated restart process is another heuristic that the CAQC strategy cannot capture.
References (57)
- E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, quant-ph/0001106 (2000).
- A. M. Childs, E. Farhi, and J. Preskill, Physical Review A 65, 012322.
- D. A. Lidar, Physical Review Letters 100, 160506 (2008).
- E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, Science 292, 472 (2001).
- T. Hogg, Physical Review A 67, 022314 (2003).
- A. P. Young, S. Knysh, and V. N. Smelyanskiy, Physical Review Letters 101, 170503 (2008).
- A. Perdomo, C. Truncik, I. Tubert-Brohman, G. Rose, and A. Aspuru-Guzik, Physical Review A 78, 012320 (2008).
- E. Farhi, J. Goldstone, and S. Gutmann, quant-ph/0208135 (2002).
- A. T. Rezakhani, W. Kuo, A. Hamma, D. A. Lidar, and P. Zanardi, Physical Review Letters 103, 080502 (2009).
- E. Farhi, J. Goldstone, S. Gutmann, and D. Nagaj, International Journal of Quantum Information 06, 503 (2008).
- J. Roland and N. J. Cerf, Physical Review A 65, 042308 (2002).
- M. Znidaric and M. Horvat, Physical Review A 73, 0223295 (2006).
- M. H. S. Amin, Physical Review Letters 100, 1305034 (2008).
- M. Garey and D. Johnson, Computers and Intractabil- ity. A Guide to the Theory of NP-Completeness, W.H. Freeman and Co., NY, 1979.
- M. Sipser, Introduction to the Theory of Computation, PWS Publishing Co., 2005.
- T. Hogg, Physical Review Letters 80, 2473 (1998).
- T. Hogg, Physical Review A 61, 052311 (2000).
- L. K. Grover, Physical Review Letters 79, 325 (1997).
- A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, Science 309, 1704 (2005).
- N. J. Ward, I. Kassal, and A. Aspuru-Guzik, The Journal of Chemical Physics 130, 194105 (2009).
- H. Wang, S. Kais, A. Aspuru-Guzik, and M. R. Hoffmann, Physical Chemistry Chemical Physics 10, 5388 (2008).
- H. Wang, S. Ashhab, and F. Nori, Physical Review A 79, 042335 (2009).
- D. Kohen and D. J. Tannor, The Journal of Chemical Physics 98, 3168 (1993).
- D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge, in Pro- ceedings of the thirty-fifth annual ACM symposium on Theory of computing, pp. 20-29, San Diego, CA, USA, 2003, ACM.
- A. Messiah, Quantum Mechanics (Physics), Dover Pub- lications, 1999.
- K. Marzlin and B. C. Sanders, Physical Review Let- ters 93, 160408 (2004).
- D. M. Tong, K. Singh, L. C. Kwek, and C. H. Oh, Physical Review Letters 98, 150402 (2007).
- Z. Wei and M. Ying, Physical Review A 76, 024304 (2007).
- Y. Zhao, Physical Review A 77, 032109 (2008).
- M. H. S. Amin, 0810.4335 (2008).
- R. MacKenzie, A. Morin-Duchesne, H. Paquette, and J. Pinel, Physical Review A 76, 044102 (2007).
- A. Ambainis and O. Regev, quant-ph/0411152 (2004).
- S. Jansen, M. Ruskai, and R. Seiler, Journal of Math- ematical Physics 48, 102111 (2007).
- J. da Wu, M. sheng Zhao, J. lan Chen, and Y. de Zhang, 0706.0264 (2007).
- J.-L. Chen, M. sheng Zhao, J. da Wu, and Y. de Zhang, 0706.0299 (2007).
- M. Andrecut and M. K. Ali, International Journal of Theoretical Physics 43, 925931 (2004).
- M. S. Siu, Physical Review A 75, 0623375 (2007).
- S. Acharyya, Journal on Satisfiability, Boolean Model- ing and Computation 4, 33 (2007).
- I. Gent and T. Walsh, Internal report, department of computer science, University of Strathclyde (1999).
- M. Mezard, G. Parisi, and R. Zecchina, Science 297, 812 (2002).
- D. Achlioptas, A. Naor, and Y. Peres, Nature 435, 759 (2005).
- M. Mezard, T. Mora, and R. Zecchina, Physical Re- view Letters 94, 197205 (2005).
- Watanabe research group of Dept. of Math. and Computing Sciences, Tokyo Inst. of Technology, http://www.is.titech.ac.jp/∼watanabe/gensat/.
- E. Farhi, J. Goldstone, D. Gosset, S. Gut- mann, H. Meyer, and P. Shor, (2009), arxiv.org/abs/0909.4766.
- M. Žnidaric, Physical Review A 71, 062305.
- J. Du, L. Hu, Y. Wang, J. Wu, M. Zhao, and D. Suter, Physical Review Letters 101, 060403 (2008).
- H. Kautz and B. Selman, Discrete Applied Mathemat- ics 155, 1514 (2007).
- E. Farhi, J. Goldstone, and S. Gutmann, quant-ph/0208135 (2002).
- J. Kempe, A. Kitaev, and O. Regev, SIAM Journal on Computing 35, 10701097 (2006).
- S. Bravyi, quant-ph/0602108 (2006).
- R. Oliveira and B. M. Terhal, Quantum Information and Computation 8, 0900 (2008).
- D. Aharonov and A. Ta-Shma, SIAM Journal on Com- puting 37, 47 (2007).
- A. Mizel, D. A. Lidar, and M. Mitchell, Physical Review Letters 99, 070502 (2007).
- R. Schutzhold and G. Schaller, Physical Review A 74, 060304 (2006).
- J. Latorre and R. Orus, Physical Review A 69, 062302 (2004).
- R. Orus and J. I. Latorre, Physical Review A 69, 052308 (2004).
- A.P. Young, S. Knysh, and V. N. Smelyanskiy, (2009), arXiv:0910.1378v1.